Spectrally arbitrary, nonderogatory matrix factorization over a general field

J. Botha
University of South Africa
bothajd@unisa.ac.za

SAMS Subject Classification: Algebra

It is known (Sourour[4]) that a nonsingular, nonscalar matrix A, over a general field, may be factored as $A = BC$, in which the spectra of B and C are arbitrary, subject only to the obvious determinantal condition $\det A = \det B \det C$. Sourour then uses this result to develop a unified theory for a number of matrix factorization results, provided the underlying field has sufficiently many elements in terms of the order of the matrix being factored. In a recent development, Johnson and Zhang[3] shows that the factorization result of Sourour may be refined in the case of matrices over the complex field, by in addition requiring that the factors B and C be nonderogatory. The purpose of this presentation is to establish the validity of the latter result over a general field with at least four elements, and to use it to remove the requirement on the order of the underlying field in the unified theory of Sourour.

References