
Linux, Shell Programing and Perl

by
Willi-Hans Steeb, Gert Cronje and Yorick Hardy
International School for Scientific Computing

Contents

1 Linux Basics 1
1.1 Some Basic Commands . 1
1.2 Working with Files and Directories 10

1.2.1 Introduction . 10
1.2.2 The Home Directory and Path Names 11
1.2.3 Important Directories in the Linux File System 13
1.2.4 Basic Files and Directories Commands 14
1.2.5 File Name Substitution . 31

1.3 Standard Input/Output, and I/O Redirection 35

2 Linux Commands 43

3 Advanced Linux 73
3.1 The Unix File System . 73
3.2 Mounting and Unmounting . 76
3.3 MTools Package . 81
3.4 Swap Space and the Loopback Device 82
3.5 Network File-System . 83
3.6 Linuxconf . 84
3.7 Compressed Files . 85
3.8 The vi and emacs Editors . 88

3.8.1 vi Editor . 88
3.8.2 emacs Editor . 96

3.9 Programming Languages . 99
3.9.1 C and C++ Compiler . 99
3.9.2 Perl . 101
3.9.3 Lisp . 102
3.9.4 Java . 103

4 Linux and Networking 105
4.1 Introduction . 105
4.2 Basic Commands . 106
4.3 email . 116
4.4 ftp Commands . 122
4.5 Telnet . 125

i

4.6 Remote Shell . 127

4.7 Web . 128

4.8 INETD and Socket Programming . 129

5 Shell Programming 133

5.1 What is a shell . 133

5.2 The Shell as a Programming Language 137

5.2.1 Creating a Script . 138

5.2.2 Making a Script executable 139

5.3 Shell Syntax . 140

5.3.1 Variables . 140

5.3.2 Conditions . 144

5.3.3 Control Structures . 147

5.3.4 Logical AND and Logical OR 155

5.3.5 Functions . 159

5.4 Shell Commands . 164

5.4.1 Builtin Commands . 164

5.4.2 Command Execution . 173

5.5 Advanced examples . 177

6 Perl 183

6.1 Introduction . 183

6.2 My First Perl Program . 184

6.3 Data Types . 185

6.4 Arithmetic Operation . 187

6.5 Standard Input . 188

6.6 Basic String Operations . 189

6.7 Conditions . 190

6.8 Logical Operators . 192

6.9 Loops . 193

6.10 goto Statement . 197

6.11 Mathematical Functions . 198

6.12 Bitwise Operations . 199

6.13 List Operations . 200

6.14 Associative Arrays Operations . 204

6.15 Pattern Matching . 205

6.16 Regular Expressions . 206

6.17 Map Operator . 209

6.18 Two-Dimensional Arrays . 210

6.19 Subroutines . 211

6.20 Recursion . 218

6.21 The system Function . 223

6.22 File Manipulations . 224

6.23 Networking . 231
ii

Bibliography 234

Index 235

iii

Preface

Linux is a Unix-like operating system. It is the result of an international collabo-
ration, directed by Linus Torvalds, the original author. It’s free - no licensing fee
payable to anybody. The Linux kernel is licensed under Free Software Foundation’s
General Public License. The source code comes with the system. It’s dependent
– it contains no code written by Bell Labs or its successors. Supported architectures:

Pentium PentiumPro Amiga Atari
PowerPC SUN SPARC DEC Alpha

Ports in progress: ARM and MIPS (SGI machines).

Standards: Linux implements a superset of the POSIX standard.

Historical Overview
Linux did not appear out of thin air. It is the outcome of years of computer system
development:

• Multics – 1964-1965

– General Electric, Bell Telephone laboratories and Project MAC at MIT.

– Security rings,

– Multiple command interpreters (or shells),

– A file system for secondary storage,

– Dynamic libraries.

– High level language (PL/I).

• Unix – 1969

– Bell Telephone Laboratories.

– Input/output redirection. (e.g. command1 > temp_file)

– Pipes - i.e. the output form one program is the input for another.

In Unix the programs execute simultaneously, the pipe implmentation in DOS
does not support simultaneous execution. (e.g. command1 | command2)

– Hierarchical file system,

– SUID flag. A process started by a executable file takes on the identity and
privileges of the owner of the file.

iv

Unix Philosophy

Unix prescribes a unique philosophy of how system tools should be designed:
– Make each program do one thing well. Rather write a new program than compli-
cate old programs by adding new ”features”.
– Expect the output of any program to become the input of any other program -
Don’t insist on interactive input.
– Design and build software to be tried early. Do not hesistate to throw out clumsy
parts and rebuild them.
– Use tools to lighten a programming task, even if we have to detour to build the
tools.
The reslt of the above is that a typical Unix system has hundreds of obscure pro-
grams, commands and tools. Unix has been described as an operating system kernel
with twenty years of nifty add on utilities.

T.H.E., TUNIS, Xinu and Minix.

– Teach operating systems design.
– Minix was written for the cheap Intel 8086 platform.
– Minix prompted the development of Linux also on the Intel 80386.

Other contributions.

A number of other systems have made contributions which have become an essential
part of Linux and current Unix systems. These are:

– Multi-User
– Virtual Memory
– Filename expansion in command lines (globbing or wildcard expansion),
– Bit mapped display - the X-window system

Application Programs for Linux

• Motif and the Command Desktop environment

• Several commercial X-servers

• AplixWare (Office Suite)

• CorelDraw (Graphics program)

• WordPerfect(Office Suite)

• StarOffice (Office Suite - Free for non-commercial use)

• SymbolicC++
v

• Mathematica

• Reduce

• Maple

• Matlab

• Octave (Matlab-like package - Free)

• Scilab (Matlab-like, Excellent for control systems - Free)

• Khoros (Image processing and visualization - Free)

• PV Wave (Visualisation)

• Microstation (CAD program)

• NexS (Internet enabled spreadsheet)

• Netscape (WWW browser)

• The GNU Project

• SUN Java Developer Kit

• Oracle.

Program Development

Available programming languages include:

C ADA Scheme
C++ APL Eiffel
Objective C Basic Modula 2 and 3
Pascal Logo Java
Fortran Smalltalk Prolog
Forth Perl Rexx
Simula Postscript CORC and CUPL
Oberon Common Lisp INTERCAL
TCL/TK

Compatibility

Binary compatibility

Intel Linux runs several other x86 Unix binaries (for example SCO Unix). SPARC
Linux runs SunOs and some Solaris binaries.

vi

Networking

• Ethernet

• Token ring

• TCP/IP

• IPX (Novell)

• SMB (OS/2 Warp server / NT Server / Windows for Workgroups)

• Appletalk

We note that MS-DOS and OS/2 use different control characters for carriage return
and linefeeds that Unix does.

We note that this difference between MS-DOS and Unix may also produce problems
when printing. A well known error is the staircase effect. To fix this problem under
OS/2, edit the file under OS/2 and delete and retype the frist two characters.

Linux uses libraries that store dates as 32-bit integers, which count the seconds
since 1970. This counter will not overflow until the year 2038, by which time the
library programmers will have upgraded the system software to store dates as 64-bit
integers.

The email addresses of the author is:

whs@na.rau.ac.za

steeb_wh@yahoo.com

The web sites of the author are:

http://zeus.rau.ac.za

http://issc.rau.ac.za

vii

Chapter 1

Linux Basics

1.1 Some Basic Commands

Here we introduce some basic command line commands in LINUX and UNIX. We
notice that LINUX and UNIX commands are case-sensitive. Under DOS and Win-
dows command line commands are not case-sensitive. The command prompt is
indicated by > in the following. We assume the use of the Bourne shell or a com-
patible shell.

Every UNIX and LINUX command is ended with the pressing of the RETURN (or
ENTER) key. RETURN (or ENTER) says that we are finished typing things in and
are ready for the UNIX system to do its thing.

Displaying the Date and Time. The date Command
The date command tells the system to print the date and time:

> date

Tues Jun 27 11:38:37 SAST 2000

>

This means date prints the day of the week, month, day, time (24 hour clock, South
African Standard Time), and year. DOS and Windows also have the date command.

The clock command

> clock

provides

Fri Feb 20 15:34:07 2004 -0.492223 seconds

1

2 CHAPTER 1. LINUX BASICS

Finding Out Who’s Logged In. The who Command
The who command can be used to get information about all users who are currently
logged into the system:

> who

pat tty29 Oct 29 14:40

ruth tty37 Oct 29 10:54

steve tty25 Oct 29 15:52

>

Here there are three users logged in, pat, ruth, and steve. Along with each user
id, is listed the tty number of that user and the day and time that user logged in.
The tty number is a unique identification number the UNIX system gives to each
terminal.

The who command also can be used to get information about yourself

> who am i

pat tty29 Oct 29 14:40

>

who and who am i are actually the same command: who. In the latter case, the am

and i are arguments to the who command.

Echoing Characters. The echo Command
The echo command prints (or echoes) at the terminal whatever else we happen to
type on the line. A newline is included by default.

> echo this is a test

this is a test

> echo why not print out a longer line with echo?

why not print out a longer line with echo?

> echo

> echo one two three four five

one two three four five

>

From the last example we see that echo squeezes out extra blanks between words.
That is because on a UNIX system, it is the words that are important; the blanks
(whitespace with ASCII table number 32) are merely there to separate the words.
Generally, the UNIX system ignores extra blanks. Normally echo follows all the
output with a newline. The option echo -n suppresses that. Another option is
echo -e it enables interpretation of backslashed special characters in the string.
\b: backspace, \f: form feed, \n: newline, \r: carriage return, \t: horizontal tab,
\\: backslash. The echo command also exists in DOS and Windows.

1.1. SOME BASIC COMMANDS 3

The command

printf hello how

provides

hello

but

printf "hello how"

provides

hello how

Reporting working directory. The pwd Command
The pwd command reports the present working directory.

> pwd

/root

>

Reporting the status of currently running processes. The ps command
The ps command reports the status of currently running processes. Thus this com-
mand gives us information about the processes that are running on the system. ps
without any options prints the status of just our processes. If we type in ps at our
terminal, we get a few lines back describing the processes we have running:

> ps

PID TTY TIME COMMAND

195 01 0:21 bash The shell

1353 01 0:00 ps The ps command

1258 01 0:10 sort The previous sort

>

The ps command prints out four columns of information: PID, the process id; TTY,
the terminal number that the process was run from; TIME, the amount of computer
time in minutes and seconds that process has used; and COMMAND, the name of the
process. The sh process in the above example is the shell that was started when we
logged in, and it used 21 seconds of computer time. Until the command is finished,
it shows up in the output of the ps command as a running process. Process number
1353 in the above example is the ps command that was typed in, and 1258 is the
sort operation.

When used with the -f option, ps prints out more information about our processes,
including the parent process id (PPID), the time the processes started (STIME), and
the command arguments.

4 CHAPTER 1. LINUX BASICS

> ps -f

UID PID PPID C STIME TTY TIME COMMAND

steve 195 1 0 10:58:29 tty01 0:21 -sh

steve 1360 195 43 13:54:48 tty01 0:01 ps -f

steve 1258 195 0 13:45:04 tty01 3:17 sort data

>

Because processes rapidly progress in their execution path, this report is only a
snapshot view of what was happening when we asked. A subsequent invocation of
ps may give different results. No options shows a picture of the currently executing
processes on our terminal. The following options are available for the ps command.

1.1. SOME BASIC COMMANDS 5

Item Description

-l Gives a long listing.

-u Prints in user format displaying the user name and start time.

-j Gives output in the jobs format.

-s Gives output in signal format.

-v Displays output in virtual memory format.

-m Show threads.

-a Shows processes of other users as well.

-x Displays processes without a controlling terminal.

-S Adds child CPU time and page faults.

-c Lists the command name from the kernel tast_structure.

-e Shows the environment.

-w Displays in wide format. Does not truncate command lines to fit on one line.

-h Does not display a header.

-r Displays running processes only.

-n Provides numeric output for USER and WCHAN.

txx Displays only processes with the controlling tty xx.

The -t and -u options are particularly useful for system administrators who have to
kill processes for users who have gone astray. The following columns are reported:

6 CHAPTER 1. LINUX BASICS

Column Description

PID The process ID.

PRI Process priority.

NI The Linux process nice value. A positive value means less CPU time.

SIZE The virtual image size, calculated as the size of text+data+stack.

RSS The resident set size. The number of kilobytes of the program that is
currently resident in memory.

WCHAN The name of the kernel event that the process is waiting for.

STAT The process status. Given by one of the following codes:
R Runnable
S Sleeping
D Uninterruptible sleep
T Stopped or traced
Z Zombie
Q Process has no resident pages

TTY The name of the controlling tty (terminal) for the process.

PAGEIN The number of page faults that have caused pages to be read from disk.

TRS The text resident size.

SWAP The number of kilobytes on the swap device.

Environment variables. The printenv command
The printenv prints the values of all environment variables. These environment
variables include the following

• USERNAME - our current username (account name).

• ENV=/home/gac/.bashrc - default file for setting environment variables for
this shell.

• HOSTNAME=issc.rau.ac.za - hostname of the computer.

• MAIL=/var/spool/mail/gac - where incoming mail is placed.

• PATH=/usr/local/bin:/bin - search path for executable files.

• IFS - internal field separator.

1.1. SOME BASIC COMMANDS 7

A number of programs require certain environment variables to be set. For example
PVM (parallel virtual machine) need the following:

PVM_DPATH=/usr/local/lib/pvm3/lib

PVM_ROOT=/usr/local/lib/pvm3

To set this, the following lines must be added to the .bashrc file

export PVM_ROOT=/usr/local/lib/pvm3

export PVM_DPATH=$PVM_ROOT/lib

There are two ways to access the value of an environment variable:

• printenv SHELL

• echo $SHELL

UNIX and LINUX on-line manual pages. The man command
To get on-line help for each of the various Linux commands, we can type man. Linux
then displays, a screen at a time, any information it has on the command. If we are
not sure of what command to use, we can try the -k parameter and enter a simple
keyword that represents the topic of interest. man then searches through its help
files (called man pages) for a topic that contains the keyword. Linux also provides
an alias for this command called apropos. If we enter the command man ls, Linux
provides help on the ls command, including all its parameters. The command
man -k cls provides a listing of commands that have the word cls in the help file;
the command apropos cls is the same as man -k cls.

> man ls ask for help on the ls command

> man pvm_mytid ask for help on the pvm_mytid() function

To quit the online help we enter q or CRTL-c.

Clearing Terminal Screen. The clear command
Sometimes after filling our terminal screen with information, we want a blank screen.
Under LINUX we use the clear command.

> clear

Under DOS, we use the cls command.

Typing More Than One Command on a Line
We can type more than one command on a line provided we separate each command
with a semicolon. For example, we can find out the current time and also our current
working directory by typing on the date and pwd commands on the same line

8 CHAPTER 1. LINUX BASICS

> date; pwd

Tues Jun 27 11:41:21 SAST 2000

/usr/pat/bin

>

We can string out as many commands as we like on the line, as long as each com-
mand is delimited by a semicolon.

Sending a Command to the Background
Normally, we type in a command and then wait for the results of the command to be
displayed at the terminal. For all the examples we have seen thus far, this waiting
time is typically quite short - maybe a second or two. However, we may have to
run commands that require many minutes to execute. In those cases, we have to
wait for the command to finish executing before we can proceed further unless we
execute the command in the background.

If we type in a command followed by the ampersand character &, then that command
will be sent to the background for execution. This means that the command will no
longer tie up our terminal and we can then proceed with other work. The standard
output from the command will still be directed to our terminal. However, in most
cases the standard input will be dissociated from our terminal. If the command
does try to read any input from standard input, it will be as if CTRL-d were typed.

> sort data > out & send the sort to the background

1258 process id

> date terminal is immediately available

Tues Jun 27 11:38:37 SAST 2000

>

When a command is sent to the background, the UNIX and LINUX system auto-
matically displays a number, called the process id for that command. In the above
example, 1258 was the process id assigned by the system. This number uniquely
identifies the command that we sent to the background, and can be used to obtain
status information about the command. This is done with the ps command.

Shutting down Linux
Linux keeps a lot of information about itself and files in memory, in areas called
buffers, before writing the information to the disk. This process helps to improve
system performance and control access to the hardware. If we turn the power off,
this information is lost, and we can damage our file-system. Linux is an operating
system that has to be told that we want to turn it off.

There are several safe ways to shut down a Linux system:

• shutdown - Type this command while we are logged in as root. An immediate
system shutdown will be initiated.

1.1. SOME BASIC COMMANDS 9

• reboot - The system will shut down and reboot.

• halt - The system will shut down, but it will not reboot.

• CRTL-Alt-Del - This key sequence is mapped to the shutdown command. This
is the easiest way to shut down our LINUX system.

shutdown lets us control when the shutdown takes place, and it notifies the users
on a regular basis. shutdown safely brings the system to a point where the power
may be turned off.

> shutdown [options] time [warning]

Item Description

time The time to shut down the system. Refer to the man page for a
full description of the available time formats.

warning A warning message sent out to all users.

-t n Wait n seconds between sending processes the warning and the kill signal.

-k Does not really shut down the system. Just sends the warning messages
to everybody.

-r Reboots after shutdown.

-h halts after shutdown.

-n Doesn’t synchronize the disks before rebooting or halting.

-f Does a fast reboot. Does not check any file systems on reboot.

-c Cancels an already running shutdown. With this option, it is not possible
to give the time argument, but we can enter an explanatory message
on the command line that is sent to all users.

shutdown can only be run by the super user. Messages are sent to the users’ termi-
nals at intervals bases on the amount of time left till the shutdown. For example

> shutdown -r +15 "System rebooting..."

This shuts down the system and reboots it 15 minutes from the time the command
was entered. It also sends the message System rebooting... to all users.

> shutdown -h now

This shuts down the system and halts it immediately.

10 CHAPTER 1. LINUX BASICS

1.2 Working with Files and Directories

1.2.1 Introduction

The LINUX and UNIX system recognizes only three basic types of files: ordinary
files, directory files, and special files. An ordinary file is just that: any file on the
system that contains data, text, program instructions, or just about anything else.
Directories are described later in this chapter. As its name implies, a special file has
a special meaning to the UNIX system, and is typically associated with some form
of I/O.

Linux allows filenames to be up to 256 characters long. These characters can be
lower- and uppercase, numbers, and other characters, usually the dash -, the un-
derscore _ and the dot . . They cannot include reserved metacharacters such
as asterisk, question mark, backslash, and space, because these all have meaning to
the shell.

The Unix file system is structured as a tree. The tree has a root directory. Every
file in the system has a unique path name. A path name is the path from the root,
through all the subdirectories, to a specified file. Directories are themselves files
that contain information on how to find other files. A directory (or subdirectory)
contains a set of files and/or subdirectories. All directories have the same inter-
nal format. One bit in each directory entry defines the entry as a file (0) or as a
subdirectory (1). Special system calls are used to create and delete directories. In
normal use, each user has a current directory (home directory). The user can create
his own subdirectories. All user data files are simply a sequence of bytes. Hardware
devices have names in the file system. These device special files are known to the
kernel as the device interface, but are accessed by the user by the same system calls
as other files. The filename . in a directory is a hard link to the directory itself.
The file name .. is a hard link to the parent directory. Linux has both absolute
pathnames and relative pathnames. Absolute pathnames start at the root of the file
system and are distinguished by a slash at the beginning of the pathname. Relative
pathnames start at the current directory.

A process is a program in execution. Processes are identified by their identifiers
which is an integer. Linux supports multiple processes. A process can create new
processes.

The operating system is mostly written in C. Linux consists of two separable parts,
the kernel and the system programs. The kernel provides the file system, cpu
scheduling, memory management, and other operating system functions through
system calls.

1.2. WORKING WITH FILES AND DIRECTORIES 11

1.2.2 The Home Directory and Path Names

The UNIX system always associates each user of the system with a particular di-
rectory. When we log into the system, we are placed automatically into a directory
called the home directory.

Assume our home directory is called steve and that this directory is actually a sub-
directory of a directory called usr. Therefore, if we had the directories documents

and programs the overall directory structure would actually look something like the
figure illustrated in Figure 1.1. A special directory known as

/

(pronounced slash) is shown at the top of the directory tree. This directory is known
as the root.

Whenever we are inside a particular directory (called our current working directory),
the files contained within the directory are immediately accessible. If we wish to
access a file from another directory, then we can either first issue a command to
change to the appropriate directory and then access the particular file, or we can
specify the particular file by its path name.

/

pat steve ruth

documents programs

memos proposals letters

plan
dact

sys.A
new.hire

no.JSK
AMG.reply

wb collect mon

Figure 1.1. Hierarchical directory structure

12 CHAPTER 1. LINUX BASICS

A path name enables us to uniquely identify a particular file to the UNIX system. In
the specification of a path name, successive directories along the path are separated
by the slash character / . A path name that begins with a slash is known as a full
path name, since it specifies a complete path from the root. So, for example, the
path name

/usr/steve

identifies the directory steve contained under the directory usr. Similarly, the path
name

/usr/steve/documents

references the directory documents as contained in the directory steve under usr.
As a final example, the path name

/usr/steve/documents/letters/AMG.reply

identifies the file AMG.reply contained along the appropriate directory path.

In order to help reduce some of the typing that would otherwise be require, UNIX
provides certain notational conveniences. Path names that do not begin with a
slash character are known as relative path names. The path is relative to our cur-
rent working directory. For example, if we just logged into the system and were
placed into our home directory /usr/steve, then we could directly reference the di-
rectory documents simply by typing documents. Similarly, the relative path name
programs/mon could be typed to access the file mon contained inside our programs
directory.

By convention, the directory name

..

always references the directory that is one level higher. For example, after logging
in and being placed into our home directory /usr/steve, the path name .. would
reference the directory usr. And if we had issued the appropriate command to
change our working directory to documents/letters, then the path name .. would
reference the documents directory, ../.. would reference the directory steve, and
../proposals/new.hire would reference the file new.hire contained in the pro-
posals directory. Note that in this case there is usually more than one way to specify
a path to a particular file. Another convention is the single period

.

which always refers to the current directory.

1.2. WORKING WITH FILES AND DIRECTORIES 13

1.2.3 Important Directories in the Linux File System

We recall that / is the root directory. It holds the actual Linux program as well as
subdirectories.

The directory /home holds users’ home directories. In other Unix systems this can
be /usr or /u directory. The directory /bin holds many of the basic Linux pro-
grams. bin stands for binaries, files that are executable.

The directory /usr holds many other user-oriented directories. The directory /usr/bin

holds user-oriented Linux programs.

In the directory /var/spool we find several subdirectories. mail holds mail files,
spool holds files to be printed, and uucp holds files copied between Linux machines.

Linux treats everything as a file. The /dev directories contains devices. These are
special files that serve as gateway to physical computer components. For instance if
we copy to /dev/fd0 we are actually sending data to the systems floppy disk. Our
terminal is one of the /dev/tty files. Partitions on the hard disk are of the form
/dev/hd0. Even the systems memory is a device. A famous device is /dev/null.
This is sometimes called the bit bucket. All information sent to /dev/null vanishes
- it is thrown in the trash.

The directory /usr/sbin holds administration files (executable files). If we enter
the command ls -l we see that we must be the owner, root, to run this commands.

The directory /sbin holds files that are usually run automatically by the Linux
system.

The directory /etc and its subdirectory hold many of the Linux configuration files.
These files are usually text files and they can be edited to change the systems con-
figuration.

The directory /media includes the directories cdrecorder, cdrom, floppy, sda1

and sdb1.

14 CHAPTER 1. LINUX BASICS

1.2.4 Basic Files and Directories Commands

The UNIX and LINUX system provides many tools that make working with files
easy. Here we review many of the basic file manipulation commands. The commands
we describe are

ls file(s) List file(s)

ls dir(s) List files in dir(s) or in current directory

if dir(s) are not specified

cd dir Change working directory to dir

cp file1 file2 Copy file1 to file2

cp file(s) dir Copy file(s) into dir

mv file1 file2 Move file1 to file2

Simply rename it if both reference the same directory

mv file(s) dir Move file(s) into directory dir

mkdir dir(s) Create directories

rmdir dir(s) Remove empty directory dir(s)

rm file(s) Remove file(s)

cat file(s) Display contents or concatenates files

wc files(s) Count the number of lines, words, and characters in

file(s) or standard input if not supplied

ln file1 file2 Link file1 and file2

ln file(s) dir Link file(s) into dir

These commands are execute files in the bin directory.

1.2. WORKING WITH FILES AND DIRECTORIES 15

Command Options

Most UNIX and LINUX commands allow the specification of options at the time
that a command is executed. These options generally follow the same format

-letter

That is, a command option is a minus sign followed immediately by a single letter.

For example, in order to count just the number of lines contained in a file named
names, the option -l is given to the wc command (word count)

> wc -l names

5 names

>

To count just the number of characters in a file, the -c option is specified

> wc -c names

27 names

>

Finally, the -w option can be used to count the number of words contained in the
file:

> wc -w names

5 names

>

Some commands require that the options be listed before the file name arguments.
For example

> sort names -r

is acceptable whereas

> wc names -l

is not. In general the command options should precede file names on the command
line.

16 CHAPTER 1. LINUX BASICS

ls [files] - List the contents of a directory.

To see what files we have stored in our directory, we can type the ls command:

> ls

READ_ME

names

first.cc

>

This output indicates that three files called READ_ME, names, and first.cc are con-
tained in the current directory.

Whenever we type the command ls, it is the files contained in the current working
directory that are listed. We can also use ls to obtain a list of files in other directories
by supplying an argument to the command. First we get back to our home directory

> cd

> pwd

/usr/steve

>

Now we look at the files in the current working directory

> ls

documents

programs

>

If we supply the name of one of these directories to the ls command, then we can
get a list of the contents of that directory. So, we can find out what’s contained in
the documents directory simply by typing

> ls documents

letters

memos

proposals

>

to take a look at the subdirectory memos, we follow a similar procedure

> ls documents/memos

dact

plan

>

1.2. WORKING WITH FILES AND DIRECTORIES 17

If we specify a nondirectory file argument to the ls command, we simply get that
file name echoed back at the terminal

> ls documents/memos/plan

documents/memos/plan

>

There is an option to the ls command that tells us whether a particular file is a
directory, among other things. The -l option provides a more detailed description
of the files in a directory. If we were currently in steve’s home directory, we obtain

> ls -l

total 2

drwxr-xr-x 5 steve FP3725 80 Jun 25 13:27 documents

drwxr-xr-x 2 steve DP3725 96 Jun 25 13:31 programs

>

The first line of the display is a count of the total number of blocks of storage that
the listed files use. Each successive line displayed by the ls -l command contains
detailed information about a file in the directory. The first character on each line
tells whether the file is a directory. If the character is d, then it is a directory; if it
is - then it is an ordinary file, finally if it is b, c, or p, then it is a special file. An l

indicates a link.

The next nine characters on the line tell how every user on the system can access
the particular file. These access modes apply to the file’s owner (the first three char-
acters), other users in the same group as the file’s owner (the next three characters),
and finally to all other users on the system (the last three characters). They tell
whether the user can read from the file, write to the file, or execute the contents of
the file.

This means the ls -l shows file permissions, owner, size and last modification date.

Other command options are

ls -a also list hidden files

ls *.cc list all file ending in .cc

ls -r reverse order

ls -d list directories

18 CHAPTER 1. LINUX BASICS

cd directory - Change directory.

We can change the current working directory by using the cd command. This com-
mand takes as its argument the name of the directory we wish to change to.

Let us assume that we just logged into the system and were placed inside our
home directory, /usr/steve. We know that there are two directories directly below
steve’s home directory: documents and programs. This can be verified at the
terminal by issuing the ls command:

> ls

documents

programs

>

The ls command lists the two directories documents and programs the same way
it listed other ordinary files in previous examples.

In order to change our current working directory, we issue the cd command, followed
by the name of the directory to change to:

> cd documents

>

After executing this command, we will be placed inside the documents directory. We
can verify at the terminal that the working directory has been changed by issuing
the pwd command:

> pwd

/usr/steve/documents

>

The way to get one level up in a directory is to issue the command

> cd ..

since by convention .. always refers to the directory one level up known as the
parent directory. Note the space (blank) after cd. The command cd.. without the
space will not work in LINUX.

> cd ..

> pwd

/usr/steve

>

If we want to change to the letters directory, we could get there with a single cd

command by specifying the relative path documents/letters:

1.2. WORKING WITH FILES AND DIRECTORIES 19

> cd documents/letters

> pwd

/usr/steve/documents/letters

>

We can get back up to the home directory with a single cd command as shown:

> cd ../..

> pwd

/usr/steve

>

Or we can get back to the home directory using a full path name instead of a relative
one:

> cd /usr/steve

> pwd

/usr/steve

>

Finally, there is a third way to get back to the home directory that is also the easiest.
Typing the command cd without and argument will always place we back into our
home directory, no matter where we are in our directory path.

> cd

> pwd

/usr/steve

>

The command

> cd /tmp

change directory to /tmp. Note that / is the directory separator and not \ as in
DOS.

DOS and Windows also provide the cd command. The cd .. command in LINUX
can be written as cd.. (without space) in DOS and Windows.

20 CHAPTER 1. LINUX BASICS

cp source dest or cp source... directory - Copy files.

In order to make a copy of a file, the cp command is used. The cp command can be
used to make a copy of a file from one directory into another. The first argument
to the command is the name of the file to be copied known as the source file, and
the second argument is the name of the file to place the copy into (known as the
destination file). We can make a copy of the file names and call it saved_names as
follows:

> cp names saved_names

>

Execution of this command causes the file named names to be copied into a file
named saved_names. The fact that a command prompt was displayed after the
cp command was typed indicates that the command executed successfully. The
command

> cp file1 /tmp

copies file1 to /tmp/file1. The command

> cp file[0-9] /tmp

copies files file0 through file9 to directory /tmp. For example, we can copy the
file wb from the programs directory into a file called wbx in the misc directory as
follows

> cp programs/wb misc/wbx

>

Since the two files are contained in different directories, it is not even necessary that
they be given different names

> cp programs/wb misc/wb

>

When the destination file has the same name as the source file (in a different direc-
tory, of course), then it is necessary to specify only the destination directory as the
second argument

> cp programs/wb misc

>

When this command gets executed, the UNIX system recognizes that the second
argument is the name of a directory and copies the source file into that directory.
The new file is given the same name as the source file. We can copy more than one
file into a directory by listing the files to be copied before the name of the destination
directory. If we were currently in the programs directory, then the command

1.2. WORKING WITH FILES AND DIRECTORIES 21

> cp wb collect mon ../misc

>

would copy the three files wb, collect, and mon into the misc directory under the
same names.

To copy a file from another directory into our current one and give it the same name,
use the fact that the current directory can always be referenced as ’.’

> pwd

> /usr/steve/misc

> cp ../programs/collect .

>

The above command copies the file collect from the directory ../ programs into
the current directory (/usr/steve/misc).

The copy command in DOS and Windows is copy.

22 CHAPTER 1. LINUX BASICS

mv source dest or mv source... directory - Move or rename files.

A file can be renamed with the mv command. The arguments to the mv command
follow the same format as the cp command. The first argument is the name of the
file to be renamed, and the second argument is the new name. Thus to change
the name of the file saved_names to hold_it, for example, we enter the following
command

> mv saved_names hold_it

>

When executing a mv or cp command, the UNIX system does not care whether the
file specified as the second argument already exists. If it does, then the contents of
the file will be lost. We assume we have the proper permission to write to the file.
For example, if a file called old_names exists, then executing the command

> cp names old_names

would copy the file names to old_names destroying the previous contents of old_names
in the process. Similarly, the command

> mv names old_names

would rename names to old_names, even if the file old_names existed prior to
execution of the command. The command

> mv file1 /tmp

moves file1 to /tmp/file1. The command

> mv file[a-g] /tmp

moves file filea through fileg to directory /tmp.

We recall that the mv command can be used to rename a file. However, when the two
arguments to this command reference different directories, then the file is acutally
moved from the first directory into the second directory. For example, first change
from the home directory to the documents directory

> cd documents

>

Suppose now we decide that the file plan contained in the memos directory is really
a proposal and not a memo. So we would like to move it from the memos directory
into the proposals directory. Thus we apply the command

> mv memos/plan proposals/plan

>

1.2. WORKING WITH FILES AND DIRECTORIES 23

As with the cp command, if the source file and destination file have the same name,
then only the name of the destination directory need be supplied.

> mv memos/plan proposals

>

Also like the cp command, a group of files can be simultaneously moved into a
directory by simply listing all files to be moved before the name of the destination
directory

> pwd

/usr/steve/programs

> mv wb collect mon ../misc

>

This would move the three files wb, collect, and mon into the directory misc.

We can also use the mv command to change the name of a directory. For example,
the following will rename the directory programs to bin

> mv programs bin

>

24 CHAPTER 1. LINUX BASICS

mkdir dir... - Create a directory.

To create a directory, the mkdir command must be used. The argument to this
command is simply the name of the directory we want to make. As an example,
we wish to create a new directory called misc on the same level as the directories
documents and program. If we were currently in our home directory, then typing
the command mkdir misc would achieve the desired effect

> mkdir misc

>

Now if we execute an ls command, we should get the new directory listed. The
command

> mkdir new_directory

create a new directory called new_directory. Note that there is no practical limit
on the length of file or directory names, so "This is a very long filename" is a
valid name for a file.

In DOS and Windows the commands are md and mkdir.

rmdir dir... - Delete an empty directory.

The command

> rmdir new_directory

deletes the directory we created above. Note that the directory must be empty.

The DOS and Windows command is also rmdir.

1.2. WORKING WITH FILES AND DIRECTORIES 25

rm name... - Remove files or directories.

We can remove a directory with the rmdir command. The stipulation involved in
removing a directory is that no files be contained in the directory. If there are files
in the directory when rmdir is executed, then we will not be allowed to remove the
directory. To remove the directory misc that we created earlier, the following could
be used:

> rmdir /usr/steve/misc

>

Once again, the above command will work only if no files are contained in the misc

directory; otherwise, the following will happen:

> rmdir /usr/steve/misc

rmdir: /usr/steve/misc not empty

>

If this happens and we still want to remove the misc directory, then we would first
have to remove all of the files contained in that directory before reissuing the rmdir

command.

To remove (delete) a file from the system, we use the rm command. The argument
to rm is simply the name of the file to be removed

> rm hold_it

>

As an alternate method for removing a directory and the files contained in it, we
can use the -r option to the rm command. The format is simple

> rm -r dir

where dir is the name of the directory that we want to remove. rm will remove the
indicated directory and all files (including directories) in it.

We can remove more than one file at a time with the rm command by simply speci-
fying all such files on the command line. For example, the following would remove
the three files wb, collect, and mon

> rm wb collect mon

>

The command

> rm -r my_dir

deletes directory my_dir recursively, i.e. it does not have to be empty. The command

> rm -r *

deletes all files and directories recursively starting from the current directory. Note
that there is no undelete command in Unix and Linux.

26 CHAPTER 1. LINUX BASICS

cat name... - Concatenate files and print on the standard output.

The cat command can be used to display a file or to concatenate files. Some of the
options for the cat command have both long and short options specifiers. For space
reasons, only the short versions of these options have been listed.

> cat [options] filelist

An output file name must not be the same as any of the input names unless it is a
special file. The command

> cat first.cc

prints the contents of file first.cc on the screen, i.e. it concatenates first.cc

with nothing and sends the output to the screen.

> cat letter-to-dad signature > send.let

This appends the file signature to letter-to-dat and creates a new file called
send.let. We can examine the contents of a file by using the cat command. The
argument to cat is the name of the file whose contents we wish to examine. For
example, let the file name be names

> cat names

Susan

Jeff

Henry

Allan

Ken

>

The command

> cat file1 file2 > file3

concatenates file1 and file2 and write the result to file3. The operator > redi-
rects the standard output to the cat command to file3. The command

> cat longfile | more

the standard output of cat is used as the input of the more command.

1.2. WORKING WITH FILES AND DIRECTORIES 27

Item Description

filelist This is an optional list of files to concatenate. If no files or
a hyphen (-) is specified, the standard input is read.

-b Numbers all nonblank output lines, starting with 1.

-e Equivalent to -vE. (displays a $ at the end of
each line and control characters).

-n Numbers all output lines, starting with 1.

-s Replaces multiple, adjacent blank lines with a single blank line.

-t Equivalent to -vT.

-u Ignored; included for UNIX compatibility.

-v Displays control characters except for LFD and TAB using ^

notation and precedes characters that have the high bit set with M-.

-A Equivalent to -vET.

-E Displays a $ after the end of each line.

-T Displays TAB characters as ^I.

--help Prints a usage message and exists with a non-zero status.

--version Prints version information on standard output then exits.

28 CHAPTER 1. LINUX BASICS

ln [files] .. - Linking files

The ln command creates a link between two files, enabling us to have more than
one name to access a file. A directory entry is simply a name to call the file and an
inode number. The inode number is an index into the file system’s table. Therefore,
it is no big deal to have more than one name to inode reference in the same directory
or multiple directories. A benefit of a link over a copy is that only one version of
the file exists on the disk; therefore, no additional storage is required. Any file may
have multiple links. In simplest terms, the ln command provides an easy way to
give more than one name to a file. The drawback of copying a file is that now twice
as much disk space is being consumed by the program.

ln provides two types of links:
hard links
and
symbolic links.

Linux treats hard links just like files. Each hard link is counted as a file entry. This
means that the original file will not be deleted until all hard links have been deleted.

A symbolic link is treated as a place holder for the file. If a file has symbolic links,
and the file is deleted, all symbolic links will be deleted automatically.

The syntax is

> ln [-s] source-file dest-file

For example

> ln source dest

This enables us to edit either the file source or the file dest and modify both of
them at the same time. Now instead of two copies of the file existing, only one
exists with two different names: source and dest. The two files have been logically
linked by the UNIX system. It appears that we have two different files.

> ls

collect

mon

source

dest

>

Look what happens when we execute an ls -l:

1.2. WORKING WITH FILES AND DIRECTORIES 29

> ls -l

total 5

-rwxr-cr-x 1 steve DP3725 358 Jun 25 13:31 collect

-rwxr-xr-x 1 steve DP3725 1219 Jun 25 13:31 mon

-rwxr-xr-x 2 steve DP3725 89 Jun 25 13:30 source

-rwxr-xr-x 2 steve DP3725 89 Jun 25 13:30 dest

>

The number right before steve is 1 for collect and mon and 2 for source and dest.
This number is the number of links to a file, normally 1 for nonlinked, nondirectory
file. Since source and dest are linked, this number is 2 for these files. This implies
that we can link to a file more than once.

The option -s makes a symbolic link instead of a hard link.

We can remove either of the two linked files at any time, and the other will not be
removed

> rm source

> ls -l

total 4

-rwxr-xr-x 1 steve DP3725 358 Jun 25 13:31 collect

-rwxr-xr-x 1 steve DP3725 1219 Jun 25 13:31 mon

-rwxr-xr-x 1 steve DP3725 89 Jun 25 13:30 dest

>

Note that steve is still listed as the owner of dest, even though the listing came
from pat’s directory. This makes sense, since really only one copy of the file exists
- and it is owned by steve.

The only stipulation on linking files is that the files to be linked together must reside
on the same file system. The ln command follows the same general format as cp

and mv, meaning that we can link a bunch of files at once into a directory.

30 CHAPTER 1. LINUX BASICS

wc names - Counting the number of words in a file.

With the wc command, we can get a count of the total number of lines, word, and
characters of information contained in a file. Once again, the name of the file is
needed as the argument to this command

> wc names

5 5 27 names

>

The wc command lists three numbers followed by the file name. The first number
represents the number of lines contained in the file (5), the second the number of
words contained in the file (in this case also 5), and the third the number of char-
acters contained in the file (27).

The command

> wc -c names

counts only the number of characters. The command

> wc -w names

counts only the number of words. Finally the command

> wc -l names

counts only the number of lines, or more precisely, it counts the number of newline
characters encountered.

1.2. WORKING WITH FILES AND DIRECTORIES 31

1.2.5 File Name Substitution

The bash shell supports three kinds of wildcard:

* matches any character and any number of characters

? matches any single character

[...] matches any single character contained within the brackets

Each of them we discuss now in detail.

The Asterisk
One very powerful feature of the UNIX system that is actually handled by the shell
is file name substitution. Let us say our current directory has these files in it:

> ls

chap1

chap2

chap3

>

Suppose we want to print their contents at the terminal. We could take advantage
of the fact that the cat command allows us to specify more than one file name at a
time. When this is done, the contents of the files are displayed one after the other.

> cat chap1 chap2 chap3

...

>

However we can also enter

> cat *

...

>

and get the same results. The shell automatically substitutes the names of all of
the files in the current directory for the *. The same substitution occurs if we use
* with the echo command:

> echo *

chap1 chap2 chap3

>

Here the * is again replaced with the names of all the files contained in the current
directory, and the echo command simply displays them at the terminal.

32 CHAPTER 1. LINUX BASICS

Any place that * appears on the command line, the shell performs its substitution

> echo * : *

chap1 chap2 chap3 : chap1 chap2 chap3

>

The * can also be used in combination with other characters to limit the file names
that are substituted. For example, assume that in our current directory we have
not only chap1 through chap4 but also files a, b, and c

> ls

a

b

c

chap1

chap2

chap3

>

to display the contents of just the files beginning with chap, we enter

> cat chap*

.

.

.

>

The cha* matches any file name that begins with cha. All such file names matched
are substituted on the command line.

The * is not limited to the end of a file name. It can also be used at the beginning
or in the middle as well

> echo *p1

chap1

> echo *p*

chap1 chap2 chap3

> echo *x

*x

>

In the first echo, the *p1 specifies all file names that end in the characters p1. In
the second echo, the first * matches everything up to a p and the second everything
after; thus, all file names containing a p are printed. Since there are no files ending
wit x, no substitution occurs in the last case. Therefore, the echo command simply
display *x.

1.2. WORKING WITH FILES AND DIRECTORIES 33

Matching Single Characters the ?
The asterisk * matches zero or more characters, meaning that x* will match the file
x as well as x1, x2, xabc, etc. The question mark ? matches exactly one character.
So cat ? prints all files with one-character names. The command cat x? prints all
files with two-character names beginning with x. We assume that the ls command
tells us that the following files in the working directory

> ls

a

aa

aax

alice

b

bb

c

cc

report1

report2

report3

Then

> echo ?

a b c

> echo a?

aa

> echo ??

aa bb cc

> echo ??*

aa aax alice bb cc report1 report2 report3

>

In the last example, the ?? matches two characters, and the * matches zero or more
up to the end. The net effect is to match all file names of two or more characters.

The Brackets
Another way to match a single character is to give a list of the characters to use
in the match inside square brackets []. For example, [abc] matches one letter
a, b, or c. It is similar to the ?, but it allows us to choose the characters that
will be matched. The specification [0-9] matches the characters 0 through 9. The
only restriction in specifying a range of characters is that the first character must
be alphabetically less than the last character, so that [z-f] is not a valid range
specification.

34 CHAPTER 1. LINUX BASICS

By mixing and matching ranges and characters in the list, we can perform some very
complicated substitutions. For example, [a-np-z]* will match all files that start
with the letters a through n or p through z (or more simply stated, any lowercase
letter but o).

If the first character following the [is a !, then the sense of the match is inverted.
This means, any character will be matched except those enclosed in the brackets.
So

> [!a-z]

matches any character except a lowercase letter, and

> *[!o]

matches any file that does not end with the lowercase letter o.

The following table gives a few more examples of filename substitution.

File name substitution examples

Command Description

echo a* Print the names of the files beginning with a

cat *.c print all files ending in .c

rm *.* Remove all files containing a period

ls x* List the names of all files beginning with x

rm * Remove all files in the current directory
(note: be careful when we use this)

echo a*b Print the names of all files beginning with a

and ending with b

cp ../programs/* . Copy all files from ../programs into the
current directory

ls [a-z]*[!0-9] List files that begin with a lowercase letter
and do not end with a digit.

1.3. STANDARD INPUT/OUTPUT, AND I/O REDIRECTION 35

1.3 Standard Input/Output, and I/O Redirection

Most UNIX system commands take input from our terminal and send the resulting
output back to our terminal. A command normally reads its input from a place
called standard input, which happens to be our terminal by default. Similarly, a
command normally writes its output to standard output, which is also our terminal
by default.

We recall that executing the who command results in the display of the currently
logged-in users. More formally, the who command writes a list of the logged-in users
to standard output.

If a sort command is executed without a file name argument, then the command
will take its input from standard input. As with standard output, this is our termi-
nal by default.

When entering data to a command from the terminal, the CTRL and D keys (denoted
CTRL-d in this text) must be simultaneously pressed after the last data item has
been entered. This tells the command that we have finished entering data. As
an example, we use the sort command to sort the following three names: Tony,
Barbara, Harry. Instead of first entering the names into a file, we enter them directly
from the terminal

> sort

Tony

Barbara

Harry

CTRL-d

Barbara

Harry

Tony

>

Since no file name was specified to the sort command, the input was taken from
standard input, the terminal. After the fourth name was typed in, the CTRL and D

keys were pressed to signal the end of the data. At the point, the sort command
sorted the three names and displayed the results on the standard output device,
which is also the terminal.

The wc command is another example of a command that takes its input from stan-
dard input if no file name is specified on the command line. So the following shows
an example of this command used to count the number of lines of text entered from
the terminal

> wc -l

This is text that

36 CHAPTER 1. LINUX BASICS

is typed on the

standard input device.

CTRL-d

3

>

We note that the CTRL-d that is used to terminate the input is not counted as a
separate line by the wc command. Furthermore, since no file name was specified to
the wc command, only the count of the number of lines (3) is listed as the output
of the command. We recall that this command normally prints the name of the file
directly after the count.

Output Redirection

The output from a command normally intended for standard output can be diverted
to a file instead. This capability is known as output redirection.

If the notation > file is appended to any command that normally writes its output
to standard output, then the output of that command will be written to file instead
of our terminal

> who > users

>

This command line causes the who command to be executed and its output to be
written into the file users. No output appears at the terminal. This is because the
output has been redirected from the default standard output device (the terminal)
into the specified file

> cat users

oko tty01 Sep 12 07:30

ai tty15 Sep 12 13:32

ruth tty21 Sep 12 10:10

pat tty24 Sep 12 13:07

steve tty25 Sep 12 13:03

>

If a command has its output redirected to a file and the file already contains some
data, then the data will be lost. For example

> echo line 1 > users

> cat users

line 1

> echo line 2 >> users

> cat users

line 1

line 2

>

1.3. STANDARD INPUT/OUTPUT, AND I/O REDIRECTION 37

The second echo command uses a different type of output redirection indicated by
the characters >>. This character pair causes the standard output from the com-
mand to be appended to the specified file. Therefore, the previous contents of the
file are not lost and the new output simply gets added onto the end.

By using the redirection append characters >>, we can use cat to append the con-
tents of one file onto the end of another

> cat file1

This is in file1.

> cat file2

This is in file2.

> cat file1 >> file2 Append file1 to file2

> cat file2

This is in file2.

This is in file1.

>

Recall that specifying more than one file name to cat results in the display of the
first file followed immediately by the second file, and so on

> cat file1

This is in file1.

> cat file2

This is in file2.

> cat file1 file2

This is in file1.

This is in file2.

> cat file1 file2 > file3 Redirect it instead

> cat file3

This is in file1.

This is in file2.

>

Now we can see where the cat command gets its name: when used with more than
one file its effect is to concatenate the files together.

Incidentally, the shell recognizes a special format of output redirection. If we type

> file

not preceded by a command, then the shell will create an empty (i.e., zero character
length) file for us. If file previously exists, then its contents will be lost.

38 CHAPTER 1. LINUX BASICS

Input Redirection
Just as the output of a command can be redirected to a file, so can the input of a
command be redirected from a file. As the greater-than character > is used for out-
put redirection, the less-than character < is used to redirect the input of a command.
Of course, only commands that normally take their input from standard input can
have their input redirected from a file in this manner.

In order to redirect the input of a command, we type the < character followed by
the name of the file that the input is to be read from. So, for example, to count the
number of lines in the file users, we can execute the command

> wc -l users

2 users

>

Or, we can count the number of lines in the file by redirecting the input of the wc

command from the terminal to the file users

> wc -l < users

2

>

We notice that there is a difference in the output produced by the two forms of the
wc command. In the first case, the name of the file users is listed with the line
count; in the second case, it is not. This points out the subtle distinction between
the execution of the two commands. In the first case wc knows it is reading its
input from the file users. In the second case, it only knows that it is reading its
input from standard input. The shell redirects the input from the terminal to the
file users. As far as wc is concerned, it does not know whether its input is coming
from the terminal or from a file.

Pipes
The file users that was created previously contains a list of all the users currently
logged into the system. Since we know that there will be one line in the file for each
user logged into the system, we can easily determine the number of users logged in
by simply counting the number of lines in the users file

> who > users

> wc -l < users

5

>

This output would indicate that there were currently five users logged in. Now we
have a command sequence we can use whenever we want to know how many users
are logged in.

1.3. STANDARD INPUT/OUTPUT, AND I/O REDIRECTION 39

There is another approach to determine the number of logged-in users that bypasses
the use of a file. The UNIX system allows to connect two commands together.
This connection is known as a pipe, and it enables us to take the output from one
command and feed it directly into the input of another command. A pipe is effected
by the character |, which is placed between the two commands. So to make a pipe
between the who and wc -l commands, we simply type

> who | wc -l

5

>

When a pipe is set up between two commands, the standard output from the first
command is connected directly to the standard input of the second command. We
know that the who command writes its list of logged-in users to standard output.
Furthermore, we know that if no file name argument is specified to the wc command
then it takes its input from standard input. Therefore, the list of logged-in users
that is output from the who command automatically becomes the input to the wc

command. Note that we never see the output of the who command at the terminal,
since it is piped directly into the wc command.

A pipe can be made between any two programs, provided the first program writes its
output to standard output, and the second program reads its input from standard
input.

Suppose we wanted to count the number of files contained in our directory. Knowl-
edge of the fact that the ls command displays one line of output per file enables us
to see the same type of approach as before

> ls | wc -l

10

>

The output indicates that the current directory contains 10 files.

It is also possible to form a pipeline consisting of more than two programs, with the
output of one program feeding into the input of the next.

Consider, for example, the command

> cat myfile | sort | uniq

Here, the contents of the file myfile (the output from the cat command) are fed into
the input of the sort command. The sort command, without any options, sorts the
input alphabetically by the first field in the input. The sorted file is then piped into
the uniq command. The uniq command removes any duplicate lines from the input.

40 CHAPTER 1. LINUX BASICS

The POSIX standard specifies that (in the Bourne shell) descriptors are assigned
to the pipeline before redirection (i.e. any redirection does not affect the pipeline).
The command tee can be used to write from its standard input to a file and to
standard output.

> command | tee filename

This command line executes command, with the output piped through tee which
will write the data into filename and to the console. Since the pipe is set up before
any redirection, we could write the same command using the Bourne shell using cat

and the redirection and pipeline facilities.

> command > filename | cat

Filters
The term filter is often used in UNIX terminology to refer to any program that can
take input from standard input, perform some operation on that input, and write
the results to standard output. A filter is any program that can be used between
two other programs in a pipeline. So in the previous pipeline, wc is considered a
filter. ls is not, since it does not read its input from standard input. For example,
cat and sort are filters, while who, date, cd, pwd, echo, rm, mv, and cp are
not.

Standard Error
In addition to standard input and standard output there is another place known
as standard error. This is where most UNIX commands write their error messages.
And as with the other two standard places, standard error is associated with our
terminal by default. In most cases, we never know the difference between standard
output and standard error

> ls n* List all files beginning with n

n* not found

>

Here the not found message is actually being written to standard error and not
standard output by the ls command. We van verify that this message is not being
written to standard output by redirect into the ls command’s output

> ls n* > foo

n* not found

>

We still get the message printed out at the terminal, even though we redirected
standard output to the file foo.

1.3. STANDARD INPUT/OUTPUT, AND I/O REDIRECTION 41

The above example shows the raison d’être for standard error: so that error mes-
sages will still get displayed at the terminal even if standard output is redirected to
a file or piped to another command.

We can also redirect standard error to a file by using the notation

> command 2> file

No space is permitted between the 2 and the >. Any error messages normally
intended for standard error will be diverted into the specified file, similar to the way
standard output gets redirected.

> ls n* 2> errors

> cat errors

n* not found

>

42 CHAPTER 1. LINUX BASICS

Chapter 2

Linux Commands

In this chapter we describe a number of other important commands in LINUX and
give examples. The commands include

more

less

file

find

finger

grep

id

kill

logname

sleep

split

chkconfig

sort

tee

dd

The commands

df

du

free

provide information about the disk space usage.

The command chkconfig is in the directory sbin. Some other commands are in
the directory bin.

43

44 CHAPTER 2. LINUX COMMANDS

more display File Contents

The more command displays a screenful of a text file. We can look through a text
file without invoking an editor, printing the file, or trying to pause the terminal as
it displays the file. If we try to pass a binary data file to more, we could have some
unpleasant effects; for example, our terminal can lock up. If our terminal does lock
up, try pressing either the Ctrl-q or the Ctrl-s keys.

A disadvantage with more is that we cannot back up to see a screen of information
once it passes. For example, to display the contents of our emacs configuration file,
we can type the following command

> more .emacs

To quit more we enter q or Crtl-z.

less name ... view a file

The less command is considered as a better more. less displays information a
screen at a time on our terminal. The program’s name is a play on words for the
program it’s meant to replace - more. Like more, less can display a screen of
information in a text file. Unlike more, with the less we can page back and forth
within the file. The command

> less longfile

views file longfile. We can press page-up and page-down to scroll through the
file. We enter q to exit.

45

file determines type of file

Determines the type of a file. The command file is able to recognize whether the
file is executable, text, data, and so on. Many of the UNIX commands are only shell
scripts. The command file can be used to report the UNIX commands that are
and are not scripts. It is also useful to determine if the file is text based on or not
and, therefore, whether it can be viewed or edited. The syntax is

> file [-c] [-z] [-L] [-f ffile] [-m mfile] filelist

where filelist is a space-separated list of files we want to know the type of.

Item Description

-c Prints out the parsed form of the magic file. This is used
in conjunction with -m to debug a new magic file before installing it.

-z Looks inside a compressed file and tries to figure out its type.

-L This option causes symbolic links to be followed.

-f ffile Tells file that the list of files to identify is found in ffile.
This is useful when many files must be identified.

-m mfile Specifies an alternate file of magic numbers
to use for determining file types.

For example, let first.cc be a C++ file. Then

> file first.cc

C++ program text

If we compile and link this file we obtain an execute file first. Then

> file first

ELF 32-bit LSB executable, Intel 80386

version 1, dynamically linked, not stripped

46 CHAPTER 2. LINUX COMMANDS

find finding files

The find command traverses the specified directories generating a list of files that
match the criteria specified. Files may be matched by name, size, creation time,
modification time, and many more criteria. We can even execute a command on the
matched files each time a file is found. For example

> find dirlist match-spec

where dirlist is space-separated list of the directories where we want to look for
a file or set of files and match-spec are the matching specification or description of
files we want to find.

Description

-name file Tells find what file to search for; the file to find
is enclosed in quotation marks. Wild cards
(* and ?) may be used.

-perm mode Matches all files whose mode matches the numeric
value of mode. All modes must be matched –
not just read, write, and execute. If
preceded by a negative -, mode take on the
meaning of everything without this mode.

-type x Matches all files whose type, x, is c (meaning)
b (block special), d (directory), p (named pipe),
l (symbolic link), s (socket), or f (regular file).

-links n Matches all files with n number of links

-size n Matches all files of size n blocks (512-byte
blocks, 1K-byte blocks if k follows n)

-user user-id Matches all files whose user ID is
user-id. May either be the numeric value
or the logname of the user.

-atime n Matches all files last accesses within the
previous n days.

47

Description

-mtime n Matches all files modified within the previous n days.

-exec cmd For each file matched, the command cmd is
executed. The notation {} is used to signify where the
file name should appear in the command executed.
The command must be terminated by an escaped
semicolon (\;), for example -exec ls -d {}\;.
Here, the command ls is executedwith the -d

argument and each file is passed to ls at the place
where the {} is found.

-newer file Matches all files that have been modified more
recently than the file file.

The options may be grouped together and combined to limit the search criteria.
Multiple flags are assumed to be ANDs, meaning that both criteria must be met.
To offer more control over selection, the following table describes other options

() parentheses may be used to group selections.

The parentheses are special to the shell, they must be escaped.

-o This is the OR operator, overriding the default AND assumption.

! This is a NOT operator and negates the expression that follows it.

For example

> find . -name first.cc -print

searches the current directory (the . indicates the current directory) and its subdi-
rectories for a file called first.cc. When and if find finds it, the full path name
is shown on-screen. The command

> find . -iname ’*.tex’

finds all Latex files starting in the current directory. The command

> find . -newer linux.tex

finds all files that were modified more recently than linux.tex. The command

> find . -iname ’*.tex’ -exec cp {} /tmp

copies all Latex files into directory /tmp.

48 CHAPTER 2. LINUX COMMANDS

finger information about users on the system

The finger command displays information about users on the system. The syntax is

> finger [options] users

Item Description

users This is an optional list of user names. If specified, then
additional information about the user is given. Remote users can be
specified by giving the user name and the remote host name
as in user@remote.computer.

-s Displays the user’s logon name, real name, terminal name and
write status, idle time, logon time, office location,
and office phone number.

-l Produces a multi-line format displaying all of the information
described for the -s option as well as the user’s home directory,
home phone number, logon shell, mail status, and the contents of the
user’s .plan and .project files.

-p Prevents the -l option of finger from displaying the contents
of the .plan and .project files.

-m Restricts matching of the user argument to the logon name.

If no options ar specified, finger defaults to the multi-line output format as speci-
fied by the -l argument.

If no arguments are specified, finger prints an entry for each user currently logged
onto the system.

49

grep

The command grep looks for patterns found in files and reports to us when these
patterns are found. The name of the command comes from the use of ”regular
expressions” in the ed family of editors. grep stands for Global Regular Express
Printer. The syntax is

> grep [option] reg-express filelist

> egrep [options] reg-express filelist

> fgrep [options] string filelist

Item Description

filelist An optional space-separated list of files to search for the given
string or reg-expres. If left blank, the standard input
is searched.

reg-express The regular expression to search for. Regular expressions are
in the form used by ed. See the man page for the definition
of regular expressions.

string The string we want to find in the files.

-v List the lines that don’t match string or reg-expres.

-c Counts the matching lines.

-l Only the names of the files containing a match are displayed.

-h Suppresses the display of the name of the file the match was
found in (grep and egrep only).

-n Each matching line is displayed along with its relative line number.

i Causes matching to not be case-sensitive. The default behavior is
to be case-sensitive.

-e reg-expres useful when the regular expression or string starts with a hyphen.

-f file file contains the strings or expressions to search for.

50 CHAPTER 2. LINUX COMMANDS

fgrep stands for fast grep and can only search for fixed strings. Multiple strings
may be searched for by separating each string by a new line or entering them in the
-f file file.

egrep stands for extended grep and accepts the following enhancements to regular
expressions defined by ed:

+ If this trails a regular expression, it matches one or more of that occurrence.

? If this trails a regular expression, it matches 0 or 1 occurrence.

| used to denote multiple regular expressions.

() May be used to group expressions.

For example

> grep main first.cc

searches for the word main in the file first.cc. The command

> fgrep main first.cc

does the same thing. The command

> grep "[hH]ello" letter-to-dad

searches for the word hello or Hello. The command

> fgrep "hello

> Hello" letter-to-dat

does the same thing. The command

> egrep "([Ss]ome|[Aa]ny)one" letter-to-dad

looks for all the words someone, Someone, anyone, or Anyone in the file.

51

id

The id command displays our identification to the system. It reports our user name,
user ID number, group name, and group Id number. The syntax is

> id [options]

Item Description

-g Prints only the group ID.

-G Prints only the supplementary groups.

-n Prints the user or group name instead of the ID number.
Requires -u, -g, or -G.

-r Prints the real, instead of effective, user or group ID.
Requires -u, -g, or -G.

-u Prints only the user ID.

--help prints a usage message on the standard output
and exits successfully.

--version Prints version information on the standard output
and then exits successfully.

For example

> id

shows the id information.

52 CHAPTER 2. LINUX COMMANDS

kill to kill a process

With the kill command we can send a signal to a process that is currently exe-
cuting. This command is issued to stop the executing process, thus the kill name
because we use it to kill the process. The syntax is

> kill [-signal] pid

> kill -l

Item Description

signal An optional signal that can be sent. The default is SIGTERM.
Two other popular ones are SIGHUP, which is the equivalent of hanging
up the phone as if on a modem, and SIGKILL, which cannot be ignored
by a process.

pid The process ID of the process we want to send the specified signal.
A pid is a number used by the system to keep track of the process.
The ps command can be used to report the pid of a process.

-l Prints a list of the signal names that can be sent with kill.

Although kill -9 is the sure kill, it is often best to try SIGTERM and SIGHUP first.
These signals can be caught by the applications and after they receive them, prop-
erly clean up after themselves. Because kill -9 can’t be caught, we may have to
do some house cleaning after the process terminates.

The messages can be

> kill: permission denied

We tried to kill a process that we don’t own, or we are not the super user.

For example

> kill 125

sends the SIGTERM signal to the process 125. The default signal is SIGTERM. The
command

> kill -9 125

sends signal 9, which is the numeric value for SIGKILL. This works if no other signal
does. There are instances when even kill -9 can’t kill the process. This is when
the process is using a kernel service and can’t receive signals. Periodically processes
get locked up in this mode. The only way to resolve this is to shut down the system.

53

logname

The command logname reads the /etc/utmp file to report what name we used to
log onto the system. For example

> logname

reports what name we used to log onto the system.

sleep sleep

The sleep command suspends execution for an interval of time. The syntax is

> sleep n

Item Description

n Specifies the amount of time to sleep. This must be an integer.
The default is measured in seconds. An optional identifier may be used
to specify a different time unit.
These are as follows:

s Seconds
m Minutes
h Hours
d Days

For example at the command line we enter the code

> while :

do

date

pwd

sleep 10

done

This shows the date and pwd every 10 seconds. The program runs forever. To exit
the running program we enter CRTL-z.

We notice that sleep is not guaranteed to wake up exactly after the amount of time
specified.

54 CHAPTER 2. LINUX COMMANDS

split breaks up text files

The split command breaks up a text file into smaller pieces. Periodically, files
become too large to load into an editor or some other utility. With the command
split we can handle the file in individual, more manageable pieces. The syntax is

> split -numlines file tagname

Item Description

-numlines Specifies the number of lines to include in each piece.

file The file to split into smaller pieces. If left blank or - is
used, standard input is read.

tagname By default, split builds the output pieces by creating
the following files: xaa, then xab, then xac,
and so on. tagname, if specified, replaces the x in the previous list,
thus building the list: tagnameaa, tagnameab, tagnameac,
and so on.

There must be enough room for two copies of the file in the current file system.

For examples

> split -100 letter myletter

breaks up the file letter into 100 line pieces. The output files are

myletteraa, myletterab, ...

The command

> cat myletter* > letter

takes all the pieces and puts them back together again into the file letter.

The message could be

> No such file or directory

In this case we supplied split with a file name that doesn’t exist.

55

chkconfig

The chkconfig command manipulates or displays settings for system run levels.
The syntax is

> chkconfig --list [name]

> chkconfig --add name

> chkconfig --del name

> chkconfig [--level levels]

name <on|off|reset>

> chkconfig [--level levels]

name

Important Flags --add name

and Options Adds a new service for management by
chkconfig and checks that the necessary
start and kill entries exist. If
entries are missing, they are created.

--del name:

Deletes the name service from management;
any links to it are also deleted.

--level levels:

Specifies numerically which run level
a named service should belong to.

--list name:

Lists all services that chkconfig knows about
and any relevant information about them.
If a named service is specified, only
information about that service is displayed.

For example

> chkconfig --list random

gives

random 0:off 1:on 2:on 3:on 4:on 5:on 6:off

56 CHAPTER 2. LINUX COMMANDS

sort sorting files or standard input

The sort command sorts the lines contained in one or more text files and displays
the results. If no files are indicated, data is taken from the standard input and
sorted. The resulting sorted data is displayed to the standard output. The syntax
is

> sort filename

Important flags are

-b ignores leading blanks in lines when trying to find sort keys

-c checks whether the input data is sorted and prints

an error message if it is not.

No sorting actually takes place.

-d ignore all characters except letters, digits, and blanks

in the sorting process

-f converts lowercase letters to uppercase letters during the

sorting process

-r reverses the sort order

-t separator

indicates that the specified separator should serve as the

field separator for finding sort keys on each line.

For example

> sort

Ben

Alda

Willi

Roba

<Crtl-d>

provides

Alda

Ben

Roba

Willi

The command

> sort -r

Ben

Alda

Willi

Roba

<Crtl-d>

57

provides

Willi

Roba

Ben

Alda

58 CHAPTER 2. LINUX COMMANDS

tee duplicating output (pipe fitting)

The tee command copies standard input to a file and duplicates the data to standard
output. The command name is due to the analogy with the ‘T’ shape pipe connection
which creates a fork so that flow (in our case data) can go in two different directions.

> tee filename

The command is useful for logging. For example, when compiling the Linux kernel a
lot of information is generated about the process. In general we would like to watch
this information for errors, but the information scrolls past very quickly so it would
be better to redirect this information to a file. So we might use the command

> make kernel > /tmp/log

and view the log on another console using

> tail -f /tmp/log

On the other hand we could use the tee command to do this on one console

> make kernel | tee /tmp/log

which will write the output of make kernel to /tmp/log as well as displaying it to
the console.

As an other example we compile a program, storing the compiler warnings and errors
in compile.log while viewing the results

> cc -o program program.c 2>&1 | tee compile.log

> more compile.log

59

dd data/disk/device dump

The dd dumps data from one file to another (like a copy) similar to cat except that
it allows some conversion to be specified as well as device specific information.

> dd parameter=value ...

Important parameters are

if input file name, if not specified it will be

the standard input.

of output filename, if not specified it will be

the standard output.

bs block size, the size of blocks used for reading

and writing (bytes).

ibs input block size, the size of blocks used

for reading (bytes).

obs output block size, the size of blocks used

for writing (bytes).

count number of blocks to copy, all if not specified.

conv conversion applied (comma separated list of options)

swab: swap pairs of bytes

noerror: ignore errors

sync: always write the full block, even

when there are errors.

skip number of blocks to skip on the input before proceeding

with copy.

For example

> dd if=/dev/cdrom of=/tmp/cdrom.iso bs=2048

will copy from a cdrom device with block size 2048 (the sector size for a data cdrom).
This is useful if your cdrom only supports copying whole sectors (not necessary on
Linux systems), or for a tape drive. We can the use the file /tmp/cdrom.iso to
create duplicate cdroms. It is also useful sometimes to specify conv=noerror,sync

so that a device with errors can be copied as completely as possible.

60 CHAPTER 2. LINUX COMMANDS

To obtain information about disk space usage we use the commands df, du, and
free.

df free disk space

The df command displays free space on one or more mounted disks or partitions. If
no files or directories are specified, then the free space on all mounted file systems is
displayed. If filenames are specified, then the free space for the file system containing
each file is displayed. The syntax is

> df [-T] [-t] fstype] [-x fstype]

[--all] [--inodes] [--type=fstype] [--exclude-type=fstype]

[--print-type]

[filename ...]

Important Flags t/--type=fstype:

and Options Displays information only for
the specified type.

-T/--print-type:

Displays the file system type
for each file system reported.

-x/--exclude-type=fstype:

Does not report information for file
systems of the specified type.

du reports on disk space usage

The du command displays free space on one or more mounted disks or partitions. If
no files or directories are specified, then the free space on all mounted file systems is
displayed. If filenames are specified, then the free space for the file system containing
each file is displayed. The du command displays file system block usage for each file
argument and each directory in the file hierarchy rooted in each directory argument.

The syntax is

> du [-abcksx] [--all] [--bytes]

[--total] [--kilobytes] [--summarize]

[--one-file-system] [file ...]

61

Important Flags -a/--all:

and Options Displays usage information for files
and directories.

-b/--bytes:

Displays usage information in bytes.
-c/--total:

Displays a total usage figure for all.
-k/--kilobytes:

Displays usage informaton in kilobytes.
-s/--summarize:

Displays a total for each argument and
not display individual information for
each file or subdirectory inside a directory.

-x/--one-file-system;

skips directories that are not part of
the current file system.

For example

> du --summarize --bytes

gives

> 6373155

free reports of free and used memory

Displays a report of free and used memory. The syntax is

> free [-b|-k|-m] [-s delay]

Important Flags -b: Displays the amount
of memory in bytes.

and Options -k: Displays the amount
of memory in kilobytes (this is the default).

-m: Displays the amount
of memory in megabytes.

-s delay:

Displays continued reports separated by
the specified delay in seconds.

-t: Displays an extra line containing totals.

62 CHAPTER 2. LINUX COMMANDS

The command

> whereis program

searches for the specified program in standard locations. For example

> whereis sh

/bin/sh

> whereis startx

/usr/X11R6/bin/startx

The command

> which

the command searches for the specified program according to the PATH environment
variable.

> which sh

/bin/sh

> which startx

/usr/X11R6/bin/startx

The command

> csplit file arguments

splits the file into multiple files according to the arguments which describe how to
split the file according to lines.

> csplit /usr/X11R6/lib/X11/rgb.txt 10

246

17125

The first 10 lines (246 bytes) of /usr/X11R6/lib/X11/rgb.txt are written to the
file xx00 and the remaining lines (17125 bytes) are written to xx01.

> csplit /usr/X11R6/lib/X11/rgb.txt 10 "{10}"

246

241

236

236

238

249

228

278

237

252

258

14672

63

The first 10 lines (246 bytes) of /usr/X11R6/lib/X11/rgb.txt are written to the
file xx00, the following 10 (241 bytes) to xx01, ..., the following 10 (258 bytes) to
xx10 and the remaining lines (14672 bytes) are written to xx11.

> csplit -f rgb /usr/X11R6/lib/X11/rgb.txt 10 "{10}"

246

241

236

236

238

249

228

278

237

252

258

14672

Same as above except the files are rgb00, rgb01, ..., and rgb11.

> csplit -f rgb /usr/X11R6/lib/X11/rgb.txt /gold/

3737

13634

Each line from /usr/X11R6/lib/X11/rgb.txt is written to rgb00 (3737 bytes)
until, not including, the line contains the word gold. Subsequent lines are written
to rgb01 (13634 bytes).

> csplit -f rgb /usr/X11R6/lib/X11/rgb.txt /gold/ %gold%

3737

13579

Each line from /usr/X11R6/lib/X11/rgb.txt is written to rgb00 (3737 bytes) un-
til, not including, the line contains the word gold. Subsequent lines are ignored
until the word gold is encountered again, and then the remaining lines are written
to rgb01 (13579 bytes).

The command

> cut

selects a portion of each line presented as input.

> echo Name, Telephone, Office | cut -b 1-4

Name

> echo Name, Telephone, Office | cut -c 1-4

Name

> echo Name, Telephone, Office | cut -c 1,7

64 CHAPTER 2. LINUX COMMANDS

NT

> echo Name, Telephone, Office | cut -c -5,18-

Name,Office

> echo Name, Telephone, Office | cut -f 1,3 -d ","

Name, Office

The parameter -c works on the character level whereas -b works on the byte level.
The parameter -f works on fields separated by a delimeter as specified by -d.

The command

> expand

converts tab characters in sequences of ordinary spaces.

> printf "1\t2\t3\t4\t5\n"

1 2 3 4 5

> printf "1\t2\t3\t4\t5\n" | expand

1 2 3 4 5

> printf "1\t2\t3\t4\t5\n" | expand -t 1,2,5,9,14

1 2 3 4 5

The command

> fold

ensures that lines do not exceed a specified width with the default width being 80
characters.

> echo "a long, long, long line" | fold -w 20

a long, long, long l

ine

yorick:/tmp

> echo "a long, long, long line" | fold -w 10

a long, lo

ng, long l

ine

> echo "a long, long, long line" | fold -s -w 10

a long,

long,

long line

The command

> head

displays a specified number of lines (default 10) of a file or standard input.

65

> head -n 3 /usr/X11R6/lib/X11/rgb.txt

! $Xorg: rgb.txt,v 1.3 2000/08/17 19:54:00 cpqbld Exp $

255 250 250 snow

248 248 255 ghost white

The command

> bg

instructs the last stopped process (SIGSTOP sent from the terminal) to run in the
background.

> cat /dev/zero > /dev/null

^Z[1] + Stopped cat /dev/zero > /dev/null

> jobs

[1] + Stopped cat /dev/zero > /dev/null

> bg

[1] cat /dev/zero > /dev/null

> jobs

[1] + Running cat /dev/zero > /dev/null

> ps

PID TT STAT TIME COMMAND

323 p3 Ss 0:00.05 sh

581 p3 R 0:05.31 cat /dev/zero

584 p3 R+ 0:00.00 ps

> kill 581

>

[1] + Terminated cat /dev/zero > /dev/null

The command

> fg

instructs the last stopped process (SIGSTOP sent from the terminal) to run in the
foreground.

> cat /dev/zero > /dev/null

^Z[1] + Stopped cat /dev/zero > /dev/null

yorick:/tmp

> fg

cat /dev/zero > /dev/null

^C

The command

> nice

runs a program with adjusted system scheduling priority.

66 CHAPTER 2. LINUX COMMANDS

> #slower

> nice -n +10 /usr/games/primes 10000 20000

> #slowest

> nice -n +20 /usr/games/primes 10000 20000

> #faster (use as root)

> nice -n -10 /usr/games/primes 10000 20000

> #fastest (use as root)

> nice -n -20 /usr/games/primes 10000 20000

The command

> apropos keyword

list manual pages matching keyword(s)

> apropos apropos editor

ed (1) - text editor

ex, vi, view (1) - text editors

sed (1) - stream editor

> man sed

The command

> whatis command

describes a command.

> whatis sed

sed (1) - stream editor

> whatis whatis

whatis (1) - describe what a command is

The command

> cksum

computes and displays a checksum for the listed files.

> cksum /bin/sh

2689572179 457456 /bin/sh

The command

> hash

updates the environment the shell uses when searching for utilities.

67

> hash

cat=/bin/cat

ls=/bin/ls

sh=/bin/sh

> hash bc

yorick:/tmp

> hash

bc=/usr/bin/bc

cat=/bin/cat

ls=/bin/ls

sh=/bin/sh

The command

> printenv

outputs the environment, or a specific environment variable.

> printenv

PAGER=more

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/X11R6/bin

EDITOR=vi

...

> printenv SHELL

/bin/bash

The command

> set

display all shell variables and environment variables. The command can also set
options for the shell.

> echo hello > hello

> echo hello > hello

> set -o noclobber

> echo hello > hello

sh: cannot create hello: File exists

The command

> sum

calculates the checksum of a file. cksum should be used instead.

> sum /bin/sh

64892 447 /bin/sh

The command

68 CHAPTER 2. LINUX COMMANDS

> tty

outputs the terminal name of the terminal we are using.

> tty

/dev/ttyp3

69

Finally let us summarize other important Linux commands.

The command arch displays the architecture on which Linux is running.

The at command schedules commands to be executed at a specific time. The user
is prompted for the commands or the commands can be provided from a file.

The batch command schedules commands to be executed at a specified time as long
as system load levels permit.

The command checkalias checks the user’s file and then the system alias file in
order to see if a specified alias is defined.

The command chgrp changes the group ownership of one or more files or directories.
Using the command chmod we can change the access permissions of one or more files
or directories. Modes can be specified in two ways: symbolically and numerically.
When done symbolically, modes take the form

[ugoa][[+-=][rwxXstugo ...]

The first element [ugoa] represents the users whose permissions are being affected
(u = user who owns the file or directory, g = all members of the group that owns
the file or directory, o = anyone who is not the owner or in the owner group, a = all
users). The symbol + means that the specified modes should be added to already
specified permissions, the - means the specified modes should be removed from ex-
isting permissions. The symbol r stands for read permission, w for write permission,
and x for execute permission.

The chown command changes the user and/or group ownership of one or more files
or directories.

The command kdb_mode displays or sets the keyboard mode and kbdrate sets the
repeat rate and delay time for the keyboard. The command showkey displays the
scancodes and keycodes generated by the keyboard. The program remains active
for 10 seconds after the last key is pressed.

Using the last command we can display a history of user logins and logouts based
on the contents of /var/log/wtmp. If a specific tty such as tty0 or tty1 is speci-
fied, then only logins to that tty are displayed.

The paste command merges corresponding lines from one or more files and prints
sequentially corresponding lines on the same line, separated by a tab with a new
line ending the line. If no file name is provided input is taken from the standard
input.

70 CHAPTER 2. LINUX COMMANDS

The tail command displays the last part of one or more files. By default, unless
otherwise specified, the last 10 lines of each file are displayed. The head command
displays the first part of one or more files. By default, unless otherwise specified,
the first 10 lines of each file are displayed. If no filenames are provided, then the
command reads data from the standard input and displays the first section of the
data, following the same rules as for files.

With the command timeconfig we can configure time parameters. If a time zone
is specified, then the system time zone is changed to the specified time zone. Oth-
erwise, it displays a list of available time zones.

The touch command changes the timestamp of files without changing their con-
tents. If a file does not exist, it will be created with size zero. By default, it uses
the current time as timestamp. The option -c will not create files that do not exist.

The setclock command sets the computer’s hardware clock to the value of the
current system clock.

The command whereis attempts to locate binary.source code, and man page files
for one or more commands. For example

> whereis ls

gives the output

ls: /bin/ls /usr/man/man1/ls.1

The option -b searches only for binary files.

The top command displays regularly updated reports of processes running on the
system.

The vmstat command reports statistics about virtual memory.

Using the uname command we can display selected system information. When no
options are provided, the operating system name is displayed. When multiple pieces
of information are requested, the display order is always: operating system, network
host name, operating system release, operating system version, and machine type.
For example

> uname -a

provides

Linux issc2.rau.ac.za 2.0.34 #1 Fri May 8 16:05:57 EDT 1998 i586 unknown

71

bash also supports command history using the history command. This means that
bash keeps track of a certain number of commands that have been entered into the
shell. For example

> history

could provide the output

1011 ./banner

1012 ls -l

1013 cd

1014 ls -l

1015 vi first.cc

72 CHAPTER 2. LINUX COMMANDS

Chapter 3

Advanced Linux

3.1 The Unix File System

In this chapter we consider more advanced tools and techniques in LINUX. The
Unix (and thus Linux) file-system is called a hierarchical file-system. A hierarchical
system is a system organized by graded categorization. The file-system consists of
files and directories. Files are located in directories, and directories themselves are
subdirectories of their parent directories. This concept should be familiar to anyone
who has ever used a computer. A key concept in Unix is that everything that is not
a directory is a file. Programs are files, device drivers are files, documents are files,
even the keyboard, display and mouse are represented as files. This means that if a
program can write output to a file, it can also write it to the display or sound device
(if we really want it to).

The Unix file-system only has one top level directory (represented by ’/’ and pro-
nounced ”root”). This differs from other systems such as DOS or OS/2 where we
have several root nodes which are assigned drive letters. Anyone who has at one
stage added a new hard drive to his system will be familiar with the agony of sorting
out a system where drive letters have suddenly changed. Under Unix all physical
devices are mounted as subdirectories of other directories.

Commonly used environment variables are HOME, IFS, PATH. HOME is the fully-
qualified pathname of the user’s home directory. This is where our login session
starts, and it is the default target of a cd command. IFS is the internal field sepa-
rator. This string consists of characters that are used to separate fields and records.
We cannot see them because they have no graphical representation, but IFS has a
default value of Space + Tab + Newline. The newline explains why this variable
shows up with a clear line after it in the output of the set command. The shell
uses IFS to determine how to break a command line into separate arguments. PATH
identifies the directories to be searched when we type commands. The string SHELL

identifies the shell to use when a subshell is requested. We enter at the command
prompt $HOME we get the information about the home directory. When we enter
$PATH we find the path.

73

74 CHAPTER 3. ADVANCED LINUX

In general, Unix systems implement security with the concepts of users and groups.
A user identifies a single entity for access to system resources, i.e. the access is not
shared. A user usually refers to a specific person although a group of people may
all have access via a single user - for example a “guest” user. In contrast a group
identifies multiple entities for shared access to system resources. For example a user
“netadmin” (which administrates the network) and a user “printadmin” (which ad-
ministrates the printing devices) may both be in a group “admin” which provides
access to common utilities such as file manipulation and access to /etc for configu-
ration.

Another example is a group “network”. All users which require network access
should belong to this group.

Although users and groups provide more sophisticated access control, mostly control
is achieved using file system attributes. Each file in a Unix file system has attributes.
Some of the attributes include

• A single user associated with the file, and the user’s access rights.

• A single group associated with the file, and the group’s access rights.

• The access rights for anyone who is neither the specified user nor in the spec-
ified group (other).

The attributes can be listed using the ls -l command. The listing includes 10
characters, the first being the file type, the following three - user permissions, the
following three - group permissions and the final three are other permissions. For
example, suppose a number of people are working on a project project1 and we
(user1) are the project leader. Executing ls -l in our home directory might yield

user1@linuxhost:~> ls -l

total 3

drwxrwx--- 17 user1 project1 1234 May 16 14:36 project

-rw------- 1 user1 user1 215 May 15 18:12 mbox

-rw-rw-r-- 1 user1 project1 10 Apr 20 10:16 project.status

On the first line we typed the command ls -l. On the second line we see that there
are 3 files in the directory. The third line indicates that project is a directory (d)
owned by user1 and group project1. Both user1 and any user in project1 can
read and write (rw) the directory and change to the directory (x). The files in the
project directory may have different permissions. The fourth line indicates that
mbox is a normal file (-) owned by user1 and group user1. Only user1 can read
or write (rw) the file. Lastly, the file project.status can be read and written by
user1 and any user in project1, while any other user can only read the file.

3.1. THE UNIX FILE SYSTEM 75

To change the file ownership we use the commands chown (must be root) and chgrp

and to change the permissions we use chmod. To find out which groups a user be-
longs to we use

groups user

To add users and groups see the adduser (or useradd) and group manual pages.

76 CHAPTER 3. ADVANCED LINUX

3.2 Mounting and Unmounting

A typical Linux system might have the following structure (as given by the mount
command). At the command line we enter

> mount

A typical output is

/dev/hda1 on / type ext2 (rw)

/dev/hdb3 on /usr type ext2 (rw)

/dev/hdb2 on /usr/local type ext2 (rw)

/dev/hda1 is the first partition on the first IDE hard drive, and it is mounted as
root (’/’). /dev/hdb3 is the third partition on the second IDE drive, and it mounted
on /usr meaning that the partition will appear to be a subdirectory of / named
usr. /dev/hdb2 is further mounted below usr as /usr/local.

It is a very elegant system, and a mount point such as /net/applications/linux
is easier to remember than a drive letter mapping.

File-systems are mounted with the mount command. The standard form of the
mount command is

mount -t type device dir

where type is the file-system type of the device. The option -t specifies the type of
the file being mounted.

The file system types which are currently supported are

minix, ext, ext2, xiafs, hpfs, msdos, umsdos, vfat, proc, nfs,

iso9660, smbfs, ncpfs, affs, ufs, romfs, sysv, xenix, coherent.

device is any block device found in /dev.

To mount an ext2 (ext2 stands for ”second extended file-system” and is the native
Linux file-system) partition of (IDE) hard drive on /usr we type

> mount -t ext2 /dev/hdb3 /usr

We must be logged in as root for these commands to work. If the partition is located
on a SCSI hard drive the command would be

> mount -t ext2 /dev/sdb3 /usr

3.2. MOUNTING AND UNMOUNTING 77

We can mount our Windows95 partition on /w95 by typing:

> mount -t vfat /dev/hda1 /w95

assuming that Windows95 is on the first partition of our first IDE hard drive.

We discuss the mounting of hard drives partitions, cdroms, floppies and network
file-systems.

Usually hard drive partitions will be mounted automatically at system startup, so
we rarely need to mount them manually. Because floppy drives use removable media,
they must be mounted before use, and unmounted before the media can be removed
from the drive (disk writes are cached, so premature removal of the disk from the
drive will cause data loss). To amount a DOS format stiffy in what is drive A: under
DOS we type

> mount -t msdos /dev/fd0 /mnt/floppy

where /dev/fd0 is the device file for the first floppy device. A disk in drive B: is
mounted with

> mount -t msdos /dev/fd1 /mnt/floppy

The same procedure as above works for CDROMs, but the device file differs for
different CDROM types. IDE CDROMs use device files similar to IDE hard drives.
Thus if we have two hard drives and a CDROM, the CDROM will most prob-
ably use /dev/hdc as a device file (/dev/hdb if we only have one hard drive).
Other CDROMs use different device files. For example a Sony CDROM will use
/dev/cdu31a or /dev/sonycd. A Sound-Blaster CDROM will use /dev/sbprocd

and so on.

To simplify matters a bit, a link is usually made from the specific CDROM device
file to /dev/cdrom by typing

> ln -s /dev/cdu31a /dev/cdrom

The command to mount a CDROM will then be

mount /dev/cdrom -t iso9660 /cdrom

For any of this to work, we must have support for our specific CDROM drive com-
piled into the system kernel.

The umount command unmounts a mounted file system. The file system is specified
by either its device name, its directory name, or its network path. If unmounting
fails, using the -r option unmount tries to remount the file system in read-only mode.

78 CHAPTER 3. ADVANCED LINUX

Let us assume that the file first.cc in on the harddisk and we want to copy it to
the floppy (msdos file system). The floppy disk must be inserted in the drive (under
DOS normally called the A: drive).

1. First become the superuser - use the su (”super user” or ”substitute user”)
command:

$ su

Password: <pvm>

#

2. See what is mounted at the moment we enter:

$ mount

3. Mount

mount -t msdos /dev/fd0 /mnt

4. Copy the file first.cc

$ cp first.cc /mnt

5. Unmount

$ umount /mnt

6. See if the file is on the floppy:

$ mdir a:

Other options for the mount command are: -a: mounts all file systems in \etc\fstab,
-r: mounts the file system in read-only mode, -w: mounts the file system in read-
write mode.

After we mounted the floppy we can diplay the contents of it by using the command

$ ls -l /mnt

If we mounted the Cdrom with mount /dev/cdrom /mnt we can display the con-
tents with ls -l /mnt. To copy the file first.cc on the Cdrom to the directory
cppcourse we use the command

$ cp /mnt/first.cc ../cppcourse/first.cc

3.2. MOUNTING AND UNMOUNTING 79

The above can become quite tedious after a while. The /etc/fstab file is a repos-
itory for parameters for mount points. The following listing is the contents of my
/etc/fstab file:

/dev/hda1 / ext2 defaults 1 1

/dev/hdb6 /os2/os2d hpfs defaults 0 0

/dev/hdb4 /space ext2 defaults 1 2

/dev/hdb3 /usr ext2 defaults 1 2

/dev/hdb2 /usr/local ext2 defaults 1 2

/dev/hdb5 swap swap defaults 0 0

/dev/fd0 /mnt/floppy ext2 noauto 0 0

/dev/fd0 /mnt/dosfloppy msdos noauto,nosuid,rw,user 0 0

/dev/hdc /cdrom iso9660 noauto,nosuid,user,ro 0 0

none /proc proc defaults 0 0

The device file, mount point, file-system type and mount options are given. To
mount a CDROM we only need to type mount /cdrom.

The option noauto tells the system not to mount this device at system startup. The
options nosuid and user gives permission to normal users to mount and unmount
devices.

80 CHAPTER 3. ADVANCED LINUX

The command e2fsck checks the state of a Linux second extended file system. This
is the default file system used for Linux partitions. The syntax is

e2fsck [-cfncpy] [-B blocksize] device

Important flags and options are

-B blocksize: specifies a specific block size to use

in searching for the superblock.

-c: causes the badblocks program to be run and marks

any bad blocks accordingly.

-f: forces checking of file systems that outwardly seen clean.

-n: opens the file system in read-only state and answers no

to all prompts to take action.

-p: forces automatic repairing without prompts.

-y: assumes an answer yes to all questions.

The device to be checked should be specified using the complete Linux device path
such as

/dev/hda1

or

/dev/sdb3

It is advisable that the file system not be mounted or, if we need to check the root
file system or a file system that must be mounted, that this be done in single-user
mode.

3.3. MTOOLS PACKAGE 81

3.3 MTools Package

Under Linux, a number of commands are provided to make access of DOS format
floppies easier. These commands all begin with m (for MS-DOS). The most useful
of these commands are:

- mcd - change MS-DOS directory
- mcopy - copy MS-DOS files to/from Unix
- mdel - delete an MS-DOS file
- mdir - display an MS-DOS directory
- mformat - add an MS-DOS file-system to a low-level formatted floppy disk
- mlabel - make an MS-DOS volume label
- mmd - make an MS-DOS subdirectory
- mrd - remove an MS-DOS subdirectory
- mmove - move or rename an MS-DOS file or subdirectory
- mren - rename an existing MS-DOS file
- mtype - display contents of an MS-DOS file
- mattrib - changes the attributes of a file on an MS-DOS file system
- mbadblocks - tests a DOS floppy disk for bad blocks.
These commands are all easy to use. For example mdir a: will print the directory
listing of the disk in drive A: and

> mcopy a:file1.cc

will copy file1.cc from drive A: to the current directory.

The option for mtype are: -s: removes the high bit from data, -t: translates DOS
text files to Unix text files before displaying them.

MS DOS and OS/2 use different control characters for carriage return and line feeds
the Linux does. The mcopy command provides the switch -t that can be used to
translate MS-DOS files to Unix and vice versa. This difference between MS-DOS
and Unix may also produce problems when printing. A well known error is the
staircase effect. Read the Printing-Howto for informations.

82 CHAPTER 3. ADVANCED LINUX

3.4 Swap Space and the Loopback Device

Like many Unix operating systems Linux uses a partition on a hard disk for swap
space. The swap space is the space used by the operating system for virtual mem-
ory. When memory is not being accessed often it can be moved (copied) to the swap
space (hard disk) until it is needed at a later stage when it will be copied back. In
the mean time another application may use this memory. Unfortunately if we find
we need more swap space it involves adding a new hard disk or re-partioning the
hard disk and possibly re-installing the operating system.

Fortunately Linux can actually use any properly configured device for swap space
(we actually use /dev/hda3, /dev/hdb2 or some other device node representing a
hard disk partition). Linux also provides us with a loopback device which can be
linked to a file. Thus we can have a file in our filesystem serve as swap space. The
amount of swap space is determined by the filesize. We can prepare a file using the
dd command.

The loconfig command configures the loopback device. As first parameter we
provide the loopback device we wish to configure, for example /dev/loop0 or
/dev/loop1. The second parameter is the file we associate with the loopback device.
The file should not be used while associated with a loopback device as this could
lead to inconsistencies.

We use the system command mkswap with the device node we wish to configure for
swap space as the first parameter. We also use the swapon command to enable the
swap space. Using the command swapon -s provides summary information about
device usage as swap space.

For example, suppose we want to add 100MB of swap space to the system using
a file. 100MB is 100*1024*1024 bytes. The following commands set up the swap
space.

> dd if=/dev/zero of=/tmp/swapfile bs=102400 count=1024

> loconfig /dev/loop0 /tmp/swapfile

> mkswap /dev/loop0

> swapon /dev/loop0

> swapon -s /dev/loop0

3.5. NETWORK FILE-SYSTEM 83

3.5 Network File-System

NFS (Network File-System) is the Unix standard for sharing file-system over net-
works. Suppose a machine named Chopin wishes to mount the directory /home/share

on a machine named Bach as a local directory. First Bach must give Chopin per-
mission to do this. These permissions are called exports, and are entered into the
file /etc/exports. To grant permission for Chopin to mount /home/share the
following entry must be added to the /etc/exports file on Bach:

/home/share Chopin.rau.ac.za

Access is by default read-write, but it can be restricted to read-only. To mount this
exported file system we enter

> mount Bach:/home/share /mnt/share

84 CHAPTER 3. ADVANCED LINUX

3.6 Linuxconf

Linuxconf is the program used to configure the Linux system. However newer dis-
tributions use their own graphical interfaces for system configuration which may be
easier to use. The command we type is linuxconf. Linuxconf provides the following
functionality.

• Console based, user friendly, interactive configuration of the system.

• Provides user customization

1. Add, edit, delete users.

2. Change passwords.

3. Add system control privileges, such as system shutdown privileges.

4. Schedule tasks for users.

• Provides network configuration.

1. Change the hostname.

2. Assign IP numbers to interfaces.

3. Set the DNS server.

4. Change routing information.

5. Configure PPP, SLIP and PLIP.

6. Add NFS exports.

7. Edit /etc/hosts and /etc/networks.

• System configuration.

1. Configure lilo. Add kernels for booting, change default kernel to boot.
Add other operating systems to boot menu.

2. Activate the configuration.

3. Shutdown, reboot, initialize services, remove services.

4. Set date and time.

5. Schedule tasks for the super user.

6. View system files.

3.7. COMPRESSED FILES 85

3.7 Compressed Files

Most Linux files are stored on the installation CD-RROM in compressed form. This
allows more information to be stored. When we install Linux, the installation pro-
gram uncompresses many of the files transferred to our hard drive.

Any file ending with .gz, for example, myfile.gz is a compressed file. To uncom-
press this particular type of file, we enter

> gunzip filename

For the given file we enter

> gunzip myfile.gz

By default, gunzip replaces the original compressed files with the uncompressed
version of the files. The option -c writes output to standard output, keeping original
file unchanged. The command gzip compresses files using the Lempel-Ziv encoding.
The resulting file generally replaces the original, uncompressed file and will have a
.gz extension. For example

> gzip file.cc

The option -c writes output to standard output, keeping original file unchanged.

The compress command compresses files or standard input using Lempel-Ziv com-
pression. The file extension is then .Z. For example

> compress first.cc

The uncompress the file we use uncompress. For example

> uncompress first.Z

To create an archive file of one or more files or directories we use the tar command.
Although tar stands for tape archive, it can copy files to floppy disk or to any
filename we can specify in the Linux system. The tar command is used because it
can archive files and directories into a single file and then recreate the files and even
the directory structures later. To create a tar file, we enter

> tar cvf <destination> <files/directories>

where <files/directory> specifies the files and directories to be archived and
destination is where we want the tar file to be created. If we want the destination
to be a floppy disk, we enter /dev/fd0 as the destination. This specifies our primary
floppy drive. tar files have the extension .tar. To extract a tar file we enter

86 CHAPTER 3. ADVANCED LINUX

> tar xvf <tarfile>

We can use

> tar tvf <filename>

to get an index listing of the tar file.

The command uuencode encodes a binary file into a form that can be used where
binary files cannot (such as with some mail software). If no file is provided the
standard input is encoded. The command uudecode decodes ASCII files created by
uuencode to recreate the original binary file. By default the name of the decoded
file will be the original name of the encoded file. If no files to decode are provided,
then the standard input is decoded. The option -o specifies an alternate name for
the resulting decoded file.

The zip command creates a ZIP archive from one or more files and directories. The
option -e encrypts the archive after prompting for a password. The option -g adds
files to an existing archive. The unzip command manipulates and extracts ZIP
archives. The -t option tests the integrity of files in the archive.

The znew converts files compressed with compress (.Z files) into the format used
by gzip (.gz files). If no files are specified, then the standard input is processed.
The option -g uses the best, but slowest compression method.

The zmore command displays the contents of compressed text files, one screen at a
time, allowing searching in much the same way as the more command.

The command zgrep searches one or more compressed files for a specified pattern.

The zipinfo command displays details about ZIP archives, including encryption
status, compression type, operating system used to create the archive, and more.

The command zcat uncompresses one or more compressed files and displays the
result to the standard output.

The zipgrep command searches for a pattern in one or more files in a ZIP archive
using egrep. If no files are in the archive are specified, then all files in the archive
are searched.

The command gzexe creates an executable compressed file. If we compress a binary
file or script with gzexe then we can run it as if it were uncompressed. The file
will simply uncompress into memory and execute, leaving the compressed version
on our hard drive.

3.7. COMPRESSED FILES 87

The command cryptdir encrypts all files in a specified directory. If no directory is
specified, then all files in the current directory are encrypted. When we encrypt files,
we will be prompted twice for a password. This password is needed to unencrypt
files. Encrypted files will have the .crypt extensions added to their names. We use
decryptdir to decrypt all files in a specified directory.

A file with the extension .tgz is a gzipped tar file. To unpack, for example foo.tgz
we enter

> zcat foo.tgz | tar xvf

88 CHAPTER 3. ADVANCED LINUX

3.8 The vi and emacs Editors

3.8.1 vi Editor

vi stands for ”Visual Editor”. vi is popular because it is small and is found on
virtually all Unix systems. People using DOS so far, find it rather strange and
difficult to use, but it is extremely powerful, and flexible. To start the vi editor, we
type its name at the shell prompt (command line), i.e.

> vi

If we know the name of the file we want to create or edit, we can issue the vi com-
mand with the file name as an argument. For example, to create the file first.cc

with vi, we enter

> vi first.cc

To edit a given file for example first.cc we enter

> vi first.cc

When vi becomes active, the terminal screen clears and a tilde character ~ appears
on the left side of very screen line, except for the first. The ~ is the empty-buffer
line flag. The cursor is at the leftmost position of the first line. We probably see 20
to 22 of the tilde characters at the left of the screen. If that’s not the case, check
the value of TERM. When we see this display we have successfully started vi. Then
vi is in command mode, waiting for our first command.

Unlike most word processors, vi starts in command mode. Before we start entering
text, we must switch to input mode with the a or i keys.

3.8. THE VI AND EMACS EDITORS 89

Looking at vi’s Two Modes

The vi editor operates in two modes: command mode and input mode. In command
mode, vi interprets our keystrokes as commands. There are many vi commands.
We can use commands to save a file, exit vi, move the cursor to various positions in
a file, or modify, rearrange, delete, substitute, or search for text. We can even pass
a command to the shell. If we enter a character as a command but the character
isn’t a command, vi beeps.

We can enter text in input mode (also called text-entry mode) by appending after
the cursor or inserting before the cursor. At the beginning of the line, this doesn’t
make much difference. To go from command mode to input mode, press one of the
following keys:

a To append text after the cursor

i To insert text in front of the cursor

We use input mode only for entering text. Most word processors start in input
mode, but vi does not. We must go into input mode by pressing a or i before we
start entering text and then explicitly press <Esc> to return to command mode.

There is also a command line mode. This mode is used for complex commands
such as searching and to save our file or to exit vi. We enter this mode by typing
":", "/", "?" or "!". A few of these commands are:

:w - save file

:wq - save file and exit vi

:q! - quit without saving file.

vi has online help. Type

:help

to access the online documentation.

90 CHAPTER 3. ADVANCED LINUX

Creating our First vi File

This section gives a step-by-step example of how to create a file using vi. If we run
into difficulties, we can quit and start over by pressing Esc; then type :q! and press
<Enter>.

1. Start vi. Type vi and press <Enter>. We see the screen full of flush-left
tildes.

2. Go into input mode to place characters on the first line. Press the a key. Don’t
press <Enter>. Now we can append characters to the first line. We do not see
the character a on-screen.

3. Add lines of text to the buffer. Type, for example the following small C++
program

#include <iostream.h> <Enter>

<Enter>

void main() <Enter>

{ <Enter>

int a = 7; <Enter>

int b = 8; <Enter>

int c = a + b; <Enter>

cout << "c = " << c; <Enter>

} <Enter>

We can use the <Backspace> key to correct mistakes on the line we are typing.

4. Go from input mode to command mode. Press the Esc key. We can press Esc
more than once without changing modes. We hear a beep from our system if
we press <Esc> when we are already in command mode.

5. Save our buffer in a file called first.cc. Type :w first.cc and press
<Enter>. The characters :w first.cc appear on the bottom line of the screen
(the status line). The characters should not appear in the text. The :w com-
mand writes the buffer to the specified file. This command saves or writes the
buffer to the file first.cc.

6. See our action confirmed on the status line. We should see the following on
the status line:

"first.cc" [New File] 9 lines, 178 characters

This statement confirms that the file first.cc has been created, is a new file,
and contains 9 lines, and 178 characters.

7. Exit vi. Type :q and press <Enter>.

3.8. THE VI AND EMACS EDITORS 91

When we type :q, we are still in command mode and see these characters on the
status line. When we press <Enter>, however, vi terminates and we return to the
logon shell prompt.

The following is a synopsis of the steps to follow:

1. Start vi.

Type vi and press <Enter>.

2. Go to input mode.

Press a.

3. Enter the text.

Type the text into the buffer.

4. Go to command mode.

Press Esc.

5. Save buffer to file.

Type :w file-name and press <Enter>.

6. Quit vi.

Type :q and press <Enter>.

Things to Remember about vi

• vi starts in command mode.

• To move from command mode to input mode, press a (to append text) or i

(to insert text), respectively.

• We add text when we are in input mode.

• We give commands to vi only when we are in command mode.

• We give commands to vi to save a file and can quit only when we are in
command mode.

• To move from input mode to command mode, press Esc.

92 CHAPTER 3. ADVANCED LINUX

Starting vi Using an Existing File

To edit or look at a file that already exists in our current directory, type vi followed
by the file name and press <Enter>. For example

> vi first.cc

We see our C++ program on the screen. As before, tilde characters appear on the
far left of empty lines in the buffer. Look at the status line: it contains the name of
the file we are editing and the number of lines and characters.

Exiting vi

We can exit or quite vi in several ways. Remember that we must be in command
mode to quit vi. To change to command mode, press Esc. If we are already in
command mode when we press <Esc>, we hear a harmless beep from the terminal.
Next we list the commands we can use to exit vi.

Command Action
:q Exits after making no changes to the buffer or

exits after the buffer is modified
and saved to a file

:q! Exits and abandons all changes to the
buffer since it was last saved to a file

:wq Writes buffer to the working file and then exits

:x Same as :wq

ZZ Same as :wq

vi doesn’t keep backup copies of files. Once we type :wq and press Enter, the
original files is modified and can’t be restored to its original state. We must make
our own backup copies of vi files.

3.8. THE VI AND EMACS EDITORS 93

Commands to Add Text

Keystroke Action
a Appends text after the cursor position

Shift-a Appends text to the end of the current line

i Inserts text in front of the cursor position

Shift-i Inserts text at the beginning of the current line

o Opens a line below the current line to add text

Shift-o Opens a line above the current line to add text

Commands to Delete Text

Keystroke Action
x Deletes character at the cursor position

dw Deletes from the cursor position in the current
word to the beginning of the next word

d$ Deletes from the cursor position to the end of the line

Shift-d Same as <d><$>: deletes the remainder of the current line

dd Deletes the entire current line, regardless of
cursor position in the line

All these command can be applied to several objects – characters, words, or lines –
by typing a whole number before the command. Some examples are as follows:

• Press 4x to delete four characters

• Press 3dw to delete three words

• Press 8dd to delete eight lines

94 CHAPTER 3. ADVANCED LINUX

The Change and Replace Commands

Keystroke Action
r Replaces a single character

Shift-r Replaces a sequence of characters

cw Changes the current word, from the cursor
position to the end of the word

ce Changes the current word, from the cursor position
to the end of the word (same as <c><w>)

cb Changes the current word, from the beginning of
the word to the character before the cursor position

c$ Changes a line, from the cursor position
to the end of the line

Shift-c Changes a line, from the cursor position to the
end of the line (same as <c><$>)

cc Changes the entire line

The Search Commands

Command Action
/string Searches forward through the buffer for string

?string Searches backward through the buffer for string

n Searches again in the current direction

Shift-n Searches again in the opposite direction

3.8. THE VI AND EMACS EDITORS 95

A few examples:

x - delete the current character.

dd - delete the current line.

dw - delete the current word.

rx - replace the current character with x.

Most commands can be repeated

5x - delete 5 characters

5dw - delete 5 words

5dd - delete 5 lines

5j - move down 5 lines

As described above to type in text into vi, we must be in insert mode. To go from
Normal mode to insert mode, we enter i. We can enter

i - Insert before cursor I - Insert at beginning of line

a - Append after cursor A - Append after end of line

c - Replace word C - Replace rest of line

s - Replace character at cursor S - Replace whole line

o - Open line below cursor O - Open line above cursor

:e filename - open another file for editing.

:!shell command - suspend vi and execute shell command.

!!shell command - execute shell command and insert output into buffer

/search text -search forward for search text.

For example

/that/+1

places the cursor on line below the next line that contains the word that. The
command

:s.x.X.g 5

substitute x by X in the current line and four following lines. The command

:1, s/now/then/g

replaces now with then throughout the whole file.

96 CHAPTER 3. ADVANCED LINUX

3.8.2 emacs Editor

Emacs is a powerful, integrated computing environment for Linux that provides
a wide range of editing, programming and file management tasks. Emacs is an
acronym derived from ”Editor MACroS” (although vi worshipers have suggested
many other explanations which range from ”Eight Megabyte And Constantly Swap-
ping” through ”Easily Mangles, Aborts, Crashes and Stupifies” to ”Elsewhere Maybe
Alternative Civilizations Survive”).

The following instructions allow us to edit our first emacs file. If we run into
difficulties, we can quit and start over by pressing Ctrl-x Ctrl-c. Notice the
mini buffer at the bottom of the screen; our keystrokes are appearing there because
we are typing commands to the emacs editor.

1. Start emacs. Type emacs and press <Return>.

2. Add lines of text to the buffer. We enter again our small C++ program

#include <iostream.h> <Enter>

<Enter>

void main() <Enter>

{ <Enter>

int a = 7; <Enter>

int b = 8; <Enter>

int c = a + b; <Enter>

cout << "c = " << c; <Enter>

} <Enter>

We can use the Backspace key to correct mistakes on the line we are typing.

3. To save our buffer in a file called first.cc we first press Ctrl-x Ctrl-s.
Then at the bottom of the screen we enter first.cc. Then press <Enter>

again. This command saves or writes the buffer to the file first.cc because it
was the specified file. Note the number of characters in the file name. Unlike
MS-DOS and Windows, Linux allows us to enter more than eight characters
and a three character extension for a file name.

4. See our action confirmed on the status line. We see the following on the status
line:

Wrote /root/first.cc

This statement confirms that the file first.cc has been created, is a new file,
contains 9 lines and 178 characters.

5. Exit emacs. Press <Ctrl-x><Ctrl-c> and the <Return>. emacs terminates
and we return to the logon shell prompt.

3.8. THE VI AND EMACS EDITORS 97

The following is a synopsis of the steps you followed:

1. Start emacs.

Type emacs and press <Enter>.

2. Enter the text.

Type the text into the buffer.

3. Save buffer to file.

Press Ctrl-c Ctrl-s and answer y to the prompt asking to save the file; then
press <Enter> .

4. Name the file.

Type the file name and press <Enter>.

5. Quit emacs.

Press Ctrl-x Ctrl-c.

We use these steps, or variations of them, for all our editing tasks.

Starting emacs Using an Existing File

To edit or look at a file that already exists in our current directory, type emacs

followed by the file name and press <Enter>. We do this with our file first.cc.

> emacs first.cc <Enter>

Look at the mini buffer: it contains the name of the file we are editing.

The macros which give Emacs all its functionality are written in Emacs Lisp. Emacs
provides modes that are customized for the type of files you are editing. There are
modes for LaTeX, C, C++, Fortran, Java, Lisp and many more. We can also send
and receive E-Mail from Emacs and read Usenet news.

Here is a list of the more frequently used command sequences in Emacs: C-x means
type x while holding down the control key. M-x means type x while holding down
the alt or Meta key.

98 CHAPTER 3. ADVANCED LINUX

C-x C-f - Open a file C-x r k - Kill rectangle
C-x C-s - Save a file C-x r y - Yank rectangle
C-x C-i - Insert a file C-x r o - Open rectangle
C-x b - Switch to another buffer C-x r t - String rectangle
C-w - Kill (cut) marked text C-u n command - Repeat command n times
C-y - Yank (paste) killed text C-g - Interrupt currently executing command
M-w - copy marked text C-x (- Define a keyboard macro
M-% - Interactive search and replace C-x) End macro definition
M-$ - Check spelling of current word C-x e - Execute keyboard macro
C-s - Interactive search M-< - Move to top of file
M-q - Fill text M-> Move to bottom of file
M-u - convert word to uppercase C-a - Move to beginning of line
M-l - Convert word to lowercase C-e - Move to end of line
M-c - Capitalize word M-f - Move forward one word
C-h - Display online help M-d - Delete one word
c-space - Set mark
C-d - delete character at cursor position

In Graphics mode we also have an emacs editor more user friendly than the text
based one. We start the Graphics mode by entering

> startx

At the command prompt in Graphics mode we enter

> emacs

or

> emacs first.cc

It also allows to insert files and has search facilities.

3.9. PROGRAMMING LANGUAGES 99

3.9 Programming Languages

3.9.1 C and C++ Compiler

LINUX provides a C and a C++ compiler. Consider for example the C++ program

// first.cc

#include <iostream>

using namespace std;

int main(void)

{

int a = 7;

int b = 8;

int c = a + b;

cout << "c = " << c;

return 0;

}

Instead of the extension .cc we could also use .cpp as for other compilers. To
compile and link we enter at the command line the command

> g++ -o first first.cc

This provides an execute file with the name first. The option -o file places the
output in file file in the present example first. To run this execute file we enter
at the command line

> ./first

Obviously the output will be

> c = 15

To generate assembler code we enter

> g++ -S first.cc

The file name of the assembler code is first.s. The assembler code is in AT&T style.

To redirect the output into a file myout we enter

> ./first > myout

100 CHAPTER 3. ADVANCED LINUX

The name of the C compiler is gcc and the file extension for a C file is .c.

The header file unistd.h is available on all POSIX compliant systems. It includes
standard symbolic constants and types. Some of the functions defined in the header
file are

• STDIN_FILENO - the file descriptor for the standard input stream (ANSI C
stdin)

• STDOUT_FILENO - the file descriptor for the standard output stream (ANSI C
stdout)

• STDERR_FILENO - the file descriptor for the standard error stream (ANSI C
stderr)

• int chdir(const char *path) - to change to the directory specified by path

• int close(int fildes) - to close an open file descriptor

• int dup(int fildes) - to create a duplicate of a file descriptor

• int dup2(int fildes,int fildes2) - to create fildes2 as a duplicate of a
file descriptor fildes

• execl, execle, execlp, execv, execve, execvp - to execute a program, pos-
sibly modifying the path or environment

• fork() - to create a new process

• int isatty(int fildes) - to determine if the file descriptor refers to a ter-
minal device

• int pipe(int fildes[2]) - to create a pipe which can be used for two pro-
cesses to communicate

• ssize_t read(int fildes,void *buf,size_t nbyte) - to read from a file
identified by the file descriptor

• ssize_t write(int fildes,const void *buf,size_t nbyte) - to write to
a file identified by the file descriptor

• unsigned int sleep(unsigned int seconds) - to cause a process to sleep
(specified in seconds)

• int usleep(useconds_t useconds) - to cause a process to sleep (specified
in microseconds)

More information on these functions can be obtained from the manual pages, for
example type man fork.

3.9. PROGRAMMING LANGUAGES 101

3.9.2 Perl

The programming language Perl is part of Linux. For example to run a program
from the command line that adds the two numbers 7 and 8 we enter

> perl

$a = 7;

$b = 8;

$c = $a + $b;

print($c);

To run the program we press CRTL-d under LINUX and CRTL-z under Windows NT.

We can also first write a program first.pl and then run it. Notice that the exten-
sion of a Perl program is .pl.

first.pl

$a = 7;

$b = 8;

$c = $a + $b;

print($c);

To run the program at the command line we enter

> perl first.pl

102 CHAPTER 3. ADVANCED LINUX

3.9.3 Lisp

LINUX also includes CLISP (Common Lisp language interpreter and compiler). For
example

> clisp

> (car ’(a b))

a

> (cdr ’(a b c))

(b c)

To leave CLISP we enter

> (bye)

or (quit) or (exit).

We can also load files into CLISP. Consider the Lisp file first.lisp with a function
called double.

(defun double (num)

(* num 2))

We can use the load command to load the file first.lisp and use the function
double.

> (load "first.lisp")

Loading first.lisp

Finished loading first.lisp

T

> (double 7)

14

where T stands for true.

3.9. PROGRAMMING LANGUAGES 103

3.9.4 Java

There are JAVA compilers that run under LINUX. Consider for example the Java
program

// MyFirst.java

public class MyFirst

{

public static void main(String[] args)

{

int a = 7;

int b = 8;

int c = a + b;

System.out.println("c = " + c);

}

}

To compile we enter at the command line

> javac MyFirst.java

This generates a class file called MyFirst.class. This class file is platform inde-
pendent. To run it we type at the command line

> java MyFirst

If the program contains Graphics with a paint method, for example drawLine(),
drawRect() etc we first have to go to Graphics mode by entering at the text com-
mand line

> startx

The command startx starts X Windows. At the command prompt in Graphics
mode the compiling and running is the same as above.

104 CHAPTER 3. ADVANCED LINUX

Chapter 4

Linux and Networking

4.1 Introduction

Linux provides all the commands necessary to do networking. The Internet and
Email are almost synonymous these days and Linux is certainly able to handle both
efficiently with mail clients such as Kmail, Spruce, Netscape and Mozilla. There
are also a number of more traditional console mail programs still in use such as
Pine and Mutt. Netscape is one of the more common browsers in use under Linux,
featuring a familiar graphical interface and integrated mail and news. Mozilla is
a project based on the Netscape source that was released in 1998. Arena, though
not as flashy as some of the other Internet browsers, is a small fully functional web
browser. Internet Relay Chat (IRC) is used in the Linux community as a way of
working with others and getting technical assistance. One such IRC client is XChat,
which is similar to the Windows programme. Another program for those that prefer
console applications is BitchX.

105

106 CHAPTER 4. LINUX AND NETWORKING

4.2 Basic Commands

Here we summarize all the basic networking commands. The commands are

ifconfig

ping

netstat

mailto

nslookup

dnsdomainname

route

traceroute

hostname

rlogin

rdate

4.2. BASIC COMMANDS 107

ifconfig

The ifconfig command configures a network interface, or displays its status if no
options are provided. If no arguments are provided, the current state of all interfaces
is displayed. The syntax is

> ifconfig interface options address

where interface specifies the name of the network interface (e.g. eth0 or eth1).

To get the IP address of the host machine we enter at the command prompt the
command

> ifconfig

This provides us with the network configuration for the host machine. For example

Ethernet adapter

IP address 152.106.50.60

Subnet Mask 255.255.255.0

Default Gateway 152.106.50.240

Under Windows the command is ipconfig.

108 CHAPTER 4. LINUX AND NETWORKING

ping

The ping command sends echo request packets to a network host to see if it is
accessible on the network. The syntax is

ping [-R] [-c number] [-d] [-i seconds] host

Important Flags -c number:

and Options Stops sending packets after the
specified number of packets have been sent.

-d: Outputs packets as fast as
they come back or 100 times per second.
The greater number will be generated.
This option can only be used by the root
user because it can generate extremely
high volumes of network traffic. Care should
be taken when using this option.

For example

> ping 152.106.50.27

gives the reply

Ping statistics for 152.106.50.27

Reply from 152.106.50.27: bytes = 32 time = 1ms TTL = 128

Reply from 152.106.50.27: bytes = 32 time = 1ms TTL = 128

Reply from 152.106.50.27: bytes = 32 time = 1ms TTL = 128

Reply from 152.105.50.27: bytes = 32 time < 10 ms TTL = 128

Packets: Sent 4, Received 4, Lost 0 (0% loss)

Approximate round trip i milli-seconds:

Minimum = Oms, Maximum = 1ms, Average Oms

Another example is

> ping issc.rau.ac.za

The ping command also exists in Windows.

4.2. BASIC COMMANDS 109

netstat

The netstat command displays network status information, including connections,
routing tables, and interface statistics. When no options are provided, a list of active
sockets will be displayed. The syntax is

> netstat [-Mnrs] [-c] [-i interface]

[--interface interface] [--masquerade]

[--route] [--statistics]

Important Flags -c: Displays the select information
and Options every second until Ctrl-C interrupts it.

-i [interface]/--interface [interface]:

Displays information about a specified interface,
or all interfaces if none is specified.

-M/--masquerade:

Displays a list of masqueraded sessions.
-n: Shows numerical addresses

instead of their host, port, or user names.

For example

> netstat

An output could be

Active Internet Connections (w/o servers)

Proto Rec-Q Send-Q Local Address

tcp 0 2 issc2.rau.ac.za

udp 0 0 issc2.rau.ac:netbios-ns

udp 0 0 issc2.rau.ac:netbios-dgm

Foreign Address State

mta-v13.mail.yahoo.com:smtp SYN_SENT

.

.

This command also exists in Windows.

110 CHAPTER 4. LINUX AND NETWORKING

mailto

The mailto command sends an e-mail to one or more recipients. If no recipients
are indicated on the command line, the user will be prompted for the recipients.
If no standard input is provided, then the user is prompted for the content of the
message. The syntax is

> mailto [-a character-set]

[-c address,] [-s subject]

[recipient ...]

Important Flags -a character-set:
Specifies and alternate character set,
such as ISO-8859-8. The default is US-ASCII.

-c address, ...:

Specifies carbon-copy addresses.
-s subject:

Specifies the subject line of the message.
If the subject is more than one word,
enclose it in quotation marks.

To finish composing a message, use Ctrl-D or type a . alone on a blank line

4.2. BASIC COMMANDS 111

nslookup

The nslookup command queries a DNS nameserver. It can be run in interactive
mode. If no host name is provided, then the program enters interactive mode. By
default, the DNS server specified in

/etc/resolv.conf

is used unless another is specified. If we want to specify a server but not look up a
specified host, we must provide a - in place of the host. The syntax is

> nslookup [host|-[server]]

dnsdomainname

The dnsdomainname command displays the system’s DNS domain name based on
its fully qualified domain name. The syntax is

> dnsdomainname

For example

> dnsdomainname

rau.ac.za

112 CHAPTER 4. LINUX AND NETWORKING

route

The route command displays or alters the IP routing table. When no options are
provided, the routing table is displayed. The syntax is

> route add [-net|-host

targetaddress [netmask Nm]

[gw Gw] [[dev] If]

> route del [-net|-host]

targetaddress [gw Gw]

[netmask Nm] [[dev] If]

Important Flags add: Indicates that
and Options a route is being added.

del: Indicates that
a route is being deleted.

[def] If: Forces the
route to be connected to the
specified interface.

gw Gw: Specifies the
gateway for the route.

-host: Indicates the target is a host.
-net: Indicates the target is a network.
netmask Nm:

Specifies the netmask for the route.

For example

> route

could give the output

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

152.106.50.0 * 255.255.255.0 U 0 0 1 eth0

127.0.0.0 * 255.0.0.0 U 0 0 1 lo

default 152.106.50.240 0.0.0.0 Ub 0 0 1 eth0

The route command also exists in Windows.

4.2. BASIC COMMANDS 113

traceroute

The traceroute command displays the route a packet travels to reach a remote
host on the network. The syntax is

> traceroute [-r] host

Important Flags -i: Specifies a
network interface for outgoing packets.
This is useful in system with more than
one network interface.

-r: Bypasses normal routing tables
and attempts to send directly
to an attached host.

For example

> traceroute -r 152.106.50.27

The output could be

Tracing route to zeus.rau.ac.za [152.106.50.27]

over a minimum of 30 hops

1 3ms 3ms 4ms xylan-40.rau.ac.za [152.106.240]

2 14ms 3ms 5ms 152.106.9.241

3 12ms 26ms 2ms zeus.rau.ac.za [152.106.50.27]

Another example is

traceroute -r issc.rau.ac.za

This command is called tracert in Windows.

114 CHAPTER 4. LINUX AND NETWORKING

hostname

The hostname command displays or sets the system’s host name. If no flags or
arguments are given, then the host name of the system is displayed. The syntax is

> hostname [-a] [--alias] [-d]

[--domain] [-f] [--fqdn] [-i]

[--ip-address] [--long] [-s]

[--short] [-y] [--yp] [--nis]

Imporloginrtant Flags -a/--alias:

and Options Displays the alias name of
host if available.
-d/--domain:

Displays the DNS domain name of the host.
-f/--fqdn/--long:

Displays the fully qualified
domain name of the host.

-i/--ip-address:

Displays the IP address of the host.
-s/--short:

Displays the host name without
the domain name.

-y/--yp/--nis:
Displays the NIS domain name of the system.

For example

> hostname

issc2.rau.ac.za

To find out the hostname in Windows we can use

> ipconfig /All

or

> winipcfg

4.2. BASIC COMMANDS 115

rlogin

The rlogin command logs in to a remote host.

rdate

The rdate command retrieves the current time from one or more hosts on the
network and displays the returned time. The syntax is

> rdate [-p] [-s] host ...

Important Flags -p: Displays the time
returned from the remote system
(this is the default behavior).

-s: Sets the local
system’s time based on the time
retrieved from the network. This
can only be used by the root user.

For example

> rdate rauteg.rau.ac.za

connection refused

116 CHAPTER 4. LINUX AND NETWORKING

4.3 email

Unix and Linux have strong support for computer-to-computer communication. To
implement electronic mail, the system maintains a set of directories and files for
mail messages. Each user has a file in the system’s mail directory. As new mail
arrives it is added to the file for the recipient and the user is informed of its arrival.
Thus messages are stored on disk in mailbox files. The mail system is implemented
by the mail program.

Assume we want to send mail to the following address

whs@na.rau.ac.za

with the subject Hello Willi and the message Give me a call we enter at the
command line

> mail whs@na.rau.ac.za <Enter>

Subject: Hello Willi <Enter>

Give me a call <Enter>

.<Enter> (to send message)

We can also end the message with Ctrl-d instead of a period. Remember that the
Ctrl-d must be on a line by itself just as the period must be on a line by itself. The
computer responds by displaying EOT, which means end of transmission.

Sending a Prepared Message
We may want to use a text editior such as vi to compose a message to be sent by
electronic mail. If we use a text editor, we have the tools to do things such as format
the text and check our spelling. It doesn’t matter what program we use to create
the text as long as we end up with a text or ASCII file.

Suppose that the file we want to send is named report.txt and that the recipient’s
address is steeb_wh@yahoo.com. There are essentially three ways to send the file, as
shown in the following list. In the examples in the following list, the mail command
uses the option -s, and the string that serves as the subject heading is surrounded
by quotation marks.

Here are the three methods we can use to send mail using a prepared message file
called report.txt.

• Use a pipe. To send report.txt with the mail command, enter

cat report.txt | mail -s "Sales Report" steeb_wh@yahoo.com<Enter>

4.3. EMAIL 117

• Redirect input. To send report.txt with the mail command and the -s

option, enter

mail -s "Sales Report" steeb_wh@yahoo.com < report.txt<Enter>

• Use ~r to include a file in a message. To use mail to send the file (using the
default Subject: prompt), enter these commands:

mail steeb_wh@yahoo.com<Enter>

Subject: Sales Report<Enter>

~r report.txt<Enter>

~.<Enter>

EOT

Reading our Mail
Most Linux systems notify us when we log on that we have e-mail. We can use
either mail or another e-mail program to read any mail we have. As we read our
mail, the e-mail program marks a message as read. Depending on what commands
we use and how we quit the e-mail program, the message we have read are kept
either in our systems mailbox,

/var/spool/mail/SLOGNAME

or in our logon directory in the file named mbox.

Using mail to Read Mail
To read our mail with mail, type mail and press <Enter>. Suppose that our logon
name is imgood: we see a display similar to this:

mail<Enter>

mail Type ? for help.

"/var/spool/mail/imgood": 5 message 2 new 1 unread

1 sarah

-Wed Jan 5 09:17 15/363

2 croster@turn.green.com

-Thu Jan 6 10:18 26/657 Meeting on Friday

U 3 wjones

-Fri Jan 7 08:09 32/900 Framistan Order

> N 4 chendric

-Fri Jan 7 13:22 35/1277 Draft Report

N 5 colcom!kackerma@ps.com

-Sat Jan 8 13:21 76/3103 Excerpt from GREAT new UNI

?

Here are some things to note about the display:

118 CHAPTER 4. LINUX AND NETWORKING

• The first line identifies the program and says to type a question mark for help.

• The second line indicates that mail is reading our system mailbox,

/var/spool/mail/imgood

and that we have five messages. Two have arrived since we last checked our
mail, one appeared previously but we have not yet read it, and two messages
have already been read.

• The five lines give information about our mail. Ignore the first few characters
for now. Each line holds a message number, the address of the sender, the
date the message was sent, the number of lines and characters in the message,
and the subject (if one was given). Consider the following line:

2 croster@turn.green.com Thu Jan 6 10:18 26/657 Meeting on Friday

This line indicates the message numbered 2 is from croster@turn.green.com

an address that indicates the message came to our machine from a network
(mail from a local user is marked with just the user’s logon ID). The message
was sent on Thursday, January 6, at 10:18; it consists of 26 lines and 657
characters. The subject is Meeting on Friday.

• A message line starting with N indicates new mail - mail we did not know
about before.

• A message line starting with U indicates unread mail – mail that we know
about but have not read.

• A message line without either N or U is mail we have read and save in our
system mailbox.

• A greater-than character (>) on a message line marks the current message -
the message we act on next.

• The question mark (?) on the last line is the command prompt from mail.

Quitting and Saving Changes
To quit the mail program and save the changes that occur, press q and <Enter>

when we see the ? prompt. We see the shell prompt again. When we quit mail this
way, messages we read but did not delete are saved in a file named mbox in our home
directory.

4.3. EMAIL 119

The elm Mailer

There are several different mail programs available for Linux. Each has its own
advantages and disadvantages. One mail reader that comes with the Slackware dis-
tribution of Linux is the elm mailer. This mail program is a screen-oriented mailer
rather than a line-oriented one. It provides a set of interactive menu prompts and is
extermely easy to use. Virtually everything that we can do with mail can be done
under elm. Since elm is easy to use, we only touch on the highlights of using it.
We can find more in-depth information by using elm’s online help or by reading the
man page.

Starting elm

To start a mail session with elm, we enter elm at the command prompt. If this is the
first time we have used elm, it will prompt for permission to set up a configuration
directory in our account and create an mbox mail file if one does not exist. Here is
what we see as we start elm for the first time:

$ elm<Enter>

Notice:

This version of ELM requires the use of a .elm directory in your home

directory to store your elmrc and alias files. Shall I create the

directory .elm for you and set it up (y/n/q)? y<Return>

Great! I’ll do it now.

Notice:

ELM requires the use of a folders directory to store your mail folders in.

Shall I create the directory /home/gunter/Mail for you (y/n/q)? y<Return>

Great! I’ll do it now.

After elm creates its directory and mbox file, it runs the main mail program. This
is a full-screen-oriented mailer. Our screen clears and the following is displayed

Mailbox is ’/var/spool/mail/gunter’ with 2 messages [ELM 2,4 PL23]

N 1 Nov 11 Jack Tackett Linux book

N 2 Nov 11 Jack Tackett more ideas

You can use any of the following commands

by pressing the first character;

d)elete or u)ndelete mail, m)ail a message,

r)eply or f)orward mail, q)uit

To read a message, press <return>, j = move down, k = move up, 7 = help

Command:

120 CHAPTER 4. LINUX AND NETWORKING

At the top of the screen, elm tells us where our system mail box is located, how
many messages are in it, and what version of elm we are running, elm then lists
one line for each message in our mailbox. It places the letter N before each new
message, just like the mail program. The summary line for each message tells us if
the message is new, the message date, the sender, and the subject. Our display may
vary slightly depending on the version of elm. The current message is highlighted
in the list.

At the bottom of the screen is a command summary that tells us what commands
we have available for the current screen. We can

delete or undelete mail,
mail a message,
reply to a message,
forward mail,
or quit.

Pressing the j key moves the message selection to the previous message; the k key
moves it to the next message. Help is available by pressing the ? key. The Command:
prompt at the bottom of the screen tells us to press a command key for elm to do
something.

To send a file to whs@na.rau.ac.za named qc.ps we enter the following command

> elm -s testing whs@na.rau.ac.za < qc.ps

To display the current message we use <Enter> or <Spacebar>. Other elm com-
mands are summerized in the following table.

Command Summary for elm

Command Description
| Pipes current messsage or tagged message to a system command
! Shell escape
$ Resynchronizes folder
? Displays online help
+, <Right> Display next index page
-, <Left> Displays previous index page
= Sets current message to first message
* Sets current message to last message
<Number><Return> Set current message to <Number>

4.3. EMAIL 121

Command Description
/ Searches subjects for pattern
// Searches entire message texts for pattern
> Saves current message or tagged messages to a folder
< Scans current message for calendar entries
a Alias, changes to ’alias’ mode
b Bounces (remail) current message
C Copies current message or tagged messages to a folder
c Changes to another folder
d Deletes current message
<Ctrl-d> Deletes messages with a specified pattern
e Edits current folder
f Forwards current message
g Groups (all recipients) reply to current message
h Displays header with message
J Increments current message by one
j, <Down-Arrow> Advances to next undeleted message
K Decrements current message by one
k, <Up-Arrow> Advances to previous undeleted message
l limits messages by specified criteria
<Ctrl-l> Redraws screen
m Mails a message
n Next message, displaying current, then increment
o Changes elm options
p Prints current message or tagged messages
q Quits, maybe prompting for deleting, storing,

and keeping messages
Q Quick quit-no prompting
r Replies to current message
s Saves current message or tagged messages to a folder
t Tags current message for futher operatons
T Tags current message and go to next message
<Ctrl-t> Tags messages with a specified pattern
u Undeletes current message
<Ctrl-u> Undeletes messages with a specified pattern
x, <Ctrl-q> Exists leaving folder untouched; ask permission

if folder changed
X Exits leaving folder untouched, unconditionally

122 CHAPTER 4. LINUX AND NETWORKING

4.4 ftp Commands

The ftp application is an interface program for the ARPAnet standard file-transfer
protocol. We can transfer text and binary files to and from remote sytems of any
supported type. Anonymous FTP is a popular use of this application. It provides
access to public databases without the need for an account on the system, where
the data resides. We use ftp as follows.

1. Start ftp by typing the command ftp and the ftp-host at the prompt.

$ ftp eng.rau.ac.za

2. The ftp server will ask us for your login name. Type anonymous and enter our
email address as password (or just pvm@).

3. Now let us see what is available on the ftp site. Type ls to get a file listing:

ftp> ls

200 PORT command successful.

150 Opening ASCII mode data connection for /bin/ls.

total 8

drwxr-x--- 7 ftp ftp 1024 Oct 31 18:00 .

drwxr-x--- 7 ftp ftp 1024 Oct 31 18:00 ..

d--x--x--x 2 root root 1024 Oct 22 11:07 bin

drwxr-xr-x 2 root root 1024 Aug 7 1996 dev

d--x--x--x 2 root root 1024 Aug 7 1996 etc

drwxr-xr-x 2 root root 1024 Aug 7 1996 lib

dr-xr-xr-x 5 root root 1024 Apr 15 1997 pub

-rw-r--r-- 1 root root 505 Feb 19 1997 welcome.msg

226 Transfer complete.

ftp>

4. Change into the /pub directory by using the cd command, and get a new
listing.

ftp> cd pub

250 CWD command successful.

ftp> ls

200 PORT command successful.

150 Opening ASCII mode data connection for /bin/ls.

total 564

dr-xr-sr-x 5 root ftp 1024 Nov 18 15:38 .

drwxr-xr-x 9 root root 1024 Aug 26 1996 ..

-rw-rw-r-- 1 501 501 3562 Nov 3 14:43 bnc-2.2.0.tar.gz

4.4. FTP COMMANDS 123

drwxr-xr-x 2 ftp root 1024 Jun 5 1996 irc

drwxrwsr-x 3 root ftp 1024 Nov 18 07:36 linux

-rw-r--r-- 1 root ftp 555437 Oct 16 14:12 sdc51.zip

-rwxr-xr-x 2 root ftp 7399 Nov 18 15:38 tear

drwxrwsr-x 2 root ftp 1024 Feb 17 1997 uml

226 Transfer complete.

ftp>

5. Let us see what is the linux directory:

ftp> cd linux

250 CWD command successful.

ftp> ls

200 PORT command successful.

150 Opening ASCII mode data connection for /bin/ls.

total 2382

drwxrwsr-x 3 root ftp 1024 Nov 25 11:47 .

dr-xr-sr-x 5 root ftp 1024 Nov 18 15:38 ..

drwxrwsr-x 2 root ftp 1024 Mar 26 1997 MuPAD

-rw-r--r-- 1 root ftp 22824 Nov 18 07:36 freefont-0.10.tar.gz

-rw-r--r-- 1 root ftp 66 Nov 25 11:47 please_download_me

226 Transfer complete.

ftp>

6. Now we wish to download the file please_download_me. We use the get

command. Always switch to binary mode before downloading a file.

ftp> bin

200 Type set to I.

ftp> get please_download_me

local: please_download_me remote: please_download_me

200 PORT command successful.

150 Opening BINARY mode data connection for please_download_me (66 bytes).

226 Transfer complete.

66 bytes received in 0.00399 secs (16 Kbytes/sec)

ftp>

7. To disconnect from the server type bye:

ftp> bye

221 Goodbye

$

124 CHAPTER 4. LINUX AND NETWORKING

Let us summarize the main commands for ftp.

ascii sets the file transfer type to network ASCII

bell sounds the bell after each file transfer

binary sets the file transfer to binary mode

bye terminates the FTP session with the remote server

cd remote-directory changes the working directory on the remote machine

cdup goes to the parent

chmod mode file-name changes the permission modes of the file

close terminates the FTP session with the remote server

delete remote-file deletes the remote file on the remote machine

get remote-file retrieves the remote file and stores it

on the local machine

ls lists the contents of the remote directory

open host [port] establishes a connection to the specified

host FTP server

put local-file stores a local file on the remote machine

pwd prints the name of the current working directory

quit same as bye

rmdir directory-name deletes a directory on the remote machine

4.5. TELNET 125

4.5 Telnet

The telnet application is a user interface program for remote system access. We can
call any remote system that is accessible on the network, but we need an account on
the remote system. To start a telnet session we simply enter the command name
at the command line.

> telnet hostname [port]

where hostname is the host we want to connect to and port indicates a port number.
If a port number is not specified the default telnet port is used. In telnet we can
log in either in one of two modes:

character-by-character
or
line-by-line.

In the character-by-character mode, most text typed is immediately sent to the re-
mote host for processing. In line-by-line mode all text is echoed locally and only
completed lines are sent to the remote host.

When we connected to a remote host, we can enter the telnet command mode by
typing Ctrl]. This puts us in the telnet command interpreter. We do this if
we want to send commands directly to the telnet program and not to our remote
computer session.

Let us look at a telnet session.

$ telnet hewey

Trying 152.106.50.64...

Connect to hewey.rau.ac.za,

Escape characters is ’^]’.

School for Scientific Computing

RedHat Linux 4.2

Kernel 2.0.30 on an i586

login: pvm

Password:

Last login: Tue Nov 25 13:11:22 on tty1

Hewey: ~$ cd course

Hewey:~/course$ ls

Makefile file2.student iofile.cc product.cc test12.cc

add file_to_sort master.cc pvm

add.cc first.cc names.dat slave1.cc

add.s gnu.cc new.cc slave2.cc

ex2m.cc hosts pmx.tex subcourse

126 CHAPTER 4. LINUX AND NETWORKING

file1.student iofile pow.c test.cc

Hewey:~/course$ exit

$

The default port to which telnet connects in 23. We can connect to another port,
for example port 80 which is the port on which the www server listens:

$ telnet zeus 80

Trying 152.106.50.27...

Connected to zeus.rau.ac.za

Escape character is ’^]’.

GET ? HTTP/1.0

HTTP/1.0 200 OK

Server: Microsoft-PWS/3.0

Date: Tue, 25 Nov 1997 11:55:45 GMT

Content-Type: text/html

Accept-Ranges: bytes

Last-Modified: Mon, 01 Sep 1997 10:21:46 GMT

Content-Length: 2207

<head><title>

Home Page: Prof Willi Hans Steeb

</title></head>

...

Which gives us another way to read www pages (if we can decipher HTML).

4.6. REMOTE SHELL 127

4.6 Remote Shell

The rsh command (remote shell) allows us to start a ”remote shell” on a Unix
machine on the network. For example

Chopin:~$ rsh hewey

Last login: Tue Nov 25 14:31:24 from Atilla

Hewey:~$ cd course

Hewey: ~/course$ ls

Makefile file2.student iofile.cc pow.cc test.cc

add file_to_sort master.cc product.cc test13.cc

add.cc first.cc names.dat pvm

add.s gnu.cc new.cc slave1.cc

ex2m.cc hosts pmx.tex slave2.cc

file1.student iofile posix subcourse

Hewey:~/course$

Our system is set up so that rsh does not ask for a password (for pvm to work
properly). This is contolled by the .rhosts file in the /home/pvm directory.
The rsh command can be used to start a program other that shell

Hewey:~$ rsh atilla exec w

4:54pm up 3:37, 1 user, load average: 0.00, 0.00, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

pvm tty1 4:07pm 46:15 0.19s 0.08s -bash

Hewey:~S

The command rcp (remote copy) is useful for distributing files over the network:

Hewey:~/course$ echo "This text is going to do some travelin" > foo

Hewey:~/course$ rcp foo dewey:~/course

By combining rcp with an interactive shell script, we can copy a file to as list of
computers:

Hewey:~/course$ for name in dewey louie atilla

> do

> rcp foo $name:~/course

> done

Hewey:~/course$

128 CHAPTER 4. LINUX AND NETWORKING

4.7 Web

Netscape provides a Web browser for Linux including HTML and JavaScript.

There is a wealth of web browsers available for Linux, depending on the needs of
the user. We list some of them here.

• Lynx. A popular console (text) based web browser. It is very fast since it does
not render any graphics. Lynx supports the use of cookies, CGI forms and
SSL. It is possible to browse websites with frames although this is somewhat
less intuitive. No support for scripting (Javascript, Vbscript etc.) or Java.

• Links. Another console (text) based web browser. Similar to Lynx but can
also display frames and tables.

• Netscape. A popular graphical web browser, with support for the newest
standards including Java, Javascript and XML. Also available for windows.
The only option for some advanced websites (also see Mozilla below).

• Mozilla. Opensource graphical web browser derived from publicly released
source code from the Netscape browser. All the latest web browser features
are available, tends to be an ‘experimental’ browser.

• Konqueror. The graphical web browser which comes with the KDE package.
Also used for reading KDE help files. This browser is becoming very popular
but is still weak with respect to Java and Javascript support. A good and
stable browser for simple browsing of the internet.

4.8. INETD AND SOCKET PROGRAMMING 129

4.8 INETD and Socket Programming

Inetd is a daemon which listens on specified network ports for network connections.
When a client connects to one of these ports inetd starts a server program with it’s
standard input and output redirected to use then network connection. Thus inetd
can be used to write simple network server programs, without knowing much about
the underlying network programming. Inetd provides the following.

• Allows programs to act as servers without implementing any network pro-
gramming.

• Inetd listens on a number of specified ports (see inetd.conf). When a con-
nection is made, inetd starts the program associated with the port according
to the contents of inetd.conf.

• Inetd redirects the standard input and output descriptors to use the socket for
the connection.

• The server program reads from stdin and writes to stdout to communicate
with the client.

• To reload inetd.conf:

1. ps ax | grep inetd

to determine the process id (inetdpid) of inetd

2. kill -HUP inetdpid

to reload inetd.conf. Type in the process id number of inetd in place
of inetpid.

The following is an example of /etc/inetd.conf.

ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l

telnet stream tcp nowait root /usr/libexec/telnetd telnetd

comsat dgram udp wait tty:tty /usr/libexec/comsat comsat

aol stream tcp nowait root /usr/local/bin/rshell.sh rshell.sh

We use the port aol since it is unlikely the system will ever need to use this. By
default, this port is not used. Usually we would add the last line to the existing
/etc/inetd.conf installed on the system. To select a port to use, examine the
file /etc/services for an unused service and use that one. Alternatively we could
modify /etc/services and add an unused port and name for use on our system
only. For example we could add the line

rshell 60000/tcp

130 CHAPTER 4. LINUX AND NETWORKING

to /etc/services. We can use any port number from 0 up to and including
65535. See the services(5) man page. The port must be specified by a name
from /etc/services. To illustrate the flexibility of the inetd system we use a
Bourne shell script for the server. Do not use this script when connected to a net-
work since the service provides full access to the machine. The following is the
contents of /usr/local/bin/rshell.sh.

#!/bin/sh

echo "Remote shell"

date

while true; do

echo Enter command:

read command

$command

done

The script asks for a command and then executes it. We could test a server using
the telnet command.

telnet localhost aol

Testing this will show that every command entered fails. This is because telnet

sends a carriage return and linefeed code whenever we press the enter key. The
shell expects all commands to end with a linefeed code. Thus the carriage return
is used as part of the command, and the command will not be recognised. We
can overcome this by removing the carriage return from the command in the shell
script. Alternatively, we can write our own client using sockets. This is done in the
following program (rshell_client.c).

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h> /* */

#include <sys/time.h> /* for select */

#include <unistd.h> /* */

#include <netinet/in.h> /* for sockaddr_in */

#include <sys/socket.h>

#include <netdb.h> /* for gethostbyname and others */

#define BUFSIZE 4096

int main(int argc,char *argv[])

{

struct hostent *host;

int s;

struct sockaddr_in sin;

4.8. INETD AND SOCKET PROGRAMMING 131

struct servent *sp;

fd_set fselect;

FILE *skt;

char buffer[BUFSIZE];

if(argc<3)

{

printf("Host and service expected.\n");

exit(EXIT_FAILURE);

}

host=gethostbyname(argv[1]);

if(host==NULL)

{

printf("Host lookup failed.\n");

exit(EXIT_FAILURE);

}

sp=getservbyname(argv[2],(char*)0);

if (sp==NULL)

{

printf("Service lookup failed.\n");

exit(EXIT_FAILURE);

}

s=socket(host->h_addrtype,SOCK_STREAM,

getprotobyname(sp->s_proto)->p_proto);

if(s==-1)

{

printf("Socket open failed.\n");

exit(EXIT_FAILURE);

}

skt=fdopen(s,"r+");

sin.sin_family=host->h_addrtype;

sin.sin_port=sp->s_port;

sin.sin_addr=*((struct in_addr*)(host->h_addr_list[0]));

if(connect(s,(const struct sockaddr*)&sin,sizeof(sin))==-1)

{

close(s);

printf("Socket connect failed.\n");

exit(EXIT_FAILURE);

}

132 CHAPTER 4. LINUX AND NETWORKING

FD_SET(STDIN_FILENO,&fselect);

FD_SET(s,&fselect);

while((select(s+1,&fselect,NULL,NULL,NULL)>0)

&&!feof(stdin)&&!feof(skt))

{

if(FD_ISSET(s,&fselect))

{

fgets(buffer,BUFSIZE,skt);

fputs(buffer,stdout);

fflush(stdout);

}

if(FD_ISSET(STDIN_FILENO,&fselect))

{

fgets(buffer,BUFSIZE,stdin);

fputs(buffer,skt);

fflush(skt);

}

FD_SET(STDIN_FILENO,&fselect);

FD_SET(s,&fselect);

}

close(s);

}

Chapter 5

Shell Programming

5.1 What is a shell

The shell is a program used to interface between the user and the Linux kernel. The
shell is a command line interpreter. Whenever we enter a command it is interpreted
by the Linux shell. To understand what the shell is, and what it actually does,
we review the sequence of events that happen when we log into a Unix system.
We normally access a Unix system through a terminal (be it an old fashioned serial
terminal, or a terminal emulator such as a xterm window) connected to certain ports
on the Unix machine.

1. On a Unix system, a program called init automatically starts up a getty

program on each terminal port. getty determines things such as the baud
rate, displays the message Login: at its assigned terminal and then just waits
for someone to type something in.

2. As soon as someone types some characters followed by RETURN, the getty

program disappears; but before it goes away, it starts up a program called
login to finish the process of loging in. It also gives login the characters
we typed in at the terminal – characters that presumably represent our login
name.

3. When login begins execution, it displays the string Password: at the termi-
nal, and then waits for us to type our password.

4. Once we have typed our password, login proceeds to verify it against the
encrypted entry in the /etc/passwd file. This file contains one line for each
user on the system. That line specifies, among other things, the login name,
password, home directory, and program to start up when that user logs in.

5. After login checks the password, it checks for the name of the program to ex-
ecute. In most cases it will be /bin/sh (or /bin/bash on Linux machines), or
some custom-designed application. The point is that absolutely any program
can be started when a specific user logs in. The shell just happens to be the
one most often selected.

133

134 CHAPTER 5. SHELL PROGRAMMING

When the shell starts up, it displays a command prompt – typically a dollar $ sign
or > sign – at our terminal and then waits for us to type some commands. Each time
we type in a command and press the Enter key, the shell analyses the line we have
typed and then proceeds to carry out our request. If we ask it to execute a program,
the shell proceeds to search the disk for that program. Once found, the shell asks
the kernel to initiate the programs execution, and then “goes to sleep” until the
program has finished. The kernel copies the specified program into memory and
begins to execute it. This program is called a process ; in this way the distinction
is made between a program that resides in a file on disk and a process that is in
memory doing things.

If the program writes output to the standard output, it will appear on our terminal
unless redirected or piped into a file or another command. Similarly, if the program
read from standard input, it will wait for us to type something at our terminal,
unless input is redirected or piped in from a file or command. When the command
has finished, control once again returns to the shell which awaits our next command.
This cycle continues as long as we are logged in. When we log off, execution of the
shell terminates and the Unix system starts up a new getty at the terminal that
waits for someone else to log in.

It is important to realize that the shell is just a program. It has no special privileges
on the system, meaning that anyone with the capability and the devotion can create
their own shell program. This is in fact the reason why various flavours of the shell
exist today, including the standard Bourne Shell sh, developed by Stephen Bourne;
the Korn shell ksh, developed by David Korn and the C shell csh, developed by Bill
Joy.

The shell found on most Linux systems is the Bourne-again-shell bash, developed
by the GNU project of the Free Software Foundation. This shell is compatible with
the Bourne shell, but has several additional features not offered by the standard
Bourne shell.

The shell has several responsibilities namely:

1. Program execution
The shell is responsible for the execution of all programs that we request from
our terminal. Each time we type in a line to the shell, the shell analyses the
line and then determines what to do. As far as the shell is concerned, each
line follows the same basic format:

program-name arguments

The line that is typed to the shell is known more formally as the command line.
The shell scans this command line and determines the name of the program
to be executed and what arguments to pass to the program.

5.1. WHAT IS A SHELL 135

The shell uses special characters to determine where the program name starts
and ends. These characters are collectively called whitespace characters, and
are the space character, the horizontal tab character, and the end-of-line (or
newline) character. When we type the command

$ mv progs/wonderprog.cc outbox

the shell scans the command line and takes everything from the start of the
line to the first whitespace character as the name of the command to execute:
mv. The next set of characters is the first argument to the program and so
forth. We note that multiple occurences of whitespace is ignored.

2. Variable and File name substitution
Like any other programming language, the shell allows us to assign values to
variables. Whenever we specify one of these variables on the command line,
preceded by an dollar sign, the shell substitues the value that was assigned to
the variable at that point.

The shell also performs name substitution on the command line. The shell
scans the command line looking for name substitution characters *, ?, or
[...] before determining the name of the program and its arguments to
execute.

Suppose our current directory contains the files:

$ ls

template.cc thread varargs.cc virtual.cc

test thread.cc vector.cc worm.c

test.cc thread.o vector.h

test.ps varargs virtual

The echo command can be used to illustrate file name substitution:

$ echo *

template.cc test test.cc test.ps thread thread.cc thread.o

varargs varargs.cc vector.cc vector.h virtual virtual.cc worm.c

Question. How many arguments were passed to the echo command? The
correct answer is 14. We have to remember that the filename substitution is
done by the shell before the arguments are passed to the program.

3. Standard Input/Output and I/O redirection
It is the shells’ responsibility to take care of input and output redirection on
the command line. It scans the command line for the occurrence of the special
redirection characters <, > or >>. When we type the command:

$ echo This is some text that is redirected into a file > text

136 CHAPTER 5. SHELL PROGRAMMING

The shell recognizes the redirection character > and uses the next word on the
line as the name of the file to which the input stream is to be redirected. If the
file already exists, it is overwritten. Use the >> operator to append to the file.
Before the shell starts the execution of the desired program, it redirects the
standard output of the program to the indicated file. The program is never
aware of the fact that its output is being redirected.

Consider the following nearly identical commands:

$ wc -l users

5 users

$ wc -l < users

5

In the first case, the shell analyses the command line and determines that
the name of the program to execute is wc (a program that counts the number
of lines, word and bytes in a file) and that it is to be passed two arguments
namely -l and users. The first argument tell it to only count the number of
lines, and the second argument is the file whose lines have to be counted. So
wc opens the file users, counts its lines, and then prints the count together
with the file name at the terminal.

The second case, however, operates entirely differently. The shell spots the
redirection character < when it scans the command line. The word that follows
is the name of the file input is to be redirected from. Having “gobbled up” the
< users from the command line, the shell start the wc program with only the
one argument -l, and redirects its standard input from the file users. Seeing
that it was called with only one argument, wc knows it has to read input
from standard input. It again prints the final count, but without a filename,
because it wasn’t given one.

4. Pipes
Just as the shell scans the command line for redirection characters, it also
scans for the pipe character |. For each such character it finds, it connects
the standard output from the program preceding the | to the standard input
of the program following the |. It then initiates execution of both commands.
So, when we enter

$ who | wc -l

the shell connects the standard output of the command who (which generates a
list of all users currently logged into the system) and connects it to the standard
input of the command wc -l. The two commands execute simultaneously, and
will in effect count the number of currently logged in users.

5.2. THE SHELL AS A PROGRAMMING LANGUAGE 137

5.2 The Shell as a Programming Language

There are two ways of writing shell programs. We can type in a sequence of com-
mands and allow the shell to execute them initeractively, or we can store those
commands in a file which we can then invoke as a program.

Interactive programs

Typing in the script on the command line is a quick and easy way of trying out
small code fragments. Suppose we want to find out whether the file first.cc exists
in the present directory. Then we could enter at the command line

$ if [-f first.cc]

> then

> echo "file exists"

> fi

$

If the file exists, the system displays file exists.

Note how the shell prompt $ changes to a > when we type in shell commands. The
shell will decide when we have finished, and execute the script immediately. How-
ever, typing in a script every time we need it is too much trouble. The solution is
to store the commands in a file, conventionally refered to as a shell script.

The following interactive script shows how to do mathematics (addition, multipli-
cation, division) using the shell. The shell can only do integer arithmetic. Thus
division is integer division. At the command line we enter

> count=1

> count=$((count+1))

> echo $count

2

> count=$((count+2))

> echo $count

4

> count=$((count*5))

> echo $count

20

> count=$((count/7))

2

>

138 CHAPTER 5. SHELL PROGRAMMING

5.2.1 Creating a Script

First, using any text editor, we create a file containing the commands we have just
typed. Call the file first.sh

#!/bin/sh

first.sh

This program looks through all the files in the current directory

for the string POSIX, and then prints those files to the standard

output.

for file in *

do

if grep -l POSIX $file

then

more $file

fi

done

exit 0

Comments start with # and continue to the end of a line. Conventionally, though, #
is usually kept in the first column. Having made such a sweeping statement, we next
note that the first line, #!/bin/sh, is a special form of comment, the #! characters
tell the system that the one argument that follows on the line is the program to be
used to execute this file. In this case /bin/sh is the default shell program.

The exit command ensures that the script returns a sensible exit code. This is
rarely checked when commands are run interactively, but if we want to invoke this
script from another script and check whether it succeeded, returning an appropriate
exit code is very important. Even if we never intend to allow our script to be invoked
from another, we should still exit with a reasonable code.

A zero denotes success in shell programming. Since the script as it stands can’t
detect any failures, we always return success.

5.2. THE SHELL AS A PROGRAMMING LANGUAGE 139

5.2.2 Making a Script executable

Now that we have our script file, we can run it in two ways. The simpler way is to
invoke the shell with the name of the script file as a parameter, thus

$ /bin/sh first.sh

This should work, but it would be much better if we could simply invoke the script
by typing its name, giving it the respectability of other Unix commands. We do this
by changing the file mode to make the file executable for all users using the chmod

command

$ chmod +x first.sh

We then execute the script using the command

$./first.sh

We note that it is necessary to type the

./

because for security reasons our current directory should never be in our PATH (es-
pecially not if we are logged in as root).

140 CHAPTER 5. SHELL PROGRAMMING

5.3 Shell Syntax

Having seen an example of a simple shell program, it is now time to look in more
depth at the programming power of the shell. The shell is an easy programming
language to learn, not least because it is easy to test small program fragments
interactively before combining them into bigger scripts. We can use the modern
Unix shell to write large structured programs.

5.3.1 Variables

Unlike C we don’t declare variables in the shell before we use them. Instead we
create them when we first use them, for example, when we pass an initial value to
them. By default, all variables are considered and stored as strings, even when they
are assigned numerical values. The shell and some utilities will convert ’numeric
strings’ to their values before operating on them. Unix is a case sensitive system
and considers the variables Foo, FOO, and foo to be different.

Within the shell, we can get at the contents of a variable by preceding its name
with a $ character and outputting its contents with the echo command. Whenever
we use them, we need to give variables a preceding $, except when an assignment
is being made to the variable. On the command line, we can set various values of
the variable message:

$ message=hello

$ echo $message

hello

$ message="Hello, World"

$ echo $message

Hello, World

$ message=7+11

$ echo $message

7+11

Note how a string has to be delimeted by quotation marks if it contains spaces. Also
note that there may be no spaces on either side of the equals sign. We can assign
user input to a variable by using the read command. The read command takes one
argument namely the name of the variable, and waits for the user to type in some
text and press the return key.

Quoting

Before we move on we have to clear about one feature of the shell, namely the use
of quoting. Normally, parameters are separated by whitespace characters, i.e. a
space, a tab, or a newline character. If we want a parameter to contain one or more
whitespace characters, we have to quote the parameter.

5.3. SHELL SYNTAX 141

The behaviour of parameters such as $message inside quotes depends on the type
of quotes we use. If we enclose a $ variable expression in double quotes, it’s replaced
with its value when the line is executed. If we enclose it in single qoutes, no sub-
stitution takes place. We can also remove the special meaning of the $ symbol by
prefacing it with a backslash \.

Normally strings are enclosed in double quotes, which protects variables from being
seperated by whitespace, but allows $ expansion to take place.

The following script illustrates shell variables and quoting

#!/bin/bash

myvar="Hi there"

echo $myvar

echo "$myvar"

echo ’$myvar’

echo \$myvar

echo Enter some text

read myvar

echo ’$myvar’ now equals $myvar

exit 0

This gives the output:

Hi there

Hi there

$myvar

$myvar

Enter some text

Foo

$myvar now equals Foo

We see that the double quotes doesn’t affect the substitution of the variable, while
single quotes and the backslash do. We also use the read command to get a string
from the user.

Environment Variables

When a shell script starts, some variables are initialized from values in the environ-
ment. These are normally capitalized to distinguish them from user-defined (shell)
variables in scripts, which are conventionally lowercase. The variables created will
depend on our personal configuration. Many are listed in the manual pages, but the
principle ones are

142 CHAPTER 5. SHELL PROGRAMMING

$HOME The home directory of the current user.
$PATH A colon-seperated list of directories to search for commands.
$PS1 A command prompt, usually $.
$PS2 A secondary prompt, used when prompting for additional in-

put, usually >.
$IFS An input field separator. A list of characters that are used to

separate words when the shell is reading input, usually space,
tab and newline characters.

$$0 The name of the shell script.
$# The number of parameters passed.
$$ The process id of the shell script, often used inside a

script for generating unique temporary filesnames, for exam-
ple /tmp/junk $$.

Parameter Variables

If our script is invoked with parameters, some additional variables are created. Even
if no parameters are passed, the environment variable $# listed above does still exist,
but has a value of 0. The parameter variables are

$1, $2,. . . The parameters given to the script.
$* A list of all the parameters, in a single variable, separated by

the character in environment variable IFS - the input field sep-
arator character.

$@ A subtle variation on $*, that doesn’t use the IFS environment
variable.

When the parameter expansion occurs within a double-quoted string, $* expands
to a single field with the value of each parameter separated by the first character of
the IFS variable, or by a space if IFS is unset. If IFS is set to a null string, which
isn’t equivalent to unsetting it, the parameter values will be concatenated.

For example:

$ IFS=’’

$ set foo bar goo

$ echo "$@"

foo bar goo

$ echo "$*"

foobargoo

$ unset IFS

$ echo "$*"

foo bar goo

Within the double quotes, $@ expands the positional parameters as separate fields
regardless of the IFS value. For example

5.3. SHELL SYNTAX 143

#!/bin/sh

salutation="Hello"

echo $salutation

echo "The program $0 is now running"

echo "The second parameter was $2"

echo "The first parameter was $1"

echo "The parameter list was $*"

echo "The users’s home directory is $HOME"

echo "Please enter a new greeting"

read salutation

echo $salutation

echo "The script is now complete"

exit 0

If we run the script with

$./try_variable foo bar goo

we get the output:

Hello

The program ./try_variable is now running

The second parameter was bar

The first parameter was foo

The parameter list was foo bar goo

The users’s home directory is /home/gac

Please enter a new greeting

My leige

My leige

The script is now complete

We also can write a shell program which only contains a function and then using $1,
$2, etc to pass parameters to this function. For example given the shell program

mod.sh

modulus()

{

echo $(($1%$2))

}

At the command prompt we enter

$. mod.sh

$ modulus 20 3

Then $1 will be assigned to 20 and $2 to 3. The output will be 2.

144 CHAPTER 5. SHELL PROGRAMMING

5.3.2 Conditions

Fundamental to all programming languages is the ability to test conditions and
perform different actions based on those decisions. A shell script can test the exit
code of any command that can be invoked from the command line, including scripts
that we have written ourself. That is why it is important to always include an exit

command at the end of any scripts that we write.

The test or [] Command

In practice, most scripts make extensive use of the [] or test command, the shell’s
Boolean check. On most systems these commands are synonymous. Having a com-
mand [] might seem a little odd, but actually, within the code it does make the
syntax neat and more like other programming languages.

In older Unix systems, the test and [] commands used to call an external com-
mand /bin/test or /usr/bin/test, but in most modern Unix systems these com-
mands are built into the shell. Since the test command is infrequently used outside
of shell scripts, many users who have never written a shell script try to write a
simple programs and call them test. If such a program doesn’t work, it’s probably
conflicting with the builtin test command. One way to avoid this problem is by
specifying the complete path to our executable when calling it, as in ./test

To introduce the test command, we use it to test for the existence of a file. The
command for this is test -f <filename>, so within a script we can write:

if test -f first.cc

then

echo "file exists"

else

echo "file does not exist"

fi

We can also write it like this:

if [-f first.cc]

then

echo "file exists"

else

echo "file does not exist"

fi

The test command’s exit code (whether the condition is satisfied) determines
whether the conditional code is run. We have to put spaces between the [] and
the condition being checked. It helps to think of the opening brace as a command
that takes the condition and the end brace as arguments.

5.3. SHELL SYNTAX 145

If we prefer to put the then on the same line as the if, we must add a semicolon
to separate the test from the then:

if [-f first.cc]; then

echo "file exists"

else

echo "file does not exist"

fi

The condition types that we can use with the test command fall into three cate-
gories:

String Comparison:

string True if the string is not an empty string
string1 = string2 True if the strings are the same.
string1 != string2 True if the strings are not equal.
-n string True if the string is not null.
-z string True if the string is null (an empty

string).
For example

$ string1="hallo"

$ string2="hallooo"

$ if [$string1 = $string2] ; then

> echo "strings are the same"

> else

> echo "strings are not the same"

> fi

strings are not the same

Arithmetic Comparison:

expr1 -eq expr2 True if the expressions are equal.
expr1 -ne expr2 True if the expressions are not equal.
expr1 -gt expr2 True if expr1 is greater than expr2.
expr1 -ge expr2 True if expr1 is greater than or equal to

expr2.
expr1 -lt expr2 True if expr1 is less than expr2.
expr1 -le expr2 True if expr1 is less than or equal to

expr2.
! expr The ! negates the expression and returns

true if the expression is false, and vice
versa.

146 CHAPTER 5. SHELL PROGRAMMING

For example

$ number1=10

$ number2=12

$ if [$number1 -gt $number2] ; then

> echo "$number1 is greater than $number2"

> else

> echo "$number1 is less than $number2"

> fi

The output is

10 is less than 12

File Conditional:

-d file True if the file is a directory.
-e file True if the file exists.
-f file True if the file is a regular file.
-g file True if set-group-id is set on the file.
-r file True if the file is readable.
-s file True if the file has non-zero size.
-u file True if set-user-id is set on the file.
-w file True if the file is writable.
-x file True if the file is executable.

We note that before any of the file conditionals can be true test looks whether the
file exists. This is only a partial list of options to the test command. See the bash

manual page for a complete list (type man bash, or help test).

5.3. SHELL SYNTAX 147

5.3.3 Control Structures

The shell has a number of control structures, and once again they are very similar
to other programming languages. For some structures (like the case statement),
the shell offers more power. Others are just subtle syntax changes.

In the following sections, the statements are the series of commands that are to be
performed when/while/until the condition is fulfilled.

if Command

The if statement is very simple. It tests the result of a command and then condi-
tionally executes a group of statements:

if condition
then

statements
else

statements
fi

Example. A common use for the if statement is to ask a question, and then to
make a decision based on the answer:

#!/bin/bash

echo "Is it morning? Please answer yes or no"

read timeofday

if [$timeofday = "yes"]; then

echo "Good morning"

else

echo "Good afternoon"

fi

exit 0

This would give the following output:

Is it morning? Please answer yes or no

yes

Good morning

$

The script used the [] command to test the contents of the variable timeofday.
The result of this is evaluated by the if command, which then allows different line
of code to be executed.

148 CHAPTER 5. SHELL PROGRAMMING

elif Command

There are several problems with this very simple script. It will take any answer
except yes as meaning no. We can prevent this using the elif contruct, which
allows us to add a second condition to be checked when the else portion of the if

is executed.

Example. We can modify our previous script so that we report an error mesage if
the user types in anything other than yes or no. We do this by replacing the else

with an elif, and adding another condition.

#!/bin/bash

echo "Is it morning? Please answer yes or no"

read timeofday

if [$timeofday = "yes"]; then

echo "Good morning"

elif [$timeofday = "no"]; then

echo "Good afternoon"

else

echo "Sorry, $timeofday not recognized. Enter yes or no"

exit 1

fi

exit 0

This is quite similar to the last example, but now uses the elif command which
tests the variable again if the first if command was not true. If neither of the tests
are successful, an error message is printed and the script exits with the value 1,
which the caller can use in a calling program to check if the script was successful.

This fixes the most obvious defect, but a more subtle problem is lurking. If we exe-
cute this new script, but instead of answering the question, we just press <Return>,
we get the following error message:

[: =: unary operator expected

The problem is in the first if clause. When the variable timeofday was tested, it
consisted of a blank string, so the if clause looks like,

if [= "yes"]

which isn’t a valid condition. To avoid this problem, we have to put quotes around
the variable,

if ["$timeofday" = "yes"]; then

so an empty string gives us a valid test:

if ["" = "yes"]

5.3. SHELL SYNTAX 149

for Command

We use the for construct to loop through a range of values, which can be any set of
strings. They could simply be listed in the program or, more commonly, the result
of a shell expansion of filenames. The syntax is:

for variable in values
do

statements
done

Example. The first example shows the use of for with fixed strings.

#!/bin/bash

for count in one two three four

do

echo $count

done

exit 0

The output is:

one

two

three

four

Example. The next example uses the for construct with wild card expansion.

#!/bin/bash

for file in $(ls chap[345].txt); do

lpr $file

done

This script also illustrates the use of the $(command) syntax, which will be reviewed
in more detail later. The parameter list for the for command is provided by the
output of the command enclosed in the $() sequence. This script will send the files
called chap3.txt, chap4.txt and chap5.txt to the default system printer via the
lpr command.

150 CHAPTER 5. SHELL PROGRAMMING

while Command

Since all shell variables is considered to be strings, the for loop is good for looping
through a series of strings, but a little awkward to use when we wish to execute a
command a fixed number of times. It can become tedious if we want to use for to
repeat a command say twenty times

#!/bin/bash

for foo in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

do

echo "Here we go again"

done

exit 0

Even with wild card expansion, we might be in a situation where we just don’t know
how many times we need to loop. In that case we can use a while loop, which has
the following syntax:

while condition
do

statements
done

Example. By combining the while construct with arithmetic substitution, we can
execute a command a fixed number of times. This is less cumbersome than the for

loop we used earlier.

#!/bin/bash

foo=1

while ["$foo" -le 20]

do

echo "Here we go again"

foo=$(($foo+1))

done

exit 0

This script uses the [] command to test the value of foo against the value 20 and
executes the while loop if it’s smaller or equal. Inside the while loop the syntax
$(($foo+1)) is used to perform arithmetic evaluation of the expression inside the
braces, so foo is incremented by one each time around the loop.

5.3. SHELL SYNTAX 151

In the next program we use two nested while loops to display a triangle of asterisks
on the screen.

> outer=1

> while [$outer -le $1]

> do

> inner=1

> while [$inner -le $outer]

> do

> echo -n "*"

> inner=$(($inner+1))

> done

> echo

> outer=$(($outer+1))

> done

>

> exit 0

From the command line we pass the number of lines of asterisks we want to display.

until Command

The until statement has the syntax:

until condition
do

statements
done

This is very similar to the while loop, but the condition test is reversed. In other
words, the loop continues until the condition becomes true, not while the condition
is true.

Example. Often the until statement adds clarity. It also fits naturally when we
want to loop forever until something happens. As an example, we can set up an
alarm which goes off when another user logs in:

#!/bin/bash

until who | grep "$1" > /dev/null

do

sleep 10

done

ring the bell and announce the users’ presence

152 CHAPTER 5. SHELL PROGRAMMING

echo -e \\a

echo "$1 has just logged in!!!"

exit 0

The -e option to echo enable interpretation of the following backslash-escaped char-
acters in the strings:

\a alert (bell)
\b backspace
\c suppress trailing newline
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\nnn the character whose ASCII code is nnn (octal)

case Command

The case statement is a little more complex than the other structures we have
discussed up to now. Its syntax is:

case variable in values
pattern [| pattern] ...) statements;;

pattern [| pattern] ...) statements;;

...

esac

The case construct allows us to match the contents of a variable against patterns
in quite a sophisticated way, and then allows execution of different statements, de-
pending on which pattern was matched. This ability to match multiple patterns
and execute multiple statements makes the case construct a good way of dealing
with user input.

Example. We present a version of our input testing script that uses case.

#!/bin/bash

echo "Is it morning? Please answer yes or no"

read timeofday

case "$timeofday" in

5.3. SHELL SYNTAX 153

"yes") echo "Good Morning";;

"no") echo "Good Afternoon";;

"y") echo "Good Morning";;

"n") echo "Good Afternoon";;

*) echo "Sorry, answer not recognized";;

esac

exit 0

When the case statement is executing, it compares the contents of timeofday to
each string in turn, and executes the statements following the first pattern that
matches. The case command performs normal expansion, so that the * is a wild
card that will match any string. The asterisk * is used as the default action to be
performed if no other pattern is satisfied.

Example. By putting patterns with the same actions together we can make a much
cleaner version:

#!/bin/bash

echo "Is it morning? Please answer yes or no"

read timeofday

case "$timeofday" in

"yes" | "y" | "Yes" | "YES")

echo "Good Morning";;

"n*" | "N")

echo "Good Afternoon";;

*)

echo "Sorry, answer not recognized";;

esac

exit 0

Example. To make the script reusable, we have to change it to return an error code
when the default pattern had to be used. To do this we need to execute more than
one statement when a certain case was matched:

#!/bin/bash

echo "Is it morning? Please answer yes or no"

read timeofday

case "$timeofday" in

"yes" | "y" | "Yes" | "YES")

echo "Good Morning"

154 CHAPTER 5. SHELL PROGRAMMING

;;

"[nN]*")

echo "Good Afternoon"

;;

*) echo "Sorry, answer not recognized"

echo "Please answer yes or no"

exit 1

;;

esac

exit 0

To show a different way of matching multiple patterns, we have changed the ‘no’
pattern to ‘[nN]*’ which is read as “an ‘n’ or an ‘N’ followed by anything”.

5.3. SHELL SYNTAX 155

5.3.4 Logical AND and Logical OR

Sometimes we want to connect commands together in a series. For instance, we
may want several different conditions to be met before we execute a statement, for
example:

if [-f this_file]; then

if [-f that_file]; then

if [-f the_other_file]; then

echo "All files are present and correct"

fi

fi

fi

or we may want at least one of a series of conditions to be met:

if [-f this_file]; then

foo="True"

elif [-f that_file]; then

foo="True"

elif [-f the_other_file]; then

foo="True"

else

foo="False"

fi

if ["$foo" = "True"]; then

echo "One of the files exists"

fi

Although these can be implemented using multiple if statements, the results are
awkward. The shell has a special pair of constructs for dealing with lists of com-
mands: the AND list and the OR list.

The AND List

The AND list construct allows us to execute a series of commands, executing the
next commnd only if all of the preceding commands have succeeded. The syntax is:

statement1 && statement1 && statement1 && ...

We notice that && is the logical AND in languages such as C, C++ and Java. Start-
ing at the left, each statement is executed and, if it returns true, the next statement
to the right is executed. This continues until a statement returns false, or when no
more statements in the list are executed. The && tests the condition of the preced-
ing command. Each statement is executed independently, allowing us to mix many
different commands in a single list. The AND list as a whole succeeds (true) if all

156 CHAPTER 5. SHELL PROGRAMMING

commands are executed successfully, and it fails (false) otherwise.

Example. In the following script, we use the command

touch file_one

which checks whether the file exists and create it if it does not. Then we remove
file two. The touch command changes the access and modification times of a file,
or creates a new file with specified times. Then the AND list tests for the existence
of each of the files and echoes some text in between

#!/bin/bash

touch file_one

rm -f file_two

if [-f file_one] && echo "hello" && [-f file_two] && echo " there"

then

echo "in if"

else

echo "in else"

fi

exit 0

The script gives the output:

hello

in else

The touch and rm commands ensure that the files are in a known state. The && list
then executes the [-f file one] statement, which succeeds because we have just
made sure that the file existed. Since the previous statement succeeded, the echo

command is called. This also succeeds. The echo command always returns true.
The third test, [-f file two] fails since we have just erased file two, therefore
the last statement echo "there" is not executed. Since one of the commands in
the AND list failed, the AND list as a whole returns false and the statement in
the else condition is executed.

5.3. SHELL SYNTAX 157

The OR list

The OR list construct allows us to execute a series of commands until one succeeds.
the synax is:

statement1 || statement1 || statement1 || ...

Starting at the left, each statement is executed. If it returns false, the next state-
ment to the right is executed. This continues until a statement returns true, or
when no more statements are executed.

#!/bin/bash

rm -f file_one

if [-f file_one] || echo "hello" || echo " there"

then

echo "in if"

else

echo "in else"

fi

exit 0

This will give us the output:

hello

in if

The first test [-f file one] fails, and the echo command has to executed. echo
returns true and no more statements in the OR list is executed. The if succeeds
because one of the commands in the OR list was true.

158 CHAPTER 5. SHELL PROGRAMMING

Statement blocks

If we want to use multiple statements in a place where only one is allowed, such as
in an AND or an OR list, we can do so by enclosing them in braces { } to make a
statement block. For example

#!/bin/bash

tempfile=temp_$$

yes_or_no() {

while true

do

echo "Enter yes or no"

read x

case "$x" in

y | yes) return 0;;

n | no) return 1;;

*) echo "answer yes or no"

esac

done

}

yes_or_no && {

who > $tempfile

grep "secret" $tempfile

}

Depending on the return value of the function yes_or_no the following block of
statements will be executed.

5.3. SHELL SYNTAX 159

5.3.5 Functions

The shell provides functions, and if we are going to write any large scripts, it is
a good idea to use functions to structure our code. To define a shell function, we
simply write its name, followed by empty () parentheses and enclose the statements
in { } braces. The syntax is

function_name() {

statements

}

For example

#! /bin/bash

foo() {

echo "Function foo is executing"

}

echo "script is starting"

foo

echo "script ended"

exit 0

Running the script will show:

script is starting

Function foo is executing

script ended

As always, the script starts executing at the top. When it finds the foo() { con-
struct, it knows that a function called foo is being defined. It stores the fact foo

refers to a function and continues executing after the matching }. When the single
line foo is executed, the shell now knows to execute the previously defined function.
When this function completes, execution resumes at the line after the call to foo.

We must always define a function before it can be executed. This isn’t a problem in
the shell, since all scripts start executing at the top. Thus we put all the functions
before the first call of any function.

160 CHAPTER 5. SHELL PROGRAMMING

Function Arguments

When a function is invoked, the positional parameters to the script,

$*, $@, $#, $1, $2

and so on are replaced by the parameters to the function. That is how we read
parameters passed to the function. When the function exits, they are restored to
their previous values.

For example

#! /bin/bash

foo() {

echo "The argument to the function is $1 $2"

}

foo "bar" "willi"

exit 0

The script will give the output:

The argument to the function is bar willi

For example

#! /bin/bash

foo() {

echo "The argument to the function is $@"

}

foo "bar" "willi" "olla"

exit 0

The script will give the output

The argument to the function is bar willi olla

5.3. SHELL SYNTAX 161

Returning Values

Shell functions can only return numeric values with the return command. The only
way to return string values is to store them in a global variable, which can then be
used after the function finishes.

For example

#! /bin/bash

yes_or_no() {

echo "Parameters are $*"

while true

do

echo "Enter yes or no"

read x

case "$x" in

y | yes) return 0;;

n | no) return 1;;

*) echo "answer yes or no"

esac

done

}

echo "original parameters are $*"

if yes_or_no "Is your name $1"

then

echo "Hi $1"

else

echo "Never mind"

fi

exit 0

Running the program with

$./function4.sh John and Ben

gives

original parameters are John and Ben

Parameters are Is your name John

Enter yes or no

dunno

answer yes or no

162 CHAPTER 5. SHELL PROGRAMMING

Enter yes or no

yes

Hi John

$

Local variables

Local variables can be declared inside shell function by using the local keyword.
The variable is then only in scope within the function. Otherwise, the function
can access the other shell variables which are essentially global in scope. If a local
variable has the same name as a global variable, it shadows that variable but only
within the function. For example

#! /bin/bash

text="global variable"

foo() {

local text="local variable"

echo "Function foo is executing"

echo $text

}

echo "script is starting"

echo $text

foo

echo "script ended"

echo $text

exit 0

The output is

script is starting

global variable

Function foo is executing

local variable

script ended

global variable

5.3. SHELL SYNTAX 163

If we execute an exit command from inside a function, its effect is not only to
terminate execution of the function, but also of the shell program that called the
function. If we instead would like to just terminate execution of the function, we
can use the return command, whose format is

return n

The value n is used as the return status of the function. If omitted, then the status
returned is that of the last command executed. The value of its return status we
can access with $?. For example

x=0

foo()

{

if [$1 -eq 0]

then

x=7

return 0;

else

x=9

return 1;

fi

}

Calling the function foo with

foo 5

echo $x

echo $?

provides the output 9 and 0. However

foo 5

echo $x $?

provides the output 9 and 1. Calling the function foo with

foo 0

echo $x

echo $?

provides the output 7 and 0.

164 CHAPTER 5. SHELL PROGRAMMING

5.4 Shell Commands

5.4.1 Builtin Commands

We can execute two types of commands from shell scripts. There are the ‘normal’
commands that we could also execute from the command prompt and there are
the ‘builtin’ commands that we mentioned earlier. These builtin commands are
implemented internally to the shell and can not be invoked as external programs.
Most internal commands are, however, also provided as stand-alone programs–it’s
part of the POSIX specification. It generally does not matter whether the command
is external or internal, except that the internal commands execute more efficiently.

break Command

We use this command for escaping from an enclosing for, while or until loop
before the controlling condition has been met. For example

#! /bin/bash

rm -rf fred*

echo > fred1

echo > fred2

mkdir fred3

echo > fred4

for file in fred*

do

if [-d "$file"]; then

break

fi

done

echo first directory starting with fred was $file

exit 0

The output is

$ fred3

We recall that the option -d tests whether the file is a directory. We recall that
the command echo > fred1 creates the file fred1. The size of the file is 1 byte.
Explain why?

5.4. SHELL COMMANDS 165

“:” Command

The colon command is a null command. It is occasionally useful to simplify the logic
of conditions, being an alias for true. Since it is a builtin command, it runs faster
than true. We may see it used as a condition for while loops: while : implements
an infinite loop, in place of the more conventional while true.

continue Command

Rather like the C keyword of the same name, this command make the enclosing for,
while or until loop continue at the next iteration, with the loop variable taking
the next value in the list. For example

#! /bin/bash

rm -rf fred*

echo > fred1

echo > fred2

mkdir fred3

echo > fred4

for i in fred*

do

if [-d "$i"]; then

continue

fi

echo i is $i

done

exit 0

We run the program with

$./continue.sh

The output is:

i is fred1

i is fred2

i is fred4

$

166 CHAPTER 5. SHELL PROGRAMMING

“.” Command

The dot command executes the command in the current shell. The syntax is

. shell script

Normally when a script executes an external command or script, a new shell (a sub
shell) is spawned, the command is executed in the sub shell and the sub shell is
then discarded, apart from the exit code which is returned to the parent shell. The
external source and the internal dot command run the commands in the same shell
that called the script. Usually any changes to environment variables that take place
in a script is lost when the script finishes. The dot command, however, allows the
executed command to change the current environment. This is often useful when
we use a script as a wrapper to set up our environment for the later execution of
some command.

In shell scripts, the dot command works like the #include directive in C or C++.
Though it doesn’t literally include the script, it does execute the script in the current
context, so we can use it to incorporate variable and function definitions into a script.

echo Command

The echo is also a builtin command. We have been using it throughout, so it won’t
be discussed further. The X/Open standard has introduced the printf command
in newer shells, and it should rather be used for outputting strings.

exec Command

The exec command has two different uses. It is normally used to replace the current
shell with a different program. For example

exec wall "Thanks for all the fish"

in a script will replace the current shell with the wall command. No lines in the
script after the exec will be processed, because the shell that was executing the script
no longer exists. The second use of exec is to modify the current file descriptors.

exec 3 < afile

This causes file descriptor three to be opened for reading from file afile. It is rarely
used.

5.4. SHELL COMMANDS 167

exit n Command

The exit command causes the script to exit with exit code n. If we use it at the
command prompt of any interactive shell, it will log us out. If we allow the script
to exit without specifying the exit status, the status of the last command execute
in the script will be used as the return value. In shell programming, exit code 0 is
success, codes 1 through 125 inclusive are error codes that can be used by scripts.
The remaining values have reserved meanings.

export Command

The export command makes the variable being exported visible to sub shells. By
default variables created in a shell are not available in further sub shells invoked from
that shell. The export command creates an environment variable from its parameter
which can be seen by other scripts and programs invoked from the current program.

expr Command

The expr command evaluates its arguments as an expression. It is most commonly
used for simple arithmetic. expr can perform many expression evaluations:

Expression Description
expr1 | expr2 expr1 if expr1 is non-zero, otherwise expr2.
expr1 & expr2 Zero if either expression is zero, otherwise expr1

expr1 = expr2 Equal
expr1 > expr2 Greater than.
expr1 >= expr2 Greater than or equal to.
expr1 < expr2 Less than.
expr1 <= expr2 Less than or equal to.
expr1 != expr2 Not equal.
expr1 + expr2 Addition.
expr1 - expr2 Subtraction.
expr1 * expr2 Multiplication.
expr1 / expr2 Integer division.
expr1 % expr2 Integer modulo.

For example

a=1

a=‘expr $a + 1‘

echo $a

The output is 2. Note that in newer scripts, expr is normally replaced with the
more efficient $((...)) syntax.

168 CHAPTER 5. SHELL PROGRAMMING

eval Command

eval [arg . . .]

The args are read and concatenated together into a single command. This command
is then read and executed by the shell, and its exit status is returned as the value of
the eval command. If there are no args, or only null arguments, eval returns true.
For example

#!/bin/bash

command="ls"

files="*.sh"

eval $command $files

exit 0

The output displays all the files with the extension .sh.

printf Command

The printf command is only available in more recent shells. The syntax is:

printf "format string" parameter1 parameter2 ...

The format string very similar to that used in C or C++, with some restrictions.
Floating point arithmetic is not supported. All arithmetic in the shell is performed
as integers. The format string consists of any combination of literal characters, es-
cape sequences and conversion specifiers. All characters in the format string, other
than % and \, appear literally in the output.

The following escape sequences are supported:

Escape Sequence Description
\\ Backslash character.
\a Alert (rings the bell or beep).
\b Backspace character.
\f Form feed character.
\n Newline character.
\r Carriage return.
\t Tab character.
\v Vertical tab character.
\ooo The single character with actual octal value ooo

5.4. SHELL COMMANDS 169

The conversion specifier is quite complex, so we list only the commonly used ones
here. More details can be found in the manual. Enter man bash at the command
prompt. The conversion specifier consists of a % character, followed by a conversion
character. The principal conversions are:

Conversion Specifier Description
d Output a decimal number.
c Output a character.
s Output a string.
% Output the % character.

The format string is then used to interpret the remaining parameters and output
the result. For example

$ printf "%s\n" hello

hello

$ printf "%s %d\t%s" "Hi there" 15 people

Hi there 15 people

Note how we have to use " " to protect the Hi there string and make it a single
parameter.

set and unset Commands

The set command sets the parameter values for the shell. It can be a useful way
of setting fields in commands that output space-separated values. For example,
set x y z assigns x to $1, y to $2 and z to $3. The output

set x y z

echo $2

is y. Without any argument set gives in alphabetical order the list of all of the
variables that exists in our environment.

Suppose we want to use the name of the current month in a shell script. The system
provides a date command, which gives the date in a format that contains the name
of the month as a string, but we need to separate it from the other fields. We can
do this using a combination of the $(...) construct to execute the date command
and return the result and the set command. The date command output has the
month string as its second parameter

#! /bin/bash

echo the date is $(date)

set $(date)

echo The month is $2

exit 0

170 CHAPTER 5. SHELL PROGRAMMING

The script output is

the date is Thu Nov 13 23:16:33 SAT 1997

The month is Nov

We can also use the set command to control the way the shell executes, by passing
it parameters. The most commonly used is set -x which makes a script display a
trace of its currently executing command. The unset command is used to remove
a variable from the environment. It cannot do this to read-only variables (such as
USER or PWD).

shift Command

The shift command moves all the parameter variables down by one, so $2 becomes
$1, $3 becomes $2, and so on. The previous value of $1 is discarded, while $0

remains unchanged. If a numerical argument is specified the parameters will move
that many spaces. The variables $*, $@ and $# are also modified to reflect the new
arrangement of parameter variables. The shift command is often useful for scan-
ning through parameters, and if we write a script that takes ten or more parameters,
we have no choice but to use the shift command. For example

#!/bin/bash

shell1.sh

while ["$1" != ""]; do

echo "$1"

shift

done

exit 0

If we run the script with

> ./shell1.sh willi hans steeb

the output is

willi

hans

steeb

trap Command

The trap command is used for specifying the actions to take on receipt of a signal.
A common use is to tidy up a a script when it is interrupted. The trap command is
passed the action to take, followed by the signal name (or names) to trap on. The

5.4. SHELL COMMANDS 171

trap command signal

command will be executed whenever any of the signals specified by signal is re-
ceived. Remember that scripts are normally interpreted from ‘top’ to ‘bottom’ so we
have to specify the trap command before the part of the script we wish to protect.
To reset a trap condition to the default, simply specify the action as -. To ignore a
signal, set the action to the empty string ’’. A trap command with no parameters
prints out the current list of traps and actions.

The following table lists the more important signals covered by the X/Open standard
that can be caught:

Signal(number) Description
HUP (1) Hang up; usually sent when a terminal goes offline, or a user logs out.
INT (2) Interrupt; usually sent by pressing <Ctrl-C>.
QUIT(3) Quit; usually sent by pressing <Ctrl-\>.
ABRT(6) Abort; usually sent on some serious execution error.
ALRM(14) Alarm; usually used for handling time-outs.
TERM(15) Terminate; usually sent by the system when it’s shutting down.

For example, in the following program the process id number of the program being
executed.

#! /bin/bash

trap ’rm -f /tmp/my_tmp_file_$$’ INT

echo creating file /tmp/my_tmp_file_$$

date > /tmp/my_tmp_file_$$

echo "press interrupt (CRTL-C) to interrupt ... "

while [-f /tmp/my_tmp_file_$$]; do

echo File exists

sleep 1

done

echo The file no longer exists

trap - INT

echo creating file /tmp/my_tmp_file_$$

date > /tmp/my_tmp_file_$$

echo "press interrupt (CRTL-C) to interrupt ... "

while [-f /tmp/my_tmp_file_$$]; do

172 CHAPTER 5. SHELL PROGRAMMING

echo File exists

sleep 1

done

echo We never get here

exit 0

To run the script we enter

> ./trap.sh

The output from this script is

creating file /tmp/my_tmp_file_1010

press interrupt (CRTL-C) to interrupt ...

File exists

File exists

The file no longer exists

creating file /tmp/my_tmp_file_1010

press interrupt (CRTL-C) to interrupt ...

File exists

File exists

[1]+ Terminated ./trap.sh

This script uses the trap command to arrange for the command

rm -f /tmp/my_tmp_file_$$

to be executed when an INT (interrupt) signal occurs, The script then enters a
while loop which continues while the file exists. When the user presses <Ctrl-C>,
the statement

rm -f /tmp/my_tmp_file_$$

is executed, then the while loop resumes, since the file has now been removed, the
first while loop terminates normally.

The script then uses the trap command again, this time to specify that no command
is to be executed when an INT signal occurs. It then recreates the file and loops
inside the second while construct. When the user presses <Ctrl-C> this time, there
is no handler installed for the signal, so the default behavior occurs, which is to
immediately terminate the script. Since the script terminates immediately, the final
echo and exit statements are never executed.

5.4. SHELL COMMANDS 173

5.4.2 Command Execution

When we are writing scripts, we often need to capture the output from a command’s
execution for use in the script, i.e. we want to execute a command and put the out-
put of the command in a variable. We do this by using the $(command) syntax.
There is also an older form, ‘command‘, which is still in common usage.

All new script should use the $(...) form, which was introduced to avoid some
rather complex rules covering the use of the characters $, ‘ and \ inside the back
quoted command. If a back quote is used inside the ‘...‘ construct, it must be
escaped with a \ character. The result of the $(command) is simply the output from
the command. Note that this is not the return status of the command, but the
string output. For example

#! /bin/bash

echo "The current working directory is $PWD"

echo "The current users are $(who)"

exit 0

Because the current directory is a shell environment variable, the first line doesn’t
need to use this command execution construct. The result of who, however, does
need this construct if it is to be available to the script. The concept of putting the
result of a command into a script variable is very powerful, as it make it easy to use
existing commands in scripts and capture their output. A problem sometimes arises
when the command we want to invoke outputs some whitespace before the text we
want, or more output than we actually require. In such cases we can use the set

command as we have already shown.

Arithmetic Expansion

We have already used the expr command, which allows simple arithmetic commands
to be processed, but this is quite slow to execute, since a new shell is invoked to
process the expr command. A newer and better alternative is $((...)) expansion.
By enclosing the expression we wish to evaluate in $((...)), we can perform simple
arithmetic much more efficiently. For example

#! /bin/bash

x=0

while ["$x" -ne 10]; do

echo $x

x=$(($x+1))

done

exit 0

174 CHAPTER 5. SHELL PROGRAMMING

Parameter Expansion

We have seen the simplest form of parameter assignment and expansion, where we
write:

foo=fred

echo $foo

A problem occurs when we want to append extra characters to the end of a variable.
Suppose we want to write a script to process files called 1_temp, 2_temp and 3_temp.
We could try:

#!/bin/bash

for i in 1 2 3

do

cat $i_temp

done

But on each loop, we get the error message

too few arguments

What went wrong? The problem is that the shell tried to substitute the value of
the variable $i temp, which doesn’t exist. To protect the expansion of the $i part
of the variable, we need to enclose the i in { } like this:

#!/bin/bash

for i in 1 2 3

do

cat ${i}_temp

done

On each loop, the value of i is substituted for ${i}, to give the actual file names.

We can perform many parameter substitutions in the shell. Often, these provide an
elegant solution to many parameter processing problems. The common ones are:

5.4. SHELL COMMANDS 175

Parameter Expansion Description
${param:-default} If param is null, set it to the value of

default.
${#param} Gives the length of param.
${param%word} From the beginning, removes the smallest

part of param that matches word and re-
turns the rest.

${param%%word} From the beginning, removes the longest
part of param that matches word and re-
turns the rest.

${param#word} From the end, removes the smallest part
of param that matches word and returns
the rest.

${param##word} From the end, removes the longest part of
param that matches word and returns the
rest.

These substitutions are often useful when we are working with strings. The last
four that remove parts of strings are especially useful for processing filenames and
paths, as the example below shows. For example

#! /bin/bash

unset foo

echo ${foo:-bar}

foo=fud

echo ${foo:-bar}

foo=/usr/bin/X11R6/startx

echo ${foo#*/}

echo ${foo##*/}

bar=/usr/local/etc/local/networks

echo ${bar%local*}

echo ${bar%%local*}

exit 0

This gives the output:

bar

fud

usr/bin/X11R6/startx

startx

/usr/local/etc/

/usr/

176 CHAPTER 5. SHELL PROGRAMMING

Since Unix is based around filters, the result of one operation must often be redi-
rected manually. For example we want to convert a gif file into a jpeg file using
the cjpeg filter available with most Linux distributions. We can type the following:

$ cjpeg image.gif > image.jpg

Sometimes, however, we want to perform this type of operation on a large number
of files. The following script will automate this process:

#!/bin/bash

for image in *.gif

do

cjpeg $image > ${image%%gif}jpg

done

5.5. ADVANCED EXAMPLES 177

5.5 Advanced examples

Shell programming can be quite flexible. Consider self extracting archives (common
in the Windows environment). This can easily be implemented using shell scripts.
The tar archive for example leads to the idea of a shar or shell archive. Consider
the shell script shar.sh

#!/bin/sh

tar xvfz << "EOF"

The redirection << "EOF" is for the so called “HERE” document, i.e. the file used
for redirection follows this line and ends when EOF appears at the beginning of a
line on its own. We could use any word we want to end the redirection. The double
quotes around EOF indicate to the shell that lines should not be interpreted (shell
variables should not be expanded) Now the following commands construct a self
extracting archive.

> tar cfz newar.tar.gz some_directory

> cat shar.sh newar.tgz > newar.shar

> echo "EOF" >> newar.shar

> chmod +x newar.shar

To extract the shell archive we simply use the command

> ./newar.shar

which uses tar to extract the archive. Thus the shell script and the archive are
contained in the same file.

178 CHAPTER 5. SHELL PROGRAMMING

We describe a way to use ftp to do a parallel download, i.e. given n the number
of ftp processes to use we download a file in n pieces of equal size using n ftp

processes running simultaneously.

We use the reget command of ftp. Suppose we know the size (use the size

command in ftp). We divide the file into n chunks of equal size. For each chunk we

> dd if=/dev/zero of=filename.n count=n bs=chunksize

We start ftp and use the command

> reget filename filename.n

For each of the n files (at the same time). When each ftp has downloaded at least
chunksize bytes we stop the ftp session. Then we execute for i = 0, i = 1, ...,
i = n− 1

> dd if=filename.i bs=chunksize count=1 skip=i >> filename

to obtain the desired file filename. The following script automates the process.

#!/bin/sh

#Assume $1=n processes $2=host $3=user $4=password $5=filename

n="$1"

host="$2"

ftpuser="$3"

ftppass="$4"

filename="$5"

file=$(basename "$filename")

#obtain the filesize

name=$(\

{

echo user "$ftpuser" \’"$ftppass"\’

echo bin

echo size "$filename"

echo quit

} | ftp -n "\$host" | \

{

while ["$name" != "$filename"]

do

read name filesize

5.5. ADVANCED EXAMPLES 179

echo -n $name $filesize

done

})

set --

set $name

filesize=$2

chunksize=$(($n-1))

chunksize=$(($filesize/$chunksize))

if ["$chunksize" -eq 0]

then

chunksize=$filesize

n=1

fi

i=0

set --

#start the ftp processes

while [$i -lt $n]

do

if [! -e \$\{file\}.\$i]

then

dd if=/dev/zero of=${file}.$i bs=$chunksize count=$i \

> /dev/null 2> /dev/null

fi

rm -f $file 2> /dev/null

{

echo user "$ftpuser" \’"$ftppass"\’

echo bin

echo reget $filename ${file}.$i

echo quit

} | ftp -nv \$host > /dev/null &

a list of process ids for the ftp processes

set $* $!

i=$(($i+1))

done

i=0

for j in $*

do

csize=0

k=$(($i+1))

k=$(($k*$chunksize))

180 CHAPTER 5. SHELL PROGRAMMING

while ["$csize" -le "$k"] \&\& ["$csize" -lt $filesize]

do

set -- $(ls -l ${file}.$i)

csize=$5

printf "$csize / $filesize of $file \r"

sleep 1

done

kill $j > /dev/null 2> /dev/null

dd if=${file}.$i bs=$chunksize skip=$i count=1 >> $file 2> /dev/null

rmfiles="$rmfiles ${file}.$i"

i=$(($i+1))

done

echo

#only do this at the end so that an interrupted

download can continue

rm $rmfiles

5.5. ADVANCED EXAMPLES 181

We give a shell script which, given directory names as arguments, displays a tree
of the directory structure (similar to the DOS tree command). It is an option to
include normal files in the tree.

#!/bin/sh

topmost=YES

normalfiles=NO

dirlist()

{

local tabbing="$1"

local oldtopmost="$topmost"

shift

for i in "$@"

do

if [-e $i]

then

if [-d $i] || ["$normalfiles" = YES]

then

if ["$topmost" = YES]

then printf "${tabbing\}\-\-%s\\n" $i

else printf "${tabbing\}\-\-%s\\n" $(basename $i)

fi

fi

fi

topmost=NO

if [-d $i]

then dirlist "$tabbing |" ${i}/*

fi

done

topmost="$oldtopmost"

}

if [$# -gt 0] && ["$1" = ’-n’]

then

normalfiles=YES

shift

fi

if [$# -gt 0]

then dirlist ’’ "$@"

else dirlist ’’ .

fi

182 CHAPTER 5. SHELL PROGRAMMING

Chapter 6

Perl

6.1 Introduction

Perl is a Pratical Extraction and Report Language freely available for Unix, Linux,
MVS, VMS, MS/DOS, Macintosh, OS/2, Amiga, and other operating systems. Perl
has powerful text-manipulation functions, i.e. string manipulations. Perl has en-
joyed recent popularity for programming World Wide Web electronic forms and
generally as glue and gateway between systems, databases and users. In Perl we
can do all the fundamental programming constructs such as variables, arrays, loops,
subroutines and input and output. We can program in Perl for data manipulation,
file maintenance, packaging or interfacing system facilities, and for Common Gate-
way Interface Web applications (CGI programming).

For example, if we want to change the same text in many files we can use Perl.
Instead of editing each possible file or constructing some cryptic find, awk, or sed
comands from shell programming, we could simple give the command

perl -e ’s/gopher/World Wide Web/gi’ -p -i.bak *.html

This command, issued at the Linux prompt, executes the short Perl program speci-
fied in single quotes. This program consists of one perl operation; it substitutes for
the original word gopher the string World Wide Web. This is done globally and ig-
noring case, indicated by /gi. The remainder of the Linux command indicates that
the perl program should run for each file ending in .html in the current directory. If
any file, for example myfile.html needs changing, a backup of the original is made
as file myfile.html.bak.

183

184 CHAPTER 6. PERL

6.2 My First Perl Program

We can run Perl from the command line. For example

> perl <Enter>

$a = 5;

$b = 4;

$c = $a + $b;

print($c);

Under Linux we press Ctrl-d to run the program. Under Windows we press Ctrl-z
to run the program.

We can also write a program, for example myfirst.pl.

myfirst.pl

$a = 5;

$b = 4;

$c = $a + $b;

print($c);

To run the file myfirst.pl we enter at the command line

perl myfirst.pl

To use Perl on a Linux and Unix system we first have to know where Perl is in-
stalled. Often it is installed in /usr/bin/perl or /usr/local/bin/perl. Thus at
the beginning of the program we add the line

#!/usr/bin/perl -w

for the one Perl is localized. Under Windows we put the Perl binary in our path.
For example we include

set path=C:\perl5\bin

in the autoexec.bat file.

After we have entered and saved the program we must make the file executable by
using the command

chmod u+x filename

at the Linux prompt.

6.3. DATA TYPES 185

6.3 Data Types

Perl has three data types, namely scalars, arrays (also called lists) and associative
arrays (also called hashes). Scalars can be numeric or characters or strings as deter-
mined by context. Scalars start with $. Arrays of scalars are sequentially arranged
scalars. Arrays start with a @. Associative arrays (also called hashes) contains keys
and associated values. Associative arrays start with an %.

perl1.pl

scalars

$a = 7;

$b = 1.23;

$c = ’A’;

$d = "willi";

$e = false;

print($a);

print("\n"); # newline

print($b);

print("\n");

print($c);

print("\n");

print($d);

print("\n");

print("$e\n");

indexed arrays

@arr1 = (3, 4, 5, 2, -1, ’a’, 1.23, "egoli");

print(@arr1);

print("\n");

print($arr1[2]); # accessing element no 2 in array => 5

print("\n");

associative arrays

%id_numbers = ("Willi", 2, "Carl", 14, "Otto", 25);

print($id_numbers{"Otto"}); # returns 25

print("\n");

print($id_numbers{"Willi"}); # returns 2

The keys are Willi, Carl, Otto and the associated values are 2, 14, 25.

Perl also allows to use of hex numbers, for example $x = 0xffa3.

186 CHAPTER 6. PERL

The most commonly used global scalar variable is the $_. For example

global.pl

$_ = 4;

$a = 7;

$b = $_ + $a;

print("b = " + $b); # => 11

print("\n");

$_ = "willi";

print($_); # => willi

in the following code block

we replace the substring the by the string xxx

$_ = " the cat is in the house";

$search = "the";

s/$search/xxx/g; # acts on $_

print("$_\n"); # => xxx cat is in xxx house

6.4. ARITHMETIC OPERATION 187

6.4 Arithmetic Operation

The arithmetic operations are

+, -, *, /, %, ++, --, **

Division is floating point division.

perl2.pl

$a = 4;

$b = 13;

$c = $a + $b;

print("The sum is: $c\n");

$d = $a - $b;

print("The difference is: $d\n");

$e = $a*$b;

print("The product is: $e\n");

$f = $b/$a;

print("The division yields: $f\n"); # returns 3.25

$g = $b%$a; # remainder

print("The remainder is: $g\n"); # returns 1

$a++; # post-increment

++$a; # pre-increment;

print("$a\n"); # returns 6

$b--; # post-decrement

--$b; # pre-decrement

print("$b\n"); # returns 11

exponentiation operator is **

$x = 2.5;

$y = 3.6;

$z = $x ** $y;

print("z = $z\n");

188 CHAPTER 6. PERL

6.5 Standard Input

The Perl program is referencing the file handle STDIN which represents the standard
input file. The < and > on either side of STDIN tell the Perl interpreter to read a
line of input from the standard input file.

The library function chop gets rid of the closing newline character ’\n’ that is part
of the input line we entered.

perl3.pl

print("Enter the distance in kilometers: ");

$dist = <STDIN>;

chop($dist);

$miles = $dist * 0.6214;

print($dist, " kilometers = ", $miles, " miles\n");

print("Enter the distance in miles: ");

$dist = <STDIN>;

chop($dist);

$kilometers = $dist * 1.609;

print($dist, " miles = ", $kilometers, " kilometers\n");

6.6. BASIC STRING OPERATIONS 189

6.6 Basic String Operations

To concatenate two strings we can use the . operator. To compare two strings we
use the cmp operator. The operator cmp is case-sensitive. If the strings are identical
the function cmp returns 0.

$a = "Egoli-";

$b = "Gauteng";

print "ab"; # returns Egoli-Gauteng

print "\n";

concatenate $c and $d

the concatenate operators is the .

$c = "alpha-";

$d = "3";

$e = $c . $d;

print $e; # returns alpha-3

print "\n";

interpolation

$str1 = "apples";

$str2 = "pears";

print "$str1 and $str2"; # returns apples and pears

print "\n";

comparing strings with cmp

$x = "egoli";

$y = "gauteng";

$z = $x cmp $y;

print($z);

print("\n");

$name1 = "willi";

$name2 = "willi";

$result = $name1 cmp $name2;

print($result);

print("\n");

$u = "X";

$v = "x";

$w = $u cmp $v;

print("w = ");

print($w);

190 CHAPTER 6. PERL

6.7 Conditions

The comparison operators in Perl are

Operation Numeric Version String Version

less than < lt

less than or equal to <= le

greater than > gt

greater than or equal to >= ge

equal to == eq

not equal to != ne

compare <=> cmp

The if statement is the simplest conditional statement used in Perl. It executes
when a specified condition is true. The statement if-else chooses between two
alternatives. The statement if-elsif-else chooses among more than two alterna-
tives. The statements while and until repeat a group of statements of specified
number of times. Perl also has other conditional statements we discuss later.

testing.pl

$a = 1;

$b = 7;

if($a == $b)

{

print "numbers are equal\n";

}

else

{

print "numbers are not equal\n";

}

#

$c = 7.3;

$d = 7.3;

if($c == $d)

{

print "numbers are equal\n";

}

else

{

print "numbers are not equal\n";

}

#

6.7. CONDITIONS 191

$char1 = ’a’;

$char2 = ’A’;

if($char1 eq $char2)

{

print "characters are equal"

}

else

{

print "characters are not equal";

}

print "\n";

#

$string1 = "willi";

$string2 = "willI";

if($string1 ne $string2)

{

print "string1 is not the same as string2\n";

}

else

{

print "strings 1 and string2 are the same\n";

}

192 CHAPTER 6. PERL

6.8 Logical Operators

The logical operators are

&& logical AND

|| logical OR

xor logical XOR

! logical NOT

xor is the logical xor operator: true if either a or b is nonzero, but not both.

logical.pl

$x = 8;

if(($x > 0) && (($x%2) == 0))

{

print "integer number is positive and even";

}

else

{

print "number is either not positive or not even";

}

print "\n";

$y = 0;

if(!($y))

{

print "number is zero";

}

else

{

print "number is nonzero";

}

print("\n");

$u = 6; $v = 5;

if(($u > 0) xor ($v > 0))

{

print("abba");

}

else

{

print("baab");

}

what happens if you change to:

$v = -5; ?

6.9. LOOPS 193

6.9 Loops

Perl provides a for loop, a while loop, a until loop, and a foreach loop. The
next program shows how the for loop is used.

forloop.pl

#

$sum = 0;

for($i=0; $i<10; ++$i)

{

$sum = $sum + $i;

}

print "$sum";

print "\n";

$product = 1;

for($i=1; $i<12; ++$i)

{

$product *= $i;

}

print "$product";

print "\n";

The following program shows how the standard input can be used within a for loop.
The program reads four input lines and writes three of them to the screen.

forloop1.pl

#

for($line = <STDIN>, $count = 1; $count <= 3;

$line = <STDIN>, $count++)

{

print($line);

}

194 CHAPTER 6. PERL

The next program shows the use of the while loop.

while.pl

#

$x ne $y Is $x string unequal to $y ?

#

print "Password? ";

$a = <STDIN>;

chop $a; # remove the newline at end

while($a ne "willi")

{

print "sorry. try again\n";

print "Password? ";

$a = <STDIN>;

chop $a;

}

print "you did it";

print("\n");

6.9. LOOPS 195

The until statement is similar to the while statement, but it works in a different
way. The while statement loops while its conditional expression is true. The until
statement loops until its conditional expression is true. This means it loops as long
as its conditional expression is false.

until.pl

print("What is 27 plus 26?\n");

$correct_answer = 53;

$input_answer = <STDIN>;

chop($input_answer);

until($input_answer == $correct_answer)

{

print("wrong! keep trying!\n");

$input_answer = <STDIN>;

chop($input_answer);

}

print("You go it!\n");

196 CHAPTER 6. PERL

In the following example the foreach statement assigns a word from @worldlist

to the local variable $word. The first time the loop is executed, the value stored in
$word is the string Good. The second time the loop is executed, the value stored in
$word is Morning. The loop defined by the foreach statement terminates after all of
the words in the list have been assigned to $word. The local variable $word is only
defined for the duration of the foreach statement.

foreach.pl

#

@wordlist = ("Good", "Morning", "Egoli");

foreach $word (@wordlist)

{

print("$word\n");

}

@numbers = ("3", "7", "3", "12", "15", "3", "3");

$count = 0;

foreach $x (@numbers)

{

if($x == "3")

{

++$count;

}

}

print $count; # => 4

print "\n";

6.10. GOTO STATEMENT 197

6.10 goto Statement

Like C and C++ Perl has a goto statement. In the following program L1 and L2

are labels.

goto.pl

print("What is 20 + 36?\n");

$correct_answer = 56;

$input_answer = <STDIN>;

chop($input_answer);

$count = 0;

until($input_answer == $correct_answer)

{

print("wrong! keep trying!\n");

$input_answer = <STDIN>;

chop($input_answer);

if($count == 5)

{

goto L1;

}

$count++;

}

print("You got it!\n");

goto L2;

L1: print("Let’s give up\n");

L2:

print("end of session");

198 CHAPTER 6. PERL

6.11 Mathematical Functions

Perl has a large number of built-in mathematical functions. Perl includes all stan-
dard mathematical functions For example

math.pl

$x = 3.14159;

$y = sin($x);

print("y = $y\n");

$z = cos($y);

print("z = $z\n");

atan2 function calculates and returns

the argument of one value divided by another,

in the range -pi to pi

$u = atan2(1.0,4.0);

print("u = $u\n");

$v = sqrt(6.5);

print("v = $v\n");

$w = exp($v);

print("w = $w\n");

$r = log(4.0); # log base e

print("r = $r\n");

$s = abs(-3.5);

print("s = $s\n");

6.12. BITWISE OPERATIONS 199

6.12 Bitwise Operations

Perl allows the bitwise operation AND &, OR | (inclusive OR), XOR ^ (exclusive
OR), and the NOT operator (one’s complement) ~. Any integer can be written in
binary representation. For example

9 = 1× 23 + 0× 22 + 0× 21 + 1× 20

Thus the bitstring is 1001. If we assume we store the bitstring in 32 bits we have

00000000 00000000 00000000 00001001

The one’s complement of this bitstring is

11111111 11111111 11111111 11110110

The bitwise operations are

& is the bitwise AND

| is the bitwise inclusive OR

^ is the bitwise exclusive OR

~ is the NOT operator (one’s complement)

bitwise.pl

$a = 9;

$b = 7;

$c = $a & $b;

print(" $c\n"); # => 1

$d = $a | $b;

print(" $d\n"); # => 15

$e = $a ^ $b;

print(" $e\n"); # => 14

$f = ~$a;

print(" $f\n"); # => 4294967286

two complement

$z = -45;

$z = ~$z;

$z++;

print(" $z\n");

200 CHAPTER 6. PERL

6.13 List Operations

The next four programs show how to use list operations. The operator [] is used
to access the elements in the list. The first element in the list has the index 0. Thus
in the following list

@myarray = (7, "Egoli", 1.23, "\"Having fun?\"", 9.23e-10);

we have

myarray[0] = 7; myarray[1] = "Egoli";

and so on. In the first program we count the number of elements in the list.

mylist.pl

#

@myarray = (7, "Egoli", 1.23, "\"Having fun?\"", 9.23e-10);

$count = 0;

while($count <= 5)

{

print("element $count is $myarray[$count]\n");

$count++;

}

6.13. LIST OPERATIONS 201

array operations

array.pl

#

@fruit = ("apples ", "pears ", "banana ");

@cities = ("Egoli ", "Cape Town ", "Durban ", "Pretoria ");

@numbers = ("4", "7", "9", "12", "15");

print @fruit;

print "\n";

print $cities[2]; # => Durban

print "\n";

if($numbers[2] != $numbers[4])

{

$sum = $numbers[2] + $numbers[4]; # => 24

print($sum);

print("\n");

}

else

{

$difference = $numbers[2] - $numbers[4];

print $difference;

print "\n";

}

($x, $y, $z) = @cities;

print $x; # => Egoli

print "\n";

print $z; # => Durban

print "\n";

202 CHAPTER 6. PERL

In the following program we show how the push and pop operators can be used.

The operator push adds an element to the end of an array.

The operator pop removes an element from the right of an array and assign to
variable, i.e. to remove the last item from a list and return it we use the pop

function.

@fruit = ("apples ", "pears ", "banana ");

@cities = ("Egoli ", "Cape Town ", "Durban ", "Pretoria ");

@morecities = ("George", "Bloemfontain");

push(@cities, "Grahamstown");

print @cities;

print "\n";

push(@fruit, "strawberries ", "peach ", "plums ");

print @fruit;

print "\n";

push(@cities, @morecities);

$mycity = pop(@cities);

print $mycity;

print "\n";

The pop operator is used as follows.

@s = ("AAAA","BBB");

$tmp = pop(@s);

print $tmp;

6.13. LIST OPERATIONS 203

The next program show the use of the split and join function.

To split a character string into separate items we call the function split. The split
function puts the string into an array.

To create a single string from a list we use the function join.

mysplit.pl

splitting a string into a list

#

$string = "otto, carl, ludwig, berlin:postdam";

@myarray = split(/,/, $string);

print "@myarray\n"; # => otto carl ludwig berlin:postdam

print("\n");

print $myarray[2]; # => ludwig

print("\n");

@names = ("Egoli-", "Gauteng ", "Johannesburg");

$concatstring = join("", @names);

print("$concatstring");

204 CHAPTER 6. PERL

6.14 Associative Arrays Operations

Perl defines associate arrays which enable us to access array variables using any
scalar value we like. Associative arrays are also called hashes.

assoc.pl

%ages = ("Ludwig Otto", 40, "Franz Karl", 32,

"Jane Coppersmith", 21, "Dan Smithlone", 67);

print $ages{"Ludwig Otto"}; # => 40

print("\n");

print $ages{"Jane Coppersmith"}; # => 21

print("\n");

adding an element

$ages{"Henry VIII"} = 1654; # !! curly brackets

print %ages;

print("\n");

deleting an element

delete($ages{"Franz Karl"});

print %ages;

print("\n");

@myarray = keys(%ages);

print @myarray; # => only the names

print("\n");

@valuearray = values(%ages);

print("@valuearray"); # => only the values

print("\n\n");

while(($name, $value) = each(%ages))

{

print($name);

print(" ");

print($value);

print("\n");

}

6.15. PATTERN MATCHING 205

6.15 Pattern Matching

Matching involves use of patterns called regular expressions. The

=~

operator performs pattern matching and substitution. This operator binds the pat-
tern to the string for testing whether a pattern (substring) is matched. The following
shows how this is applied.

matching.pl

print("Ask me a question politely:\n");

$question = <STDIN>;

if($question =~ /please/)

{

print("Thank you for being polite!");

}

else

{

print("That was not very polite!\n");

}

206 CHAPTER 6. PERL

6.16 Regular Expressions

Regular expressions are patterns used to match character combinations in strings.
For example, to search for all occurences of the in a string, we create a pattern
consisting of the to search for its match in a string. Regular expressions also exist
in JavaScript. The syntax for the substitution operator is

s/pattern/replacement/

options for the substitution operator

g change all occurence of the pattern

i ignore case in pattern

e evaluate replacement string as expression

m treat string to be matched as multiple lines

o evaluate only once

s treat string to be matched as single line

x ignore white space in pattern

In our first program we replace the substring 123 by 4567.

replace1.pl

$string = "abc123def";

$string =~ s/123/4567/;

print("$string\n"); # => abc4567def

In our second example we use the global variable $_.

regexp1.pl

$_ = "Egoli Gauteng";

s/([A-Z])/+\1+/g; # acts on global scalar variable $_

print("$_"); # => +E+goli +G+auteng

print("\n");

s/([a-z])/\1+/g;

print("$_"); # => +E+g+o+l+i+ +G+a+u+t+e+n+g+

print("\n");

6.16. REGULAR EXPRESSIONS 207

The next program is a white-space clean up program.

replace2.pl

@input = <STDIN>;

$count = 0;

while($input[$count] ne "")

{

$input[$count] =~ s/^[\t]+//;

$input[$count] =~ s/[\t]+\n$/\n/;

$input[$count] =~ s/[\t]+/ /g;

$count++;

}

print("Formatted text:\n");

print(@input);

the line $input[$count] =~ s/^[\t]+//;

checks whether there are any spaces or tabs at the

beginning of the line. If any exist, they are removed.

#

the line $input[$count] =~ s/[\t]+\n$/\n/;

checks whether there are any spaces or tabs at the end

of the line (before the trailing newline character).

If any exist, they are removed.

#

the line $input[$count] =~ s/[\t]+/ /g uses a

global substitution to remove extra spaces and

tabs between words.

Here are some special regular epression characters and their meaning

. any single character except a newline

^ the beginning of the line or string

$ the end of the line or string

* zero or more of the last character

+ one or more of the last character

? zero or one of the last character

208 CHAPTER 6. PERL

The syntax for the trace function (translation) is:

tr/sourcelist/replacelist/

where sourcelist is the list of characters to replace, and replacelist is the list
of characters to replaced it with.

In the second part of the following program the search pattern and the replacement
pattern are the same. Every character is being translated, the number of characters
translated is equivalent to the length of the sentence. This length is assigned to the
scalar variable length.

trace.pl

$string = " the moon is rising ";

$string =~ tr/oi/uo/;

print("$string"); # the muun os rosong

$word = "egoli-Gauteng";

$word =~ tr/a-z/A-Z/;

print("$word\n"); # EGOLI-GAUTENG

$sentence = "here is a sentence";

$_ = $sentence;

$length = tr/a-zA-Z /a-zA-Z /;

print("the sentence is $length characters long\n");

6.17. MAP OPERATOR 209

6.17 Map Operator

The map function enables us to use each of the elements of a list, in turn, as an
operand in expression. The syntax is

resultlist = map(expr,list);

The following program gives two examples. In the first example we add 3 to all
elements in the list. In the second example we concatenate xxx to all elements in
the list.

mymap.pl

@numberlist = (100, 239, 400, -1, "234");

@result = map($_+3, @numberlist);

print("@result\n"); # 103 242 403 2 237

print("$result[2]\n"); # 403

@charlist = ("aba", "cel");

@charres = map($_ . xxx, @charlist);

print("@charres\n"); # abaxxx celxxx

We can also chain the map operator together. The following example shows this.
First all elements in the array are multiplied by 3 and then we add 2 to each element.

mapchain.pl

@numbers = (1, 2, 3);

@result = map($_+2,map($_*3,@numbers));

print @result; # 5811

210 CHAPTER 6. PERL

6.18 Two-Dimensional Arrays

The operator -> is used to de-reference the reference that has been created to point
to the array of arrays.

twodim.pl

$myarray = [[4, 5], [6, -9]];

print($myarray -> [1][1]); # => -9

print("\n");

$a = $myarray -> [0][1];

print($a); # => 5

print("\n");

$stringarray = [["yuli", "uilopi"], ["hulopi", "fulipok"]];

$s1 = $stringarray -> [0][1];

$s2 = $stringarray -> [1][0];

$s3 = $s1 . $s2;

print("$s3\n"); # => uilopihulopi

addition of two 2 x 2 matrices

$a1 = [[2,3],[4,-10]];

$a2 = [[6,-9],[2,19]];

$a3 = [[0,0],[0,0]];

for($i=0; $i < 2; $i++)

{

for($j=0; $j < 2; $j++)

{

$a3 -> [$i][$j] = $a1 -> [$i][$j] + $a2 -> [$i][$j];

}

}

display the result of the matrix addition

for($i=0; $i < 2; $i++)

{

for($j=0; $j < 2; $j++)

{

print("a3[", $i, "][", $j, "]", " = ", ($a3 -> [$i][$j]));

print("\n");

}

}

6.19. SUBROUTINES 211

6.19 Subroutines

In Perl a subroutine is a separate body of code designed to perform a particular
task. The keyword sub tells the interpreter that this is a subroutine definition.
Subroutines are referenced with an initial &.

The function srand() sets a seed for the random number generator.

subrand.pl

$res1 = &myrand;

print("res1 is: $res1\n");

$res2 = &myrand;

print("res2 is: $res2\n");

$res3 = &myrand;

print("res3 is: $res3\n");

srand();

sub myrand

{

rand(10.0);

}

The function add adds two numbers. The variable $c can be seen globally.

add.pl

$a = 7; $b = 5; $z = 0;

sub add

{

$c = $a + $b;

}

$z = &add;

print("c = $c\n"); # => 12

print("z = $z\n"); # => 12

212 CHAPTER 6. PERL

The subroutine inverse in the next example finds the inverse of a scalar variable.
We recall that $_ is the default scalar variable.

inverse.pl

sub inverse

{

-$_[0];

}

$r1 = &inverse(37);

print("r1 = $r1\n"); # => -37

$_[0] = 88;

$r2 = &inverse;

print("r2 = $r2\n"); # => -88

print("default scalar variable = ");

print $_[0]; # => 88

The subroutine maximum finds the largest of three numbers.

largest.pl

sub maximum

{

if(($_[0] > $_[1]) && ($_[0] > $_[2]))

{

$_[0];

}

else

{

if($_[1] > $_[2])

{

$_[1];

}

else

{

$_[2];

}

}

} # end sub maximum

$result = &maximum(2,9,7);

print("largest number = $result\n");

6.19. SUBROUTINES 213

In the following program we calculate the area of a circle.

subrout1.pl

sub calc

{

$pi = 3.14159;

$r = 12.0;

$calc = $pi*($r*$r);

}

$area = calc;

print $area;

print("\n");

The subroutine even_odd finds out whether a given integer number is even or odd.

subrout2.pl

sub even_odd

{

my $num = $_[0];

print $num;

print("=");

return "even" if(($num % 2) eq 0);

return "odd" if(($num % 2) eq 1);

}

$st = even_odd(7);

print $st;

print("\n");

$st = even_odd(14);

print $st;

print("\n");

214 CHAPTER 6. PERL

Using the @_ operator we can pass arrays to a subroutine. The following example
demonstrates this.

passarray1.pl

sub sum

{

my $sum = 0;

foreach $num(@_)

{

$sum += $num;

}

return $sum;

}

$total = sum(3.1,5.6,8.9,13.17);

print $total;

A slightly modified version is given in the next example.

passarray2.pl

@mylist = ("14", "24", "-45");

&addlist(@mylist);

sub addlist

{

my(@list) = @_;

$sum = 0;

foreach $item(@list)

{

$sum += $item;

}

print("The sum is: $sum\n");

}

@otherlist = (1.23, 4.5, 7.90, -34.6);

&addlist(@otherlist);

6.19. SUBROUTINES 215

The subroutine pass splits the list into a scalar (first item) and the rest which is
again a list.

passarray3.pl

sub pass

{

my ($name, @rest) = @_;

print $name;

print("\n");

print @rest;

print("\n");

}

pass("egoli", ’1’, ’2’, ’3’, "Johannesburg");

pass("begin", 3.4, 4.5, 6.7, "end");

The output is

egoli

123Johannesburg

begin

3.44.56.7end

216 CHAPTER 6. PERL

In the following program the subroutine getnumbers reads a line of input from the
standard input file and then removes the leading whitespace (including the trailing
newline) from the input line. We recall that \s stands for any whitespace. Then it
is splitted into numbers. This is the return value.

subsplit.pl

$sum = 0.0;

@numbers = &getnumbers;

foreach $numbers(@numbers)

{

$sum += $numbers;

}

print("The sum is: $sum\n");

sub getnumbers

{

$line = <STDIN>;

$line =~ s/^\s+|\s*\n$//g;

split(/\s+/,$line);

}

6.19. SUBROUTINES 217

If variables are only used inside a subroutine and not to be seen outside, we have
to make the variables local in scope. The my statement defines variables that exist
only inside a subroutine. The following two programs demonstrate this.

local1.pl

$value = 100; # global variable

sub return_value

{

my $value;

$value = 50;

return $value;

}

print return_value; # => 50

print $value; # => 100

local2.pl

$value = 100; # global variable

sub return_value

{

$value = 50;

return $value;

}

print return_value; # => 50

print $value; # => 50

218 CHAPTER 6. PERL

6.20 Recursion

Perl also allows recursion.

In our first example we find

n! := 1× 2× ...× n

using recursion.

Recur1.pl

sub fac

{

my $temp;

if($_[0] == 1)

{

return 1;

}

$temp = $_[0]*&fac($_[0]-1);

return $temp;

} # end subroutine fac

print("enter value = ");

$n = <STDIN>;

chop($n);

$f = &fac($n);

print("Factorial of $n is $f\n");

6.20. RECURSION 219

As a second example we consider the Fibonacci numbers which are defined by

fn+2 = fn+1 + fn, f0 = 0, f1 = 1

Recur2.pl

sub fib

{

my $temp;

if($_[0] == 0)

{

return 0;

}

if($_[0] == 1)

{

return 1;

}

$temp = &fib($_[0]-1) + &fib($_[0]-2);

return $temp;

} # end subroutine fib

print("enter value = ");

$n = <STDIN>;

chop($n);

$fibo = &fib($n);

print("Fibonacci number of $n is $fibo\n");

220 CHAPTER 6. PERL

In the following example we evaluate recursively a mathematical expression from
right-to-left with the operator as prefix. For example,

- 98 * 4 + 12 11

is in standard notation

98− 4 ∗ (12 + 11)

which evaluates to 6. For example

+ 100 / -5 + 15 -16

is

100 + (−5)/(15− 16)

which evaluates to 105. For our first example we get the list

("-", "98", "*", "4", "+", "12", "11")

which can be split into three parts: the first operator, -; the first operand, 98; and
a sublist (the rest of the list). The first three lines in the program put the input
from the keyboard

- 98 * 4 + 12 11

into the list given above. Then the subroutine rightcalc(0) starts with the first
element of the list.

recur3.pl

$inputline = <STDIN>;

@list = split(/\s+/,$inputline);

$result = &rightcalc(0);

print("The result is $result\n");

sub rightcalc

{

my ($index) = @_;

my ($result,$op1,$op2);

if($index+3 == @list)

{

$op2 = $list[$index+2];

}

else

6.20. RECURSION 221

{

$op2 = &rightcalc($index+2); # recursion

}

$op1 = $list[$index+1];

if($list[$index] eq "+")

{

$result = $op1 + $op2;

}

elsif($list[$index] eq "*")

{

$result = $op1 * $op2;

}

elsif($list[$index] eq "-")

{

$result = $op1 - $op2;

}

else

{

$result = $op1 / $op2;

}

}

A slightly simpler version with support for command line values is given below.
We use &postfix so that PERL will use @ as the parameters, i.e. we consume
parameters from the list @ . Thus &postfix refers to the sub postfix without
explicitly giving parameters, also &postfix works on @ directly (it does not get its
own copy).

#!/usr/bin/perl

#Assume all postfix expressions are valid.

sub postfix

{

#For prefix expression evaluation use

#my $node=shift;

my $node=pop;

my ($op1,$op2);

if("$node" eq "+")

{ $op2=&postfix; $op1=&postfix; return $op1+$op2; }

if("\$node" eq "-")

{ $op2=&postfix; $op1=&postfix; return $op1-$op2; }

if("\$node" eq "*")

{ $op2=&postfix; $op1=&postfix; return $op1*$op2; }

if("\$node" eq "/")

222 CHAPTER 6. PERL

{ $op2=&postfix; $op1=&postfix; return $op1/$op2; }

return $node;

}

if(@ARGV > 0)

{

foreach $i (@ARGV)

{ print postfix(split(’ ’,$i)); print "\n"; }

}

else

{

while($line=<STDIN>)

{

chop($line);

print postfix(split(’ ’,$line));

print "\n";

}

}

6.21. THE SYSTEM FUNCTION 223

6.21 The system Function

The syntax for the system function is system(list). This function is passed a list
as follows: The first element of the list contains the name of a program to execute,
and the other elements are arguments to be passed to the program. When system

is called, it starts a process that runs the program and waits until the process
terminates. When the process terminates, the error code is shifted left eight bits,
and the resulting value becomes system’s return value.

system0.pl

@mylist = ("echo","Hello Egoli");

system(@mylist);

@yourlist = ("date");

system(@yourlist);

We can use back quotes to invoke system commands. Then the value is printed as
a string.

system1.pl

using system function

Windows

system("date");

system("dir");

$t = ‘time‘;

print "t is now\n";

print $t;

system2.pl

using system function

Linux

system("printenv PWD");

system("date");

system("pwd");

system("cd ..");

system("pwd");

system("ps");

$t = ‘date‘;

print "t is now\n";

print $t;

224 CHAPTER 6. PERL

6.22 File Manipulations

The line

open(MYFILE,"file1.txt")

opens the file file1.txt in read mode, which means that the file is to be made
available for reading. The file file1.txt is assumed to be in the current working
directory. The file handle MYFILE is associated with the file1.txt.

If the call to open returns a nonzero value, the conditional expression

open(MYFILE,"file1.txt")

is assumed to be true, and the code inside the if statement is executed. The next
lines print the contents of file1.txt. The sample output shown here assumes that
file1.txt contains the following three lines:

Good morning Egoli.

How are you ?

Good night Egoli!

file1.p1

if(open(MYFILE,"file1.txt"))

{

$line = <MYFILE>;

while($line ne "")

{

print($line);

$line = <MYFILE>;

}

}

The open command allows different options

open(INFO,$file); open for input

open(INFO,">$file"); open for output

open(INFO,">>$file"); open for appending

open(INFO,"<$file"); also open for input

6.22. FILE MANIPULATIONS 225

file2.pl

#

terminating a program using the

die

function

unless(open(HANDLE, "file1.txt"))

{

die("cannot open input file file1.txt\n");

}

if the program gets so far, the file was

opened successfully

$line = <HANDLE>;

while($line ne "")

{

print($line);

$line = <HANDLE>;

}

226 CHAPTER 6. PERL

file3.pl

#

writing to a file

unless(open(INFILE,"file1.txt"))

{

die("cannot open input file file1.txt\n");

}

unless(open(OUTFILE,">file2.txt"))

{

die("cannot open output file file2.txt\n");

}

the > in >file2.txt indicates that the file

is opened in write mode.

$line = <INFILE>;

while($line ne "")

{

print OUTFILE ($line);

$line = <INFILE>;

}

the line

print OUTFILE ($line);

writes the contents of the scalar variable

$line

on the file specified by OUTFILE.

6.22. FILE MANIPULATIONS 227

file4.pl

closing a file

$file = "willi.dat";

open(INFO, $file);

@lines = <INFO>;

close(INFO);

print @lines;

print("\n");

file willi.dat contains

20 3 1960

228 CHAPTER 6. PERL

Let us assume that the file named FOO contains the text

This line equals: 3

This line equals: -4

This line equals: 6

At the command line run:

perl file5.pl FOO

The output is:

This line equals: 6

This line equals: -8

This line equals: 12

The result is stored in the file FOO. Thus we multiply every integer in a file by 2.
The pattern \d+ matches a sequence of one or more digits.

file5.pl

$count = 0;

while($ARGV[$count] ne "")

{

open(FILE, "$ARGV[$count]");

@file = <FILE>;

$linenum = 0;

while($file[$linenum] ne "")

{

$file[$linenum] =~ s/\d+/$& * 2/eg;

$linenum++;

}

close(FILE);

open(FILE, ">$ARGV[$count]");

print FILE (@file);

close(FILE);

$count++;

}

6.22. FILE MANIPULATIONS 229

In the following program we count how often the name Smith (case-sensitive) is in
the file smith.txt.

findSmith.pl

unless(open(INFILE,"smith.txt"))

{

die("cannot open smith.txt");

}

$line = <INFILE>;

$nbSmith = 0;

$single = 0;

while($line ne "")

{

print("$line ");

$single = &countName($line);

print("$single \n");

$nbSmith += $single;

$line = <INFILE>;

}

print("Number of Smith in file smith.txt = $nbSmith \n");

close(INFILE);

sub countName

{

$i = 0;

@narray = split(/ /,$_[0]);

foreach $x (@narray)

{

if($x =~ /Smith/)

{

$i++;

}

}

return $i;

}

230 CHAPTER 6. PERL

In this program we made extensive use of man perlop perlfunc perlipc. The
program draws a tree structure of a given directory.

#!/usr/bin/perl

$normalfiles=NO;

sub dirlist

{

my ($tabbing,$curdir,@dir)=@_;

foreach $i (@dir)

{

if (-e "$curdir$i")

{

if ((-d "$curdir$i") || ("$normalfiles" eq YES))

{

print "$tabbing\-\-$i\n";

}

}

if (-d "$curdir$i")

{

opendir(DIRHANDLE,"$curdir$i")

or print("Failed to open directory $curdir$i.\n");

my @newdir=readdir(DIRHANDLE);

shift @newdir;

shift @newdir;

closedir(DIRHANDLE);

dirlist("$tabbing |","$curdir$i/",@newdir);

}

}

}

if ((@ARGV > 0) \&\& ("\$ARGV[0]" eq "-n"))

{

$normalfiles=YES;

shift @ARGV;

}

if (@ARGV > 0)

{ dirlist("","",@ARGV); }

else

{ dirlist("","","./"); }

}

6.23. NETWORKING 231

6.23 Networking

net1.pl

networking

the gethostbyaddr function

searches the hostname for a

given network address.

print("enter an Internet address:\n");

$machine = <STDIN>;

these three lines convert the address into

a four-byte packed integer

$machine =~ s/^\s+|\s+$//g;

@bytes = split(/\./, $machine);

$packaddr = pack("C4", @bytes);

if(!(($name, $altnames, $addrtype, $len, @addrlist)

= gethostbyaddr($packaddr,2)))

{

die ("Address $machine not found.\n");

}

print("principal name: $name\n");

if($altnames ne "")

{

print("alternative names:\n");

@altlist = split(/\s+/, $altnames);

for($i=0; $i < @altlist; $i++)

{

print("\t$altlist[$i]\n");

}

}

if we enter:

152.106.50.60

we get

principal name: whs.rau.ac.za

232 CHAPTER 6. PERL

net2.pl

networking

the gethostbyname function

searches for an entry that matches

a specified machine name or Internet site name.

print("enter a machine name or Internet sie name:\n");

$machine = <STDIN>;

machine name prepared

$machine =~ s/^\s+|\s+$//g;

print $machine;

print("\n");

if(!(($name, $altnames, $addrtype, $len, @addrlist)

= gethostbyname ($machine)))

{

die ("Machine name $machine not found.\n");

}

print("equivalent addresses:\n");

for($i=0; $i < @addrlist; $i++)

{

@addrbytes = unpack("C4", $addrlist[$i]);

$realaddr = join (".", @addrbytes);

print("\t$realaddr\n");

}

if we enter:

whs.rau.ac.za

we get

152.106.50.60

6.23. NETWORKING 233

In the following program we create a minimal telnet client.

#!/usr/bin/perl

use IO::Handle;

use Socket;

$server=shift||"localhost";

$port=shift||"telnet";

$proto=getprotobyname("tcp")||die("getprotobyname failed.\n");

$port=getservbyname($port,"tcp")||die("getservbyname failed.\n");

$addr=gethostbyname($server)||die("gethostbyname failed.\n");

$addr=sockaddr_in($port,$addr)||die("sockaddr_in failed.\n");

socket(SOCKET,PF_INET,SOCK_STREAM,$proto) ||

die("Failed to open socket.\n");

connect(SOCKET,$addr) ||

die("Failed to connect.\n");

print "Connection established.\n";

STDIN->autoflush(1);

SOCKET->autoflush(1);

if($childpid=fork())

{

while($toprint=<SOCKET>) { print STDOUT "$toprint"; }

kill(TERM,$childpid);

}

else

{ while(($tosend=<STDIN>) && (print SOCKET "$tosend")) {} }

close(SOCKET);

234

Bibliography

[1] Horton Ivor, Beginning Java 2, WROX Press, Birmingham, UK, 1999

[2] Jaworski Jamie, Java 1.2 Unleashed, SAMS NET, Macmillan Computer Pub-
lishing, USA, 1998

[3] Johnson Marc, JavaScript Manual of Style, Macmillan Computer Publishing,
USA, 1996

[4] McComb Gordon, JavaScript Sourcebook, Wiley Computer Publishing, New
York, 1996

[5] Tan Kiat Shi, Willi-Hans Steeb and Yorick Hardy, SymbolicC++: An Intro-
duction to Computer Algebra Using Object-Oriented Programming, 2nd edition
Springer-Verlag, London, 2000

235

Index

arch, 69
chkconfig, 55
chmod, 139
chown, 69
clear, 7
cmp, 189
date, 1
df, 60
du, 60
echo, 2
file, 45
find, 46
finger, 48
grep, 49
id, 51
kdb_mode, 69
kill, 52
less, 44
local, 162
logname, 53
man, 7
map, 209
more, 44
mount, 76
pop, 202
printenv, 6
ps, 3
push, 202
pwd, 3
read, 141
sleep, 53
split, 54
sub, 211
tail, 70
top, 70
touch, 70
uname, 70

whereis, 70
who, 2

Filter, 40

Hard links, 28

One’s complement, 199

Perl, 101
Pipe, 39

Root, 11

Symbolic links, 28

236

