
Programming in Java

by
Willi-Hans Steeb
International School for Scientific Computing
email address of the author:

steebwilli@gmail.com

and
Yorick Hardy
International School for Scientific Computing
email address of the author:

yorickhardy@gmail.com

Web page:

http://issc.uj.ac.za

Contents

1 Introduction 1

1.1 Why Java ? . 1

1.2 Aim of Object-Oriented Programming 2

1.2.1 Information Hiding . 3

1.2.2 Inheritance . 3

1.2.3 Polymorphism . 4

1.2.4 Built-In Classes . 4

1.2.5 Java Compared To C++ . 5

1.3 Identifiers and Keywords in Java . 6

2 Java Basics 7

2.1 My First Java Program . 7

2.2 My First Applet . 9

2.3 Basic Data Types . 11

2.4 Arithmetic Operations . 16

2.5 Unicode, ASCII Table, and Types Conversion 18

2.6 Precedence Table . 20

2.7 Arrays . 22

2.8 Control Statements . 29

2.8.1 Introduction . 29

2.8.2 The if Statement . 30

2.8.3 The for Loop, while Loop, do-while Loop 31

2.8.4 The switch Statement . 35

2.9 Logical AND, Logical OR and Logical NOT 38

2.10 Bitwise Operations . 40

2.11 Shift Operations . 42

2.12 Pass by Value, Pass by Reference . 43

2.13 Recursion . 48

2.14 Jump Statements . 51

2.15 Reading from Keyboard . 54

2.16 Command Line Arguments . 56

2.17 System Class . 57

2.18 Assertions . 61

2.19 Applets and HTML Parameters . 62
i

3 String Manipulations 64
3.1 String Class . 64
3.2 StringTokenizer Class . 69
3.3 StringBuffer Class . 72

4 Classes and Objects 73
4.1 Introduction . 73
4.2 Wrapper Classes . 75
4.3 Vector Class . 78
4.4 Math Class . 80
4.5 BitSet Class . 82
4.6 BigInteger and BigDecimal Class . 83
4.7 Object Class . 85
4.8 The this Object . 88
4.9 The Class Class . 91
4.10 The Calendar Class . 93
4.11 Destroying Objects . 97
4.12 Regular Expression . 98
4.13 The Bytecode Format . 103

5 Inheritance and Abstract Classes 114
5.1 Introduction . 114
5.2 Abstract Class . 115
5.3 Inheritance . 117
5.4 Composition . 120
5.5 Constructors . 123
5.6 Inner Classes . 129
5.7 Interfaces . 131

6 The GUI and its Components 132
6.1 Introduction . 132
6.2 Class Component and Class Container 135
6.3 ActionListener and ActionEvent . 139
6.4 Class Panel . 141
6.5 Mouse Listener and Mouse Event . 148
6.6 Class Graphics . 153
6.7 Graphics2D Class . 157
6.8 Color Class . 162
6.9 Class Image . 166
6.10 Class Toolkit . 170

7 Exception Handling 173
7.1 Introduction . 173
7.2 The Exception Class . 174
7.3 Examples . 175

ii

8 File Manipulations 179

8.1 Introduction . 179

8.2 Examples . 182

8.3 FileReader and FileWriter . 194

8.4 File Class . 197

8.5 Serialization . 203

8.6 GZIP and ZIP Compression . 211

8.7 JPEG Files . 216

8.8 Internationalization . 218

8.9 Locking Files for Shared Access . 222

8.10 Security API, Signature and DSA Algorithm 224

9 Threads 228

9.1 Introduction . 228

9.2 Thread Class . 230

9.3 Examples . 232

9.4 Priorities . 237

9.5 Synchronization and Locks . 240

9.6 Producer Consumer Problem . 245

9.7 Deadlock . 248

10 Animation 250

10.1 Introduction . 250

10.2 Image Class and Animation . 252

10.3 AudioClip Class . 261

11 Networking 266

11.1 Introduction . 266

11.2 Addresses . 269

11.3 Ports . 273

11.4 Examples . 275

11.5 URL Class . 279

11.6 Socket Class . 282

11.7 Client-Server Application . 284

11.8 Remote Method Invocation . 292

11.9 SocketChannel and ServerSocketChannel 301

12 Java 2 Collection Frame Work 306

12.1 Introduction . 306

12.2 Collection and Collections . 309

12.3 Examples . 311

12.4 Arrays Class . 313

12.5 Class TreeSet . 317

12.6 Class TreeMap . 321
iii

13 The Swing Components 323
13.1 Introduction . 323
13.2 Examples . 326
13.3 Adding Actions to Containers . 328
13.4 Button Game . 333
13.5 Editable Textfields . 336
13.6 Document and JTextPane Classes . 338
13.7 Model-View-Controller . 341
13.8 JTree Class . 345
13.9 Class JEditorPane . 350
13.10Printing in Java . 353

14 Java Beans 356
14.1 Introduction . 356
14.2 Example . 358
14.3 JavaBeans . 360

14.3.1 Creating a JavaBean: NetBeans 360
14.3.2 Adding a JavaBean JAR: NetBeans 361
14.3.3 Simple properties . 361
14.3.4 Simple properties . 361
14.3.5 Beans should be serializable 362
14.3.6 Creating a JAR file for JavaBeans 362
14.3.7 Introspection . 363
14.3.8 Bound properties . 364
14.3.9 Constrained properties . 366
14.3.10 Indexed properties . 369

15 Additions to JSE 1.5 and 1.6 374

16 Resources and Web Sites 383

Bibliography 385

Index 385

iv

Preface

Besides C++ Java is now the most widely available and used object-oriented pro-
gramming language. It is a very useful language that is successfully utilized by
many programmers in many application areas. It is a reasonably carefully thought-
out language where the design is based partly on acknowledged principles and partly
on solid experience and feedback from actual use. Java is a powerful but lean object-
oriented programming language. It makes it possible to program for the Internet by
creating applets, i.e. programs that can be embedded in a web page. For example,
an applet can be an animation with sound, an interactive game, or a ticker tape
with constantly updated stock prices. However Java is more than a programming
language for writing applets. It also can be used for writing standalone applications.
It seems it is becoming the standard language for both general-purpose and Internet
programming. Java is close to C++. It has taken many features of C++, but unfor-
tunately discarded some of them, for example templates and multiple inheritence.
To this lean core it has added garbage collection (automatic memory management),
multithreading (the capacity for one program to do more than one task at the time),
and security capabilities. Java is a platform consisting of three components: (1) the
Java programming language, (2) the Java library of classes and interfaces (Java has
a huge number of built-in classes and interfaces), and (3) the Java Virtual Machine.

One of the biggest advantages Java offers is that it is portable. An application
written in Java will run on all platforms. Any computer with a Java-based browser
can run the applications or applets written in the Java programming language.
The Java Virtual Machine (JVM) is what gives Java its cross-platform capabilities.
The Java file is not compiled into a machine language, which is different for each
operating system and computer architecture, Java code is compiled into byte-code
(platform independent).

The Java programming language is object-oriented, which makes program design
focus on what we are dealing with rather than on how we are going to do something.
Object-oriented languages use the paradigm of classes. A class is an abstract data
type (ADT). A class includes both data and the methods (functions) to operate on
that data. We can create an instance of class, also called an object, which will have
all the data members and functionality of its class. The class paradigm allows one
to encapsulate data so that specific data values or methods implementations cannot
be seen by those using the class. Encapsulation makes it possible to make changes
in code without breaking other programs that use that code. Java also includes
inheritance, this means the ability to derive new classes from existing classes. The
derived class, also called a subclass, inherits all the data and methods of the existing
class, referred to as the parent class. A subclass can add new data members to those
inherited from the parent class. With respect to methods the subclass can reuse the
inherited methods as is, change them, and/or add its own new method.

v

Java includes a huge number of built-in classes and interfaces. The programmer
can use already existing class as is, create subclasses to modify existing classes, or
implement interfaces to augment the capabilities of classes.

In chapter 2 we give the basic concepts in Java. The given programs are very helpful
for the beginners. They are also the building blocks for more complex applications.
The widely used String class and the classes StringTokenizer and StringBuffer

are introduced. Chapter 3 is devoted to classes and objects. Furthermore the
wrapper classes, the container class Vector, the class Math for doing mathematics
and the BigInteger and BigDecimal classes are introduced. The Object class is the
ancestor of all classes and discussed in detail in section 3.6. Finally the this object
is explained in detail. Chapter 4 deals with inheritance and abstract classes. The
graphical user interface (GUI) is discussed in chapter 5 and a number of examples
are provided. Chapter 6 introduces exception handling. File manipulations for
reading from file and writing to files are introduced in chapter 7. Java is able
to produce multi-threaded applications, which often form a part of applications
including animations. Threads are discussed in chapter 8 and application of threads
in animation are given in chapter 9. An introduction into networking together with
a number of programs is given in chapter 10. Chapters 11 and 12 deal with the
additions to Java for the version 1.2. Finally chapter 13 lists important Web sites
for Java, JavaScript and HTML.

The level of presentation is such that one can study the subject early on in ones
education in programming. There is a balance between practical programming and
the underlying language. The book is ideally suited for use in lectures on Java and
object-oriented programming. The beginner will also benefit from the book. The
reference list gives a collection of textbooks useful in the study of the computer
language Java. There are a number of good textbooks for Java available [1], [2].
For applications of Java in science we refer to W.-H. Steeb et al [6] and Steeb [5].
Comprehensive introductions into JavaScript are given by [3] and [4].

vi

Without doubt, this book can be extended. If you have comments or suggestions,
we would be pleased to have them. The email addresses of the author are:

whsteeb@uj.ac.za

steebwilli@gmail.com

The web site of the authors is

http://issc.uj.ac.za

vii

Chapter 1

Introduction

1.1 Why Java ?

Java is a platform-independent object-oriented, multi-threading dynamically-linked
programming language. Java was developed by Sun MicroSystems primarily for the
use on the World-Wide-Web. It has a lot in common with C++. With Java we can
produce three distinct types of programs, applets, applications, and beans.

Firstly, Java supports the central concepts of object-orientated programming: en-
capsulation, inheritance and polymorphism (including dynamic binding). It has
good support for dynamic memory management and supports both, procedural and
object-orientated programming.

However, other well-designed programming languages have failed against relatively
poor competitors. Being a good programming language is not sufficient for sur-
vival. An additional important requirement for a powerful programming language
is portability. If a firm replaces one computer system with another, only a minimal
amount of recording (if any) should be required. Java compilers are available for
virtually all machines and a high level of compatibility is ensured by the standard
for Java.

All these points have contributed to Java being the fastest growing computer lan-
guage for nearly all computer and operating systems and for nearly all software
applications, ranging from scientific to administrative programs to real-time indus-
trial applications and computer games.

1

2 CHAPTER 1. INTRODUCTION

1.2 Aim of Object-Oriented Programming

Object-oriented programming is the most dramatic innovation in software develop-
ment in the last two decades. It offers a new and powerful way to cope with the
complexity of programs. Using object-oriented programming we can write clearer,
more reliable, more easily maintained programs. Integrating data and functions
(methods) is the central idea of object-oriented programming.

The class is the foundation of Java’s support for object-oriented programming, and
is at the core of many of its advanced features. The class provides the mechanism
by which objects are created. Thus a class defines a new data type, which can be
used to create objects. A class is created by using the keyword class.

Object-oriented programming methods aim to achieve the following:

• To simplify the design and implementation of complex programs.

• To make it easier for teams of designers and programmers to work on a single
software project.

• To enable a high degree of reusability of designs and of software codes.

• To decrease the cost of software maintenance.

In order to achieve these aims, object-oriented programming languages are expected
to support a number of features:

1. Information hiding (encapsulation)

2. Polymorphism

3. Inheritance

Each of these concepts is discussed below.

1.2. AIM OF OBJECT-ORIENTED PROGRAMMING 3

1.2.1 Information Hiding

Information hiding is achieved by restricting the access of the user to the underlying
data structures to the predefined methods for that class. This shifts the responsibil-
ity of handling the data fields correctly from the user of the code to the supplier. For
example, a programmer using a Date class is usually not interested in the implemen-
tation details. These include the underlying data structure of Date (i.e. whether the
month is stored as an integer, a string or an enumeration type) and the underlying
code (i.e. how two dates are subtracted from each other). If, at a later stage a more
efficient way of storing the date or of calculating the number of days between two
dates is introduced, this should not affect the programmers who have been using the
date class. They should not have to search through all their programs for any oc-
currence of Date and to make the relevant changes. Such a maintenance nightmare
and the very high cost accompanying it is prevented by information hiding where
access to the underlying data structures is given only via the predefined methods
of the class. A further advantage of information hiding is that it can be used to
guarantee the integrity of the data (e.g. to prevent the user from setting the month
equal to 13). Java and C++ provide the keywords private, protected and public

for data hiding.

1.2.2 Inheritance

Often one object shares a number of characteristics with another, but has a few
additional attributes. For example, our firm might have a database for vehicles.
For each vehicle the registration number, model, year and maintenance history are
stored. Suppose the firm wants to expand this data base to include its trucks.
However, they want to store additional information for trucks, such as the the pay-
load and the number of axes (for toll-road purposes). Instead of rewriting all the
code for trucks, one can see a truck as a special case of a vehicle having all the
attributes of a vehicle plus a few additional attributes. By making truck a derived
class of vehicle, it inherits all the attributes of vehicle and the programmer has only
to add the code for the additional attributes. This not only reduces the amount of
coding to be done and maintained, but it also ensures a higher level of consistency.
Should the country decide to change its format for number plates, it has to be only
changed in the base class vehicle and the trucks automatically inherit the change.
In Java a superclass is the parent of a class. The keyword is super. It is the class
from which the current class inherits. In Java, a class can have only one superclass.
Thus Java is a single inheritance system, in which a class can only inhert from one
class. C++ is a multiple inheritance system in which a class can inherit from one
or more classes.

4 CHAPTER 1. INTRODUCTION

1.2.3 Polymorphism

Often one wants to perform an action such as editing on a number of different
objects (i.e. text files, pixel files, charts, etc.). Polymorphism allows one to specify
an abstract operation like editing, leaving the actual way in which this operation
is performed to a later stage. In the case where dynamic binding (linking during
run-time) is used the decision of which code to be used for the editing operation is
only made during run-time. This is especially useful in the case where the actual
type of object which is to be edited is only known at run-time.

Furthermore, if a new object type is to be supported (e.g. faxes) then the new
editing code (provided by the fax-software supplier) can be linked in at run-time.
Even when the original program is not recompiled, it can support future additions
to the system. Polymorphism is hence again a higher level of abstraction, allowing
the programmer to specify an abstract action to be performed on abstract objects.
Java allows defining abstract classes.

1.2.4 Built-In Classes

Java code is organized into classes (abstract data types). Classes define a set of
methods (member functions) and fields (data members) that form the behaviour of
an object. What makes Java so powerful is the large number of built-in classes.
Classes are grouped by directories on disk into categories of related classes called
packages. However, from version 1.0 to version 1.1 a large number of methods have
been deprecated and replaced by other methods. Java 1.2 added a large number of
new classes.

Some of the most important built-in classes are

String, System, Graphics, Object, Vector, Math, Date, Event

The String class does all the string manipulations such as length() to find the
length of a string and charAt(int) which finds the character at the given position.
The System class includes the method exit(). The Graphics class includes all
drawing methods, for example drawLine(int,int,int,int) which draws a line
between to points given by the arguments. The class Object is the mother of all
classes. The Vector is a container class. Mathematical operations are in the class
Math.

We use import statements to load classes required to compile a Java program.
For example, to tell the compiler to load the Applet class from the java.applet

package, the statement

import java.applet.Applet;

is used.

1.2. AIM OF OBJECT-ORIENTED PROGRAMMING 5

1.2.5 Java Compared To C++

The syntax of Java looks very similar to C++. However, there are number of im-
portant differences.

Java compared to C++ has

no pointers,

no references,

no structs,

no unions,

no typedefs,

no #define,

no need to manage/free (delete) memory,

no core dumps,

no goto although Java has a keyword goto,

no sizeof operator.

The size of the basic data types in Java are fixed. C++ has signed and unsigned
data types for short, int and long. Java has no unsigned data basic data type.
All integer basic data types are signed. There are no standalone methods in Java.
Everything in Java must be in a class even the main method. In Java basic data
types can only be passed by value. Arrays are passed by reference. Operators such
as +, * cannot be overloaded in Java. Java does not allow function or class templates.
Java has a boolean data type called boolean. Only newer C++ compilers have a
boolean data type called bool. There is no multiple inheritance in Java. There is
no scope resolution operator :: in Java. Java uses the dot . (access operator) for
everything. There are no global functions or global data in Java. If we want the
equivalent of globals, we use static methods and static data within a class. Java
does not have the C++ concept of a destructor, a method that is automatically
called when an object is destroyed. The reason is that in Java the practice is simply
to forget about objects rather than to destroy them, allowing the garbage collector
to reclaim the memory as necessary. Java has both kinds of comments like C++
does.

6 CHAPTER 1. INTRODUCTION

1.3 Identifiers and Keywords in Java

Variables, constants, classes, objects, methods and interfaces are all identified by
their names. A valid Java identifier must start either with a lower or upper case
letter, an underscore character (_) or a dollar sign ($). Subsequent characters can
also include numerals (0-9). The length of the identifier is not limited. Furthermore
Java is case sensitive. The only restriction is that we may not use any of Java’s
reserved words. The following identifiers are thus all valid and all distinct

x X _x x1 myClass

while the following are not valid identifier names in Java

x! 1X true #x1

The identifier true is invalid because it is a reserved word. Since Java is case
sensitive we could use True as an identifier.

Java’s reserved words (so-called keywords) are

abstract boolean break byte

byvalue case catch char

class const continue default

do double else extends

false final finally float

for goto if implements

import instanceof int interface

long native new null

package private protected public

return short static super

switch synchronized this threadsafe

throw transient true try

void while

where

byte, short, int, long, float, double, char, boolean

describe the basic (primitive) data types. The keyword class indicates an abstract
data type, for example

class Rational

Chapter 2

Java Basics

2.1 My First Java Program

The following Java program displays the string Good Morning Egoli on the screen.
The assumption is that the JDK (Java Developer Kit) is being used. The instruc-
tions for compiling and running are specific to the JDK.

// First.java (file name)

public class First

{

public static void main(String[] args)

{

System.out.println("Good Morning Egoli");

}

}

The file name is First.java. The extension of a Java program file is .java. To
compile the code from the command line we enter

javac First.java

This produces a Java byte-code file called

First.class

To run the program from the command line we enter

java First

This command is also case-sensitive. Both javac and java are execute files in the
bin directory.

7

8 CHAPTER 2. JAVA BASICS

In a Java program the name of the file with extension java must be the same as the
name of the class which contains the main method. In the program given above the
file name is First.java and the class name which contains main is First. Java is
case sensitive. The keyword class is there because everything in a Java program
lives inside a class. Following the keyword class is the name of the class. The com-
piled byte code is then automatically called First.class (platform independent).
We have declared the class First public so that it is publicly accessible.

In Java, as in C/C++, curly braces

{ ... }

are used to delineate the parts (usually called blocks) in the program. A Pascal
programmmer can relate them to the begin/end pair.

Every Java program must have a main method within a class for our code to compile.
The method main is declared static. A static member method of a class can be
invoked independently of any class instance. Instances of classes are called objects.
A public class is defined within its own file and is visible everywhere. The main

method must also be declared public. The main method returns void which is
Java’s way for specifying nothing. The main method has as argument an array of
strings. Arrays are denoted in Java by a pair of square brackets []. The name of the
array of strings is args. This array will hold any command line parameters passed
to our application.

Comments are the same as in C and C++, i.e.

//

/* ... */

The System class contains several useful class fields and methods. The method

static PrintStream out

is the standard output stream (normally to the screen). The method

void println(String s)

is in class PrintStream and prints a string and terminates the line. The method

void print(String s)

prints a string without a newline.

2.2. MY FIRST APPLET 9

2.2 My First Applet

An applet is a Java program that must be run from another program called its
host program. For example, applets are usually run from Webbrowsers such as
Netscape’s Communicator or Microsoft Internet Explorer. To run the applet from
the webbrowser or using the appletviewer command provided in the Java Devel-
oper Kit (JDK) we need an HTML file. We show now how to run an applet from the
command line. The program is

// Welcome.java

import java.applet.Applet;

import java.awt.Graphics;

public class Welcome extends Applet

{

public void paint(Graphics g) // g is an object of class Graphics

{

g.drawString("Welcome to JAVA",25,25);

g.drawString("Welcome to ISSC",50,50);

}

}

To run the applet do the following. We compile Welcome.java by entering the
follwing command at the command line:

javac Welcome.java

This creates a file

Welcome.class

Then we write the following file with file name Welcome.html

<HTML>

<COMMENT> file name: Welcome.html </COMMENT>

<APPLET CODE="Welcome.class" width=275 height=135>

</APPLET>

</HTML>

3. Then at the command line enter

appletviewer Welcome.html

10 CHAPTER 2. JAVA BASICS

The command is provided with Java’s Developer’s Kit. This means appletviewer

is an execute-file in the directory jdk1.4\bin. The program displays the messages

Welcome to JAVA

Welcome to ISSC

on the screen at the coordinates 25 and 25 and 50 and 50, respectively. Coordinates
are measured from the upper-left corner of the applet in pixels. A pixel (picture
element) is the unit of display for the computer screen. Many computers have 640
pixels for the width of the screen and 480 pixels for the height of the screen.

The program contains the definition for the method (member function)

public void paint(Graphics g)

This method is in the class Component. The paint method is called automatically
during an applet’s execution and is used to display information on the screen. The
paint method’s parameter list indicates that it requires a Graphics object (that is
named g in our program) to perform its task. The keyword public is required so
the browser can automatically call the paint method.

The left brace { begins the method definition’s body. A corresponding right brace
} must end the method definition’s body.

The line

g.drawString("Welcome to JAVA",25,25);

instructs the computer to perform an action, namely to use the method

drawString(String str,int x,int y)

to draw the text given by the specified string using this graphics context’s current
font and color. Thus the method drawString is provided in the Graphics class.

The scope of an identifier is the portion in which the identifier can be referenced.
For example, when we declare a local variable in a block, it can be referenced only
in that block or in the blocks nested within that block. The scopes for an identifier
are class scope and block scope. Block begins are indicated by the left brace { and
the block end by the right brace }. An exception from this rule are static methods.
In a sense, all instance variables and methods of a class are global to the methods
of the class in which they are defined, i.e. the methods can modify the instance
variables directly and invoke other methods of the class.

2.3. BASIC DATA TYPES 11

2.3 Basic Data Types

The basic data types (also called primitive data types) in Java for integers are

byte, short, int, long

type storage requirement range (inclusive)

byte 1 byte = 8 bits -128 to 127

short 2 bytes = 16 bits -32768 to 32767

int 4 bytes = 32 bits -2147483648 to 2147483647

long 8 bytes = 64 bits -9223372036854775808L to 9223372036854775807L

There is no unsigned data type in Java. This is problem when we consider IP
addresses. IP addresses are arrays of unsigned byte. There is no sizeof() operator
in Java. In C and C++ one has a sizeof() operator. In Java the size of the basic
data types are fixed. The basic data types byte, short, int, long are initialized
to 0. Default integer data type is int. We can declare a variable at any point in
the program. The variable exists from the point of declaration until the end of the
block in which it is defined.

The operator

(type)

is called the type conversion operator, for example (int). An example is

byte a = (byte) 7;

int i = (int) a;

What happens if we change the line:

byte l = (byte)(j + k);

to

byte l = j + k;

in the following program? What happens if we change the line

c = (short)(a + b);

to

c = a + b;

in the following program?

12 CHAPTER 2. JAVA BASICS

// Types1.java

// Arithmetic operations:

// addition +, subtraction -

public class Types1

{

public static void main(String[] args)

{

byte z1 = (byte) 255;

System.out.println("z1 = " + z1); // => -1 since 255-256 = -1

byte z2 = (byte) 152;

System.out.println("z2 = " + z2); // => -104 since 152-256 = -104

byte z3 = (byte) 1001;

// repeated subtraction of 256 until

// number is in range -128 ... 127

System.out.println("z3 = " + z3); // => -23

byte j = (byte) -128;

byte k = (byte) 127;

byte l = (byte)(j + k);

System.out.println(l); // => -1

short a = (short) 8;

short b = (short) -17;

short c;

c = (short)(a + b);

System.out.println(c); // => -9

int d = -2000000;

int e = 2000001;

int f = d + e;

System.out.println(f); // => 1

byte g = -5;

int h = (int) g;

System.out.println(h); // => -5

long p = 900000000000002L;

long q = 100000000000003L;

long s = p - q;

System.out.println(s); // => 799999999999999

}

}

2.3. BASIC DATA TYPES 13

The floating point data members are float and double.

type storage requirement range (inclusive)

float 4 bytes = 32 bits pm 3.40282347E+38F

double 8 bytes = 64 bits pm 1.79769313486231570E+308

pm stands for plus-minus

The default floating point data type is double. There is no long double (80 bits) in
Java. All floating-point types follow the IEEE 754 specification. They will overflow
on range errors and underflow on operations like a divide by zero. The floating data
types are initialized to 0.0. Java allows us to make certain assignment conversions by
assigning the value of a variable without an explicit cast. Those that are permitted
are

byte -> short -> int -> long -> float -> double

// Types2.java

public class Types2

{

public static void main(String[] args)

{

float z1 = (float) 8.17; // type conversion

float z2 = (float) -912; // type conversion

float z3;

z3 = z1 + z2;

System.out.println(z3); // => -903.83

double u = 20.1E+10;

double v = 17.157;

double w = u*v;

System.out.println(w); // => 3.448557e+12

// type conversion

double x = -10.345;

int nx = (int) x; // type conversion

System.out.println(nx); // => -10

int i = 10;

int j = 3;

double y = 10/3; // integer division on right-hand side,

// then type conversion to double

System.out.println(y); // => 3.0

double b = ((double) i)/((double) j);

System.out.println(b); // => 3.3333333333333335

}

}

14 CHAPTER 2. JAVA BASICS

The char type uses single quotes to denote a character. For example

char ch = ’A’;

The size of of data type char is 2 bytes compared to 1 byte for a character in
C and C++. The char type denotes character in the Unicode encoding scheme.
Unicode was designed to handle essentially all characters in all written languages in
the world. It is a 2-byte code. This allows 65536 characters, unlike ASCII/ANSI,
which is a 1-byte code allowing only 255 characters. The ASCII/ANSI code is a
subset of Unicode. It is the first 255 characters on the Unicode coding scheme. For
example

int i = (int) ’A’; // => 65

The boolean data type has two values: false and true. It is used for logical
testing using the relational operators that Java, like C and C++, supports. Type
conversion from boolean to byte, short, int, long is not possible. The storage
requirement for the boolean data type is 1 byte.

Basic data types in Java, C, and C++ are compared for equality using the equality
operator

==

For example

char c1 = ’X’;

char c2 = ’x’;

boolean b = (c1 == c2);

System.out.println(b); // => false (Java is case sensitive)

A string is an array of characters. The data type String is an abstract data type
in Java. Strings in Java are immutable. They cannot be changed. We have two
methods to create a string, namely

String s1 = "abc";

String s2 = new String("abc");

The equals method provided in the String class compares two strings (case sen-
sitive) for equality. The method returns true if the objects are equal and false

otherwise. The method equals uses a lexicographical comparsion the integer Uni-
code values that represent each character in each String are compared. Thus the
method equals is case sensitive.

2.3. BASIC DATA TYPES 15

// Types3.java

public class Types3

{

public static void main(String[] args)

{

int r1;

char ch1 = ’Y’; char ch2 = ’Z’;

if(ch1 != ch2) r1 = 0;

else r1 = 1;

System.out.println(r1); // => 0

int r2;

char ch3 = ’A’; char ch4 = ’A’;

if(ch3 == ch4) r2 = 0;

else r2 = 1;

System.out.println(r2); // => 0

int x = 7; int y = 8;

boolean bool = true;

if(x == y) System.out.println(bool);

else

System.out.println(!bool); // => false

String c1 = "egoli"; // String is an abstract data type

String c2 = "egoli"; // Java provides a String class

boolean b1 = c1.equals(c2);

System.out.println(b1); // => true

String d1 = "Cape";

String d2 = "cup";

boolean b2 = d1.equals(d2);

System.out.println(b2); // => false

String e1 = new String("Y");

String e2 = new String("y");

boolean b3 = e1.equals(e2);

System.out.println(b3); // => false

}

}

16 CHAPTER 2. JAVA BASICS

2.4 Arithmetic Operations

The arithmetic operators are:

+, -, *, /, %, ++, --

where % is the remainder operator (also called modulus operator). For example
23%7 = 2, since 23/7 = 3 in integer division and the remainder is 2. The operators
++ and -- are the increment and decrement operators, respectively. We have a
preincrement operator ++i and a postincrement operator i++ and analogously for
the decrement operator. The combined operators are

+=, -=, *=, /=, %=

Thus, for example,

a += b;

is equivalent to

a = a + b;

The support for constants in Java is not as mature as that provided by C++. In Java
one can define constant data members of a class. The keyword used for constants
is final. For example

final double g = 1.618;

// Arith.java

public class Arith

{

public static void main(String[] args)

{

int a = 7;

int b = 8;

int c = a + b;

System.out.println(c); // => 15

int d = 23;

int e = -25;

int f = d - e;

System.out.println(f); // => 48

int dd = 5;

dd++; // increment operator

System.out.println(dd); // => 6

2.4. ARITHMETIC OPERATIONS 17

int xx = -17;

xx--; // decrement operator

System.out.println(xx); // => -18

short k = (short) 5;

short j = (short) 7;

short l = (short) (k*j);

System.out.println(l); // => 35

long n = 3000000001L;

long m = 2L;

long result = n/m; // integer division

System.out.println(result); // => 1500000000

long remain = n%m;

System.out.println(remain); // => 1 remainder

int x = 7;

x += -9; // short cut for x = x - 9;

System.out.println(x); // => -2

double z1 = 1.0;

double z2 = 3.0;

// floating point division

double z3 = z1/z2;

System.out.println("z3 = " + z3); // => 0.333333...

double d1 = 3.14159;

double d2 = 2.1;

d1 /= d2; // short cut for d1 = d1/d2;

System.out.println(d1); // => 1.4959952...

int u = 27;

int v = 12;

u %= v; // short cut for u = u%v;

System.out.println(u); // => 3

}

}

18 CHAPTER 2. JAVA BASICS

2.5 Unicode, ASCII Table, and Types Conversion

Unicode is the international standard character set that Java uses for its String and
StringBuffer classes. Each code is a 16-bit integer with unique value in the range
0 to 65 535. These values are usually expressed in hexadecimal form. For example,
the infinity symbol ∞ has the Unicode value 8734, which is 221E in hexadecimal. In
Java, the character whose Unicode is hhhh in hexadecimal is expressed as \uhhhh.
For example, the infinity symbol ∞ is expressed as \u221E. The first 127 values are
the same as the ASCII Code (American Standard Code for Information Interchange).
The following program shows the conversion from char to int and int to char where
the ASCII table is taken into account.

// Unicode.java

public class Unicode

{

public static void main(String[] args)

{

char c1 = (char) 65; // type conversion ASCII table

System.out.println(c1); // => ’A’

char c2 = (char) 97;

System.out.println(c2); // => ’a’

char a = (char) 3;

System.out.println(a);

int i = (int) ’A’;

System.out.println(i); // => 65

int j = (int) ’a’;

System.out.println(j); // => 97

int k = (int) ’0’;

System.out.println(k); // => 48

char n = ’\0’; // null character

System.out.println("n = " + n); // no output

char inf = ’\u221E’;

System.out.println("inf = " + inf); // => ? (explain why)

}

}

2.5. UNICODE, ASCII TABLE, AND TYPES CONVERSION 19

In the following program we show how to display degree Fahrenheit, degree Celsius,
infinity (hex 221E) and the Euro (hex 20AC).

// UniCode.java

import java.awt.*;

import java.awt.event.*;

class UniCode extends Frame

{

Label label1, label2, label3, label4;

UniCode(String s)

{

super(s);

setSize(200,200);

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); }});

setLayout(new FlowLayout());

label1 = new Label(" ");

label1.setFont(new Font("TimesRoman 12 point bold.",20,20));

add(label1);

label2 = new Label(" ");

label2.setFont(new Font("TimesRoman 12 point bold.",20,20));

add(label2);

label3 = new Label(" ");

label3.setFont(new Font("TimesRoman 12 point bold.",20,20));

add(label3);

label4 = new Label(" ");

label4.setFont(new Font("TimesRoman 12 point bold.",20,20));

add(label4);

label1.setText("\u00B0F");

label2.setText("\u00B0C");

label3.setText("\u221E");

label4.setText("\u20AC");

setVisible(true);

}

public static void main(String[] args)

{

new UniCode("Example");

}

}

20 CHAPTER 2. JAVA BASICS

2.6 Precedence Table

Precedence is the priority system for grouping different types of operators with their
operands. Java, C and C++ have precedence rules that determine the order of
evaluation in expressions that contain more than one operator. When two operators
have unequal precedence the operator with higher precedence is evaluated first.
Operators with equal precedence are evaluated from left to right. For example, the
fourth line of the code fragment

int a = 5;

int b = 6;

int c = -1;

int r = a*b + c; // => 29

int s = a*(b + c); // => 25

contains three operations, namely =, *, +. After the precedence table the multi-
plication operators is applied first, then the addition operator and finally the as-
signment. Thus r takes the value 29. In the expression a*(b+c) we first evaluate
b+c and then multiply with a. Thus the output for s is 25.

The operator ++ is the increment operator, it increments by 1. We have to keep in
mind that there is a prefix increment and a postfix increment. They are at different
places at the precedence table. A lot of confusion in literature is about the increment
and decrement operators, ++ and --, respectively. Let x be an integer. There is
a preincrement operator ++x and a postincrement operator x++. The preincrement
operator is at the top of the precedence table and postincrement operator is at the
bottom of precedence table. Notice that the postincrement operator is even below
the assignment operator =. The same applies for the decrement operator --.

The access operator . is higher in the precedence table than the multiplication
operator.

The operators * (multiply), / (division) and % (remainder) have equal precedence.
Operators with equal precedence are evaluated from left to right. All three operators
have higher precedence than the assignment operator =. For example

int m = 27;

int n = 8;

int p = 5;

int r1 = m/n%p; // => 3

int r2 = m%n/p; // => 0

C and C++ follow the same rules for these operators.

2.6. PRECEDENCE TABLE 21

Fill in the output for the following program. Then run the program and compare.

public class Preced

{

public static void main(String[] args)

{

int a = 7;

a++;

++a;

System.out.println(a); // =>

int b = 5, c = 7;

int r1 = c*b++;

System.out.println(r1); // =>

System.out.println(b); // =>

int d = 5, e = 7;

int r2 = d*(e++);

System.out.println(r2); // =>

int f = 5, g = 7;

int r3 = f*++g;

System.out.println(r3); // =>

int n = 23;

int m = 5;

int s1 = n/m;

System.out.println(s1); // =>

int s2 = n%m;

System.out.println(s2); // =>

int p = 3;

int s3 = n/m%p;

System.out.println(s3); // =>

int i = 12;

int j = 12;

System.out.println(i++); // =>

System.out.println(++j); // =>

}

}

22 CHAPTER 2. JAVA BASICS

2.7 Arrays

An array is a set of elements with the same data type. The first subscript of a
Java, C and C++ array is 0 and the last subscript is 1 less than the number used to
declare the array. Thus an array is a contiguous region of storage, large enough to
hold all its elements. The elements in the array are accessed using the rectangular
bracket [].

An array can be declared and initialized in a single statement. For example

int vec[] = { 1, 78, 12, 5 };

allocates memory for four integer variables, initializes these memory positions for
the integer values. The length of an array of basic data types or abstract data types
can be found with the length command. For example

int l = vec.length;

System.out.println(l); // => 4

We can also use the new operator to allocate memory for the array and then assign
the values. Any valid data type can be allocated using new. For example

int vec[] = new int[4];

vec[0] = 1; vec[1] = 78; vec[2] = 12; vec[3] = 5;

Java provides automatic memory management. It allocates a portion of memory as
and when required. When memory is short, it looks for areas which are no longer
referenced. These areas of memory are then freed up (deallocated) so that they can
be reallocated. This process is often referred to as garbage collection. The line

int vec[] = new int[4];

can also be written as

int[] vec = new int[4];

To access array elements one uses the index notation and the rectangular bracket
[]. For example

int result = vec[1]*vec[2];

The class Arrays can be used to do operations on arrays of basic data types, for
example

equals(), fill(), sort(), binarySearch()

2.7. ARRAYS 23

// Marray.java

// one-dimensional arrays

public class Marray

{

public static void main(String[] args)

{

int intnumbers[] = { -2, 4, 5, 6, 7, 11, -19, -23, 89, -9 };

// the line

// int intnumbers[10] = { -2, 4, 5, 6, 7, 11, -19, -23, 89, -9 };

// would give the error message:

// can’t specify array dimension in a type expression

int sum = 0;

for(int i=0;i<intnumbers.length;i++)

{

sum += intnumbers[i];

}

System.out.println(sum);

double doublenumbers[] = new double[5];

doublenumbers[0] = 3.1;

doublenumbers[1] = -1.7;

doublenumbers[2] = 4.5;

doublenumbers[3] = 6.7;

doublenumbers[4] = 7.8;

double add = 0.0;

for(int j=0;j<doublenumbers.length;j++)

{

add += doublenumbers[j];

}

System.out.println(add);

}

}

// sum += intnumbers[i];

// is the short cut for

// sum = sum + intnumbers[i];

24 CHAPTER 2. JAVA BASICS

// Histogram.java

// Histogram printing program

import java.awt.Graphics;

import java.applet.Applet;

public class Histogram extends Applet

{

int n[] = { 19, 3, 15, 7, 11, 9, 13, 5, 17, 1 };

// paint the Applet

public void paint(Graphics g)

{

int xPosition;

int yPosition = 25;

g.drawString("Element",24,yPosition);

g.drawString("Value",100,yPosition);

g.drawString("Histogram",175,yPosition);

for(int i=0;i<n.length;i++)

{

yPosition += 15;

g.drawString(String.valueOf(i),25,yPosition);

g.drawString(String.valueOf(n[i]),100,yPosition);

xPosition = 175;

for(int j=1;j<=n[i];j++)

{

g.drawString("*",xPosition,yPosition);

xPosition += 7;

} // end for loop j

} // end for loop i

} // end paint

}

2.7. ARRAYS 25

// Matrix.java

// two-dimensional arrays

public class Matrix

{

public static void main(String[] args)

{

int mat[][] = new int[2][2];

mat[0][0] = -1;

mat[0][1] = 1;

mat[1][0] = 2;

mat[1][1] = -7;

int trace = 0;

trace = mat[0][0] + mat[1][1];

System.out.println(trace);

int length1 = mat.length;

int length2 = mat[0].length;

System.out.println("length1 = " + length1); // => 2

System.out.println("length2 = " + length2); // => 2

int array[][] = { { -1, 1 }, { 2, -7 }};

int result = 0;

for(int i=0;i<2;i++)

{

for(int j=0;j<2;j++)

{

result += array[i][j];

}

}

System.out.println(result);

}

}

// in C++ we must apply twice the

// new operator to allocate the memory.

//

// The line

// int array[2][2] = {{ -1, 1 }, { 2, -7 }};

// is not allowed.

// Error message. Can’t specify array dimension

// in type expression.

26 CHAPTER 2. JAVA BASICS

// ThreeArr.java

// three dimensional arrays

public class ThreeArr

{

public static void main(String[] args)

{

int three[][][] = new int[2][2][2];

three[0][0][0] = -1;

three[0][0][1] = 1;

three[0][1][0] = -9;

three[0][1][1] = 11;

three[1][0][0] = 2;

three[1][0][1] = -7;

three[1][1][0] = 20;

three[1][1][1] = 8;

int sum = 0;

int i, j, k;

for(i=0;i<=1;i++)

for(j=0;j<=1;j++)

for(k=0;k<=1;k++)

{

sum += three[i][j][k];

}

System.out.println(sum);

int array[][][] =

{{{ -1, 1 }, { -9, 11 }}, {{ 2, -7 }, { 20, 8 }}};

int result = 0;

for(i=0;i<=1;i++)

for(j=0;j<=1;j++)

for(k=0;k<=1;k++)

{

result += array[i][j][k];

}

System.out.println(result);

}

}

// In C++ the new operator

// must be applied three times

// to allocate the memory.

2.7. ARRAYS 27

Arrays of basic data types in Java are classes. This means the array identifier is
actually a handle to a true object that is created on the heap. The heap object can
be created either implicitly, as part of the array initialization syntax, or explicitly
with a new expression.

The following two programs demonstrate this behaviour. In the first program we
override the method

protected Object clone()

from the Object class to make a copy of the array. Overriding occurs when a method
is defined in a class and also in one of its subclasses.

Class Object is the root of the class hierarchy. Every class has Object as a super-
class. All objects, including arrays, implement the methods of this class.

In the second program we show how assignment of two arrays works. Assignment
of two arrays can be very dangerous as the output of the program shows.

// ArrClone.java

public class ArrClone

{

public static void main(String[] args)

{

int[] vec = new int[3];

vec[0] = 2; vec[1] = 4; vec[2] = -5;

int[] vecClone = (int[]) vec.clone();

for(int i=0;i<vecClone.length;i++)

System.out.println(vecClone[i]);

}

}

28 CHAPTER 2. JAVA BASICS

// ArrAssign.java

public class ArrAssign

{

public static void main(String args[])

{

double x[] = { 2.2, 4.5, 3.1 };

double y[] = { 4.1, 5.6, -8.9 };

y = x;

int i;

for(i=0;i<y.length;i++)

{

System.out.println("y[" + i + "] = " + y[i]);

}

x[0] = -17.4;

for(i=0;i<y.length;i++)

{

System.out.println("y[" + i + "] = " + y[i]);

}

}

}

// output

// y[0] = 2.2 y[1] = 4.5 y[2] = 3.1

// y[0] = -17.4 y[1] = 4.5 y[3] = 3.1

2.8. CONTROL STATEMENTS 29

2.8 Control Statements

2.8.1 Introduction

Control statements control the program flow. For example, selection statements
such as if ... else and switch use certain criteria to select a course of action
within a program. Iterative control statements (like for, while, do ... while) on
the other hand see to it that under certain conditions control is passed from the last
statement in a block to the first statement. The use of these control statements is
illustrated in the following sections. To apply the control statements we first have to
introduce the relational operators. Relational operators allow the user to compare
two values yielding a result based on whether the comparison is true or false. If the
comparison is false then the resulting value in Java is false and in C, C++ is 0; if
true the value is true in Java and in C, C++ 1. The relational operators in Java,
C and C++ for the basic data types byte, short, int, long, float, double, char
are

> greater than

>= greater than or equal to

< less than

<= less than or equal to

== equal to

!= not equal to

For the basic data type boolean we have

== equal to

!= not equal to

For example

int x = 234567;

int y = 234568;

if(x == y) ...

boolean b1 = false;

boolean b2 = true;

if(b1 != b2) ...

To compare strings the operator == should not be used instead we have to use the
methods equals().

Selection or flow-control statements select from alternative courses of action by
testing certain values. There are two types of selection statements: the if ... else

and the switch.

30 CHAPTER 2. JAVA BASICS

2.8.2 The if Statement

The if statement consists of the if keyword followed by a test expression in paren-
theses, and a single or compound statement. The statement is executed if the test
expression is true, or skipped if the expression is false. The if statement has the
following pattern

if(cond-expression) t-st <else f-st>

The cond-expression must be of scalar type. The expression is evaluated. If
the value is zero (or NULL for pointer types in C and C++), we say that the
cond-expression is false; otherwise, it is true. If there is no else clause and
cond-expression is true, t-st is executed; otherwise, t-st is ignored. If the
optional else f-st is present and cond-expression is true, t-st is executed; oth-
erwise, t-st is ignored and f-st is executed. Java has a boolean data type. C does
not have a specific Boolean data type and only newer C++ compiler have a data
type bool. Any expression of integer or pointer type can serve a Boolean role in
conditional tests. In Java the expression is always evaluated to true or false. The
relational expression (a > b) (if legal) evaluates to int 1 (true) if (a > b), and to
int 0 (false) if (a <= b).

// Mif.java

class Mif

{

public static void main(String[] args)

{

int x = -5;

if(x != 0)

System.out.println("value is nonzero"); // => value is nonzero

int y = 7;

if(y > 0)

System.out.println("positive");

else System.out.println("negative"); // => positive

char c1 = ’a’; char c2 = ’b’;

if(c1 == c2)

System.out.println("the same");

else System.out.println("not the same"); // => not the same

double u = 3.140; double v = 3.141;

boolean b = (u != v);

System.out.println("boolean value " + b); // => true

}

}

2.8. CONTROL STATEMENTS 31

2.8.3 The for Loop, while Loop, do-while Loop

Iteration statements let us loop a set of statements. There are three forms of itera-
tion in Java, C and C++: while, do-while, and for loops.

The general format for the while statement is

while(cond-exp) t-st

The loop statement, t-st, will be executed repeatedly until the conditional expres-
sion, cond-exp, compares to zero (false). The cond-exp is evaluated and tested first.
If this value is nonzero (true), t-st, is executed. If no jump statements that exit
from the loop is encountered, cond-exp is evaluated again. This cycle repeats until
cond-exp is zero.

The while loop offers a concise method for scanning strings (end of string indicate
by the null character ’\0’) and other null-terminated data structures.

The general format for the do-while statement is

do do-st while(cond-exp);

The do-st statement is executed repeatedly until cond-exp compares equal to zero
(false). The main difference from the while statement is that cond-exp is tested
after, rather than before, each execution of the loop statement. At least one execu-
tion of do-st is assured.

The for statement format in Java, C and C++ is

for(<init-exp>;<test-exp>;<increment-exp>) statement

The sequence of events is as follows. The initializing expression init-exp, if any,
is executed. This usually initializes one or more loop counters, but the syntax al-
lows an expression of any degree of complexity (including declarations in Java, C
and C++). The expression test-exp is evaluated following the rules of the while

loop. If test-exp is non-zero (true), the loop statement is executed. An empty
expression here is taken as while(1), that is, always true. If the value of test-exp
is zero (false), the for loop terminates. The statement increment-exp advances
one or more counters. The expression statement (possible empty) is evaluated and
control returns to the expression test-exp.

One can break out of a block of statements (typically an iterative block) using Java’s
break statement. This is usually not the preferred method and should only be used
if other methods are excessively cumbersome.

32 CHAPTER 2. JAVA BASICS

The while loop is the most general loop and can be used to replace the other two;
in other words, a while loop is all we need, and the others are just there for our
convenience.

// Loops.java

// for loop, while loop, do-while loop

// we apply the for-loop, while-loop and do-while-loop

// to find the sum 1 + 2 + 3 + ... + 9 + 10

class Loops

{

public static void main(String[] args)

{

int n = 10;

int s1 = 0;

int j;

for(j=1;j<=n;j++)

{

s1 = s1 + j; // can also be written as s1 += j;

}

System.out.println(s1); //=> 55

int i = 0;

int s2 = 0;

while(i <= n)

{

s2 = s2 + i;

i++;

}

System.out.println(s2); // => 55

int k = 0;

int s3 = 0;

do

{

s3 += k;

k++;

} while(k <= n);

System.out.println(s3); // => 55

}

}

2.8. CONTROL STATEMENTS 33

In the following program we use three for loops to generate all combinations for
three capital letters, i.e.

AAA, AAB, ... , ZZY, ZZZ

There are

26× 26× 26 = 17576

combinations. We compare them to a given string consisting of three capital letters.
If the string is found we display it. The method equals() in the String class is
used.

// Password.java

public class Password

{

public static void main(String[] args)

{

String password = new String("XYA");

int i, j, k;

for(i=65;i<91;i++)

{

for(j=65;j<91;j++)

{

for(k=65;k<91;k++)

{

char c1 = (char) i; // type conversion ASCII table

char c2 = (char) j;

char c3 = (char) k;

char data[] = { c1, c2, c3 }; // array of characters

String s = new String(data); // conversion to String

boolean found = password.equals(s);

if(found == true)

{

System.out.println("password = " + s);

System.exit(0);

} // end if

} // end k-for loop

} // end j-for loop

} // end i-for loop

} // end main

}

34 CHAPTER 2. JAVA BASICS

A polygon is a closed plane figure with n sides. If all sides and angles are equivalent
the polygon is called regular. The area of a planar convex polygon with vertices

(x0, y0), (x1, y1), ... , (xn−1, yn−1)

is given by

A =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi), xn ≡ x0, yn ≡ y0

The following program finds the area of a given planar convex polygon. The polygon
in the program is the unit square. We apply the modulus operator % to identify n
and 0.

// Polygon.java

public class Polygon

{

public static void main(String[] args)

{

double[] x = new double[4];

double[] y = new double[4];

x[0] = 0.0; x[1] = 1.0; x[2] = 1.0; x[3] = 0.0;

y[0] = 0.0; y[1] = 0.0; y[2] = 1.0; y[3] = 1.0;

double area = 0.0;

int length = x.length;

for(int i=0;i<x.length;i++)

{

area += (x[i]*y[(i+1)%length] - x[(i+1)%length]*y[i]);

}

area = 0.5*area;

System.out.println("area of Polygon = " + area); // => 1.0

}

}

2.8. CONTROL STATEMENTS 35

2.8.4 The switch Statement

Often an algorithm contains a series of decisions in which a variable or expression
is tested separately for each of the constant integral values it may assume, and
different actions are taken. Java, C and C++ provide the switch multiple-selection
structure to handle such decision making. The switch structure consists of a series
of case labels, and an optional default case.

Thus if one has a large decision tree and all the decisions depend on the value
of the same variable we use a switch statement instead of a series of if ... else

constructions. The switch statement transfers control to one of several case-labeled
statements, depending on the value of the switch expression. Note that if the break
is omitted, execution will continue over the remaining statements in the switch
block. The break statement can also be used to break out of an iteration loop.

The switch statement uses the following basic format

switch(sw-expression) case-st

A switch statement allows us to transfer control to one of several case-labeled
statements, depending on the value of the sw-expression. The latter must be of
integral type (byte, short, int, long) or char. In Java, C++ and C it also can
be of class type provided that there is an unambiguous conversion to integral type
available. Any statement in case-st (including empty statements) can be labeled
with one or more case labels.

case const-exp-i:case-st-i

There can also be at most one default label.

default:default-st

After evaluating sw-expression, a match is sought with one of the const-exp-i.
If a match is found, control passes to the statement case-st-i with the matching
case label. If no match is found and there is a default label, control passes to
default-st. If no match is found and there is no default label, none of the
statements in case-st is executed. Program execution is not affected when case

and default labels are encountered. Control simply passes through the labels to
the following statement or switch. To stop execution at the end of a group of
statements for a particular case, use break.

The program illustrates the syntax of the Java selection statement switch.

36 CHAPTER 2. JAVA BASICS

// SwitchT.java

import java.awt.*;

import java.io.DataInputStream;

import java.io.IOException;

class SwitchT

{

public static void main(String[] args) throws IOException

{

System.out.println("enter character: ");

// reading a charater from the keyboard

DataInputStream s = new DataInputStream(System.in);

char c = (char) s.readByte(); // type conversion

// The command

// char c = s.readChar();

// will not properly work.

// It always gives the output

// you did not enter ’a’ or ’b’. Explain why !

System.out.println(c);

switch(c)

{

case ’a’:

System.out.println("you entered ’a’ ");

break;

case ’b’:

System.out.println("you entered ’b’ ");

break;

default:

System.out.println("you did not enter ’a’ or ’b’ ");

break;

}

}

}

2.8. CONTROL STATEMENTS 37

The method char charAt(int) is in the String class and returns the charac-
ter at the position specified in the argument counting from zero. The method
int length() is in the String class and finds the length of a string.

// MSwitch.java

public class MSwitch

{

public static void main(String[] args)

{

String s = new String("bella");

for(int i=0;i<s.length();i++)

{

char c = s.charAt(i);

System.out.print("i = " + i);

switch(c)

{

case ’a’: System.out.println("character is ’a’ ");

break;

case ’b’: System.out.println("character is ’b’ ");

break;

default: System.out.println("character is not ’a’ or ’b’ ");

break;

}

}

int array[] = { 3, 4, 1, 1, 4, -3, 1, 6 };

for(int j=0;j<array.length;j++)

{

switch(array[j])

{

case 1: System.out.println("number is 1");

break;

case 3: System.out.println("number is 3");

break;

default: System.out.println("number is not 1 or 3");

break;

}

}

}

}

38 CHAPTER 2. JAVA BASICS

2.9 Logical AND, Logical OR and Logical NOT

The logical operators in Java, C and C++ are

&& logical AND

|| logical OR

! logical NOT

The logical operators work with logical values (true and false) allowing us to
combine relational expressions. In Java the logical operators always produce a result
of either false or true. In C and C++ we have 0 and 1. The logical operators &&
and || are short circuit. Suppose that we have the expression

exp1 && exp2

If exp1 is false, then the entire expression is false, so exp2 will never be evaluated.
Likewise given the expression

exp1 || exp2

exp2 will never be evaluated if exp1 is true. As an example consider

int x = -5;

int y = 7;

boolean result = ((x > 0) && (y > 0));

System.out.println(result); // => false

The first expression is false thus the second expression is not evaluated.

Warning. Look out for the operator precedence. For example the relational op-
erators (< > ==) have higher precedence than the logical AND operator. Note
that

if(!n)

is equivalent to

if(n==0)

The logical operators should not be confused with the bitwise operators &, |, ~. In
Java, C and C++ the bitwise AND operator is &, the bitwise OR operator is |, and
the bitwise NOT is ~.

2.9. LOGICAL AND, LOGICAL OR AND LOGICAL NOT 39

// Logic.java

public class Logic

{

public static void main(String[] args)

{

int a = 5;

if((a > 0) && (a%2 == 0))

System.out.println("number is positive and even");

int b = 7;

if((b > 0) || (b%2 == 0))

System.out.println("number is positive or even");

char d = ’A’;

char e = ’B’;

char f = ’C’;

if((d != e) && (d != f) && (e != f))

System.out.println("characters are different");

int c = 1;

if(!(c == 0))

System.out.println("number is nonzero");

int x = (int) (Math.random()*100.0);

int y = (int) (Math.random()*100.0);

boolean bool = ((x > 10) && (y < 50));

System.out.println("bool = " + bool);

}

}

40 CHAPTER 2. JAVA BASICS

2.10 Bitwise Operations

The bitwise operations in Java, C and C++ are: bitwise AND &, bitwise OR |,
bitwise XOR ^ and bitwise NOT ~. To understand the bitwise operation we recall
that every integer number can be written in binary notation. For example the integer
number 14 (i. e. base 10) can be written as

14 = 1 · 23 + 1 · 22 + 1 · 21 + 0 · 20 .

Thus in binary we can express 14 (base 10) as bitstring 1110. If 14 is of type int (4
bytes = 32 bits) the binary representation is 00000000000000000000000000001110.
The bitwise operations are as follows.

bitwise AND &

1 1 => 1

0 1 => 0

1 0 => 0

0 0 => 0

bitwise inclusive OR |

1 1 => 1

1 0 => 1

0 1 => 1

0 0 => 0

bitwise exclusive OR ^ (XOR)

1 1 => 0

1 0 => 1

0 1 => 1

0 0 => 0

bitwise NOT operator ~ (one’s complement)

0 => 1

1 => 0

As an example consider the two (decimal) numbers 14 and 9 of data type int, i.e.
the size is 4 bytes (32 bits). In binary 9 is given by 1001. Thus the bitwise AND of
these integers is

00000000 00000000 00000000 00001001

00000000 00000000 00000000 00001110

00000000 00000000 00000000 00001000

Thus the result of the bitwise AND operation is 8(= 23) in decimal.

2.10. BITWISE OPERATIONS 41

All modern CPU’s use the two complement to find the negative number of a given
integer number, for example 23 -> -23 and -14 -> 14. The two complement con-
sists of the one complement ~ and then adding a 1 to the least significant bit.

// Bitwise.java

public class Bitwise

{

public static void main(String[] args)

{

int r1 = 14; // binary 1110

int r2 = 7; // binary 111

int r3 = r1 & r2;

System.out.println(r3); // => 6 = 110binary

int r4 = r1 | r2;

System.out.println(r4); // => 15 = 1111binary

int r5 = r1 ^ r2;

System.out.println(r5); // => 9 = 1001binary

// using XOR ^ to initialize an integer to zero

int r6;

r6 = 234;

r6 = r6 ^ r6;

System.out.println(r6); // => 0

// bitwise NOT (one complement)

int r7 = ~r1;

System.out.println(r7); // => -15

// capital letter to small letter conversion using OR

char c = ’A’;

int ic = (int) c;

ic = ic | 32;

c = (char) ic;

System.out.println("c = " + c); // => c = a

// two complement to find the negative number

// of a given number

// The operation ~ gives the one complement

// and then we add 1 to find the two complement

int r8 = (~r1) + 1;

System.out.println(r8); // => -14

}

}

42 CHAPTER 2. JAVA BASICS

2.11 Shift Operations

The shift operators in Java, C and C++ are << and >>. The left shift operator is <<
and the right shift operator is >>. In the expression E1 << E2 and E1 >> E2, the
operands E1 and E2 must be of integral type. The normal integral type conversions
are performed on E1 and E2, and the type of the result is the type of the type
converted E1. If E2 is negative or is greater than or equal to the width in bits of E1,
the operation is undefined. The result of E1 << E2 is the value E1 left-shifted by
E2 bit positions, zero-filled from the right if necessary. If E1 is of signed type, the
fill from the left uses the sign bit (0 for positive, 1 for negative E1). This sign-bit
extension ensures that the sign of E1 >> E2 is the same as the sign of E1. Except
for signed types, the value of E1 >> E2 is the integral part (integer division) of the
quotient E1/2E2. Java adds the triple right shift >>> to act as a logical right shift by
inserting zeroes at the top end; the >> inserts the sign bit as it shifts (an arithmetic
shift).

// Shift.java

public class Shift

{

public static void main(String[] args)

{

int r1 = 7; // binary 111

int r2 = (r1 << 1);

System.out.println(r2); // binary 1110 = decimal 14

// shift by 1 is nothing else then

// multiplication by 2

int r3 = 3; // binary 11

int r4 = (r3 << 3);

System.out.println(r4); // => binary 11000 = decimal 24 = 3*8

// shift by 3 is multiplication by 8 = 2^3

int r5 = 18; // binary 10010

int r6 = (r5 >> 2);

System.out.println(r6); // => binary 100 = decimal 4

// integer division by 4 = 2^2

int r7 = (16 >> 5); // decimal 16 = 10000 binary

System.out.println(r7); // => 0 decimal

}

}

2.12. PASS BY VALUE, PASS BY REFERENCE 43

2.12 Pass by Value, Pass by Reference

In Java basic data types such as double can only be passed by value to methods.
Java has no pointers and references. In C and C++ arguments to functions can be
passed either by value or by reference. We can use pointers or references in C++
to pass values by reference. When an argument is passed by value, a copy of the
argument is produced, and the associated parameter is the same as a local variable
for the function. This means, changes to the parameter variable will have no effect
on the original argument value. Functions that receive variables as parameters get
local copies of those variables, not the originals. The alternative, pass by reference in
C++, is indicated by the presence of the ampersand operator & in the argument list.
When arguments are passed by reference, the parameter variable is an alias for the
argument value. Thus, changes in the parameter also alter the original argument.
In C and obviously in C++ we also can use pointers and the dereference operator
to pass by reference. Thus functions that receive pointers to variables gain access
to the original variables associated with the pointers. Java, C and C++ pass all
arrays by reference.

The following program we pass two integers to the function swap. Obviously no
swapping of the two numbers takes place since we pass by value.

// Refer.java

class Refer

{

public static void swap(int x,int y)

{

int temp;

temp = x; x = y; y = temp;

}

public static void main(String[] args)

{

int x = 7;

int y = 3;

swap(x,y);

System.out.println(x); // => 7

System.out.println(y); // => 3

}

}

44 CHAPTER 2. JAVA BASICS

// Trick.java

// swapping two integers

// arrays passed by reference

public class Trick

{

public static void swap(int[] a,int[] b)

{

int temp;

temp = a[0];

a[0] = b[0];

b[0] = temp;

}

public static void main(String[] args)

{

int[] x = new int[1]; x[0] = 7;

int[] y = new int[1]; y[0] = 3;

System.out.println("before swapping");

System.out.println("x[0] = " + x[0]);

System.out.println("y[0] = " + y[0]);

swap(x,y);

System.out.println("after swapping");

System.out.println("x[0] = " + x[0]); // => 3

System.out.println("y[0] = " + y[0]); // => 7

}

}

The swap function can also be written as

public static void swap(int[] a,int[] b)

{

a[0] = a[0] ^ b[0];

b[0] = a[0] ^ b[0];

a[0] = a[0] ^ b[0];

}

where ^ is the bitwise XOR operation. This avoids the introduction of the temporary
(local) variable temp.

2.12. PASS BY VALUE, PASS BY REFERENCE 45

// Shell.java

class Shell

{

public static void sort(int[] a) // can the public be omitted ?

{

int n = a.length; // finds length of array

int incr = n/2;

while(incr >= 1)

{

for(int i=incr;i<n;i++)

{

int temp = a[i];

int j = i;

while((j >= incr) && (temp < a[j-incr]))

{

a[j] = a[j-incr];

j -= incr;

}

a[j] = temp;

}

incr /= 2; // short cut for: incr = incr/2;

}

}

public static void main(String[] args)

{

// make a one-dimenional array of ten integers

int[] a = new int[10];

int i;

// fill the array with random numbers

for(i=0;i<a.length;i++)

a[i] = (int)(Math.random()*100);

// call sorting function

sort(a);

// print the sorted array

for(i=0;i<a.length;i++)

System.out.println(a[i]);

}

}

// random() is a method in class Math random number between 0 and 1

46 CHAPTER 2. JAVA BASICS

Java passes everything by value. When we are passing basic data types into a
method, we get a distinct copy of the basic data type. When we are passing a handle
into a method, we get a copy of the handle. In other words Java manipulates objects
by reference, but it passes object references to methods by value. The following
program demonstrates this.

// PassString.java

public class PassString

{

public static void main(String[] args)

{

String str1 = new String("27");

String str2 = new String("11");

String[] str3 = new String[1];

str3[0] = "45";

String[] str4 = new String[1];

str4[0] = "88";

surprise(str1,str2,str3,str4);

System.out.println("str1 = " + str1); // => 27

System.out.println("str2 = " + str2); // => 11

System.out.println("str3[0] = " + str3[0]); // => 44

System.out.println("str4[0] = " + str4[0]); // => 87

}

static void surprise(String str1,String str2,String[] str3,

String[] str4)

{

str1 = "26";

str2 = new String("10");

str3[0] = "44";

str4[0] = new String("87");

}

}

2.12. PASS BY VALUE, PASS BY REFERENCE 47

In the following program the calling method and the called method have an object
in common, and both methods can change the object. The object reference arg1

is passed by value. Then a copy of it is made into the stack frame for the method
inverse(). But both the original and the copy are object references, and they point
to a common object in memory that can be modified.

// Reference.java

class Help

{

public double y;

public Help(double y)

{

this.y = y;

}

public String toString()

{

return Double.toString(y);

}

}

class Reference

{

static void inverse(Help arg1)

{

arg1.y = -arg1.y;

}

public static void main(String[] args)

{

Help arg1 = new Help(3.14159);

inverse(arg1);

System.out.println("arg1 = " + arg1); // => -3.14159

}

}

48 CHAPTER 2. JAVA BASICS

2.13 Recursion

Recursion plays a central role in computer science. A recursive function is one whose
definition includes a call to itself. More generally, a recursive method is a method
that calls itself either directly or indirectly through another method. A recursion
needs a stopping condition. Of course, it is not allowed to use the main function in
a recursive call. Java, C and C++ allow recursion.

We consider three examples. In the first example we show how the factorial function
can be implemented using recursion. The second example shows an implementation
the recursively display of elements of an array. In the third example the Fibonacci
numbers are calculated using recursion.

// Recur.java

class Recur

{

public static long fac(long n)

{

if(n > 1L)

return n*fac(n-1L);

else

return 1L;

}

public static void main(String[] args)

{

long n = 12L;

long result = fac(n);

System.out.println(result); // => 479001600

}

}

2.13. RECURSION 49

// Recursively display the elements of an array

import java.awt.*;

import java.applet.Applet;

public class RDisplay extends Applet

{

int yPosition = 0;

int a[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

public void paint(Graphics g)

{

someFunction(a,0,g);

}

public void someFunction(int b[],int x,Graphics g)

{

if(x < b.length)

{

someFunction(b,x+1,g);

g.drawString(String.valueOf(b[x]),25,yPosition);

yPosition += 15;

}

}

}

The HTML file RDisplay.html is as follows:

<HTML>

<APPLET code="RDisplay.class" width=275 height=150>

</APPLET>

</HTML>

50 CHAPTER 2. JAVA BASICS

The Fibonacci numbers are defined by the recurrence relation

xt+2 = xt+1 + xt

where t = 0, 1, 2, . . . and x0 = 0, x1 = 1. We find

x2 = 1, x3 = 2, x4 = 3, x5 = 5, x6 = 8, . . .

Thus we can apply recursion to obtain the Fibonacci numbers. It is left as an
exercise to rewrite the program using iteration.

// Fibo.java

public class Fibo

{

public static long fib(long n)

{

if(n == 0) return 0;

if(n == 1) return 1;

return fib(n-1) + fib(n-2);

}

public static void main(String[] args)

{

long n = 10;

long result = fib(n);

System.out.println("result = " + result);

}

}

2.14. JUMP STATEMENTS 51

2.14 Jump Statements

A jump statement, when executed, transfers control unconditionally. There are four
such statements

break, continue, goto, return

However goto cannot be used in Java. A break statement can be used only inside
an iteration (while, do-while and for loops) or switch statement. It terminates
the iteration or switch statement. Since iteration and switch statements can be
intermixed and nested to any depth, we have to take care that the break exits from
the correct loop or switch. The rule is that a break terminates the nearest enclosing
iteration or switch statement.

The syntax for the continue statement is

continue

A continue statement can be used only inside an iteration statement. It transfers
control to the test condition for while and do while loops, and to the increment
expression in a for loop. With nested iteration loops, a continue statement is
taken as belonging to the nearest enclosing iteration.

Java lacks a goto statement, although there is a keyword goto. In C and C++ the
syntax for the goto statement is

goto Label

The goto statement transfers control to the statement labeled Label, which must
be in the same function. One good use for the goto is to exit from a deeply nested
routine. A simple break statement would not work here, because it would only
cause the program to exit from the innermost loop. In Java nested do-while loops
can replace the goto’s. The following programs one in C++ using goto’s and one
in Java using do-while demonstrate this.

Unless the function return type is void, a function body must contain at least one
return statement with the following format

return return-expression;

where return-expression must be of type type or of a type that is convertible to
type by assignment. The value of the return-expression is the value returned by the
function.

52 CHAPTER 2. JAVA BASICS

// didact.cpp

// C++ program using goto

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

int main()

{

time_t t;

srand((unsigned long) time(&t)); // seed

L3:

int a = rand()%100;

int b = rand()%100;

int result;

L1:

cout << a << " + " << b << " = ";

cin >> result;

if(result == (a+b))

goto L2;

cout << "sorry you are not correct: try again" << endl;

goto L1;

L2:

cout << "congratulations you are correct" << endl;

char c;

cout << "Do you want to add again: Press y for yes and n for no: ";

cin >> c;

if(c == ’y’) goto L3;

if(c == ’n’)

{

cout << "bye, see you next time around";

goto L4;

}

L4:

return 0;

}

2.14. JUMP STATEMENTS 53

The C++ program can be rewritten in Java as follows:

// Gotorau.java

//

// public String readLine() throws IOException

// reads a line of text

//

// int Integer.parseInt(String)

// parses the string argument as a signed decimal integer

import java.io.*;

class Gotorau

{

public static void main(String[] args) throws IOException

{

BufferedReader kbd;

kbd = new BufferedReader(new InputStreamReader(System.in));

String input;

do

{

int a = randomInt(0,99); int b = randomInt(0,99);

int r;

do

{

if(b < 0)

System.out.print(a + " " + b + " = ");

else

System.out.print(a + " + " + b + " = ");

r = Integer.parseInt(kbd.readLine());

if(r != (a + b))

System.out.println("try again!");

} while(r != (a + b));

System.out.println("Congratulations: correct.");

System.out.println("Do you want to add again ? (y/n) ");

input = kbd.readLine();

} while(input.equals("y"));

} // end main

private static int randomInt(int lowerB,int upperB)

{

return (int)(Math.random()*(upperB - lowerB) + lowerB);

}

}

54 CHAPTER 2. JAVA BASICS

2.15 Reading from Keyboard

We read in a string from the keyboard and convert it into an integer. We apply the
method readLine(). Then we read in another string and convert it to an integer.
The constructor

BufferedReader(Reader in)

creates a buffering character-input stream that uses a default-size input buffer. The
method

String readLine()

in class BufferedReader reads a line of text. What happens if we enter: 4.5 ?

// Readin1.java

import java.io.*;

class Readin1

{

public static void main(String[] args) throws IOException

{

System.out.print("Enter the first integer = ");

BufferedReader kbd =

new BufferedReader(new InputStreamReader(System.in));

String str1 = kbd.readLine();

// convert String to int

Integer A = new Integer(str1);

int a = A.intValue();

System.out.print("Enter the second integer = ");

String str2 = kbd.readLine();

Integer B = new Integer(str2);

int b = B.intValue();

int sum = a + b;

System.out.println("The sum is = " + sum);

}

}

2.15. READING FROM KEYBOARD 55

In the following example we read in a string from the keyboard and then convert it
to a double.

// Readin2.java

// reads double (must be positive or zero)

// from keyboard and calculates the square root

// using a do-while loop

import java.io.*;

class Readin2

{

public static void main(String[] args) throws IOException

{

System.out.print("Calculating Square root of a = ");

BufferedReader kbd =

new BufferedReader(new InputStreamReader(System.in));

String str = kbd.readLine();

// convert String to double

Double A = new Double(str);

double a = A.doubleValue();

double xnew = a/2.0;

double xold;

do

{

xold = xnew;

xnew = (xold + a/xold)/2.0;

System.out.println(xnew);

}

while(Math.abs(xnew-xold) > 1E-4);

}

}

The method abs is a method in class Math. It finds the absolute value of a double.
What happens if we enter a negative number?

56 CHAPTER 2. JAVA BASICS

2.16 Command Line Arguments

Java enables us to access command-line arguments by supplying and using the fol-
lowing parameters in method main:

public static void main(String argv[])

Using the command line we compile the following program via

javac MCommand.java

We then run it with the command

java MCommand Good Morning Egoli

where

argv[0] -> Good

argv[1] -> Morning

argv[2] -> Egoli

// MCommand.java

public class MCommand

{

public static void main(String argv[])

{

System.out.println(argv[2]); // => Egoli

System.out.println(argv[0]); // => Good

String t1 = argv[0];

String t2 = argv[1];

String t3 = argv[2];

String t = t1.concat(t2.concat(t3));

System.out.println("t = " + t); // => GoodMorningEgoli

String s1 = new String(argv[0]);

String s2 = new String(argv[1]);

String s3 = new String(argv[2]);

String s = s1.concat(s2.concat(s3));

System.out.println("s = " + s); // => GoodMorningEgoli

}

}

2.17. SYSTEM CLASS 57

2.17 System Class

The System class contains several useful fields and methods. It cannot be instanti-
ated. It contains the method

void exit(int status)

which terminates the currently running Java Virtual Machine and the method

long currentTimeMillis()

which returns the current time in milliseconds between the current time and mid-
night, January 1, 1970 UTC.

Furthermore the class provides standard input, standard output, and error output
streams. The fields are

static PrintStream err

static PrintStream in

static PrintStream out

We can also extract system-dependent information using the method

String getProperty(String key)

A utility method for quickly copying a portion of an array is also provided. The
method

void arraycopy(Object src,int src_pos,Object dest,

int dest_pos,int length)

copies an array from the specified source array, beginning at the specified position,
to the specified position of the destination array.

The method

static SecurityManager getSecurityManager()

gets the system security interface.

The following programs show an application of some of these methods.

58 CHAPTER 2. JAVA BASICS

// MySystem.java

import java.util.Properties;

public class MySystem

{

public static void main(String[] args)

{

System.out.println(System.getProperty("os.name"));

System.out.println(System.getProperty("java.class.path"));

System.out.println(System.getProperty("os.arch"));

System.out.println(System.getProperty("user.name"));

System.out.println(System.getProperty("java.version"));

long time1 = System.currentTimeMillis();

for(long i=0;i<100000;i++)

i++;

long time2 = System.currentTimeMillis();

long diff = time2 - time1;

System.out.println("diff = " + diff);

int[] a = { 7, 6, 5, 4, 3, 2, 1, 0, 1, 2 };

int[] b = new int[a.length];

System.arraycopy(a,0,b,1,a.length-1);

for(int k=0;k<a.length;k++)

System.out.println(b[k]); // => 0 7 6 5 4 3 2 1 0 1

// to determine the complete set of

// the current system properties

// we use the following two lines

Properties p = System.getProperties();

System.out.println("p = " + p);

// the output could be redirected into a file using

// java MySystem > information.txt

}

}

2.17. SYSTEM CLASS 59

The method String getProperty(String) can be used to find the name of the
underlying operating system. The path in different operating systems is different.
Thus we can use this information to select the operating system in use.

// NoOfLines.java

import java.io.*;

import java.util.*;

public class NoOfLines

{

public static void main(String[] args) throws IOException

{

String s = System.getProperty("os.name");

System.out.println("s = " + s);

String fstring = "";

if(s.equals("Windows 98"))

{

fstring = "c:\\books/db/data.dat";

}

if(s.equals("Linux"))

{

fstring = "/root/javacourse/data.dat";

}

FileInputStream fin = new FileInputStream(fstring);

BufferedReader in;

in = new BufferedReader(new InputStreamReader(fin));

int count = 0;

while(in.readLine() != null)

{

count++;

}

System.out.println("count = " + count);

} // end main

}

60 CHAPTER 2. JAVA BASICS

The System class also includes the method

public static SecurityManager getSecurityManager()

which gets the systems security interface. If a security manager has already been
established for the current application, then that security manager is returned; oth-
erwise null is returned. The security manager is an abstract class that allows
applications to implement a security policy. It allows an application to determine,
before performing a possibly unsafe or sensitive operation, what the operation is
and whether the operation is being performed by a class created via a class loader
rather than installed locally. Classes loaded via a class loader (especially if they
have been downloaded over a network) may be less trustworthy than classes from
files installed locally. The application can allow or disallow the operation.

// Security.java

public class Security

{

public static void main(String[] args)

{

SecurityManager sec = System.getSecurityManager();

System.out.println("security = " + sec);

}

}

2.18. ASSERTIONS 61

2.18 Assertions

Assertions are a new feature in Java 1.4. An assertion is a program statement con-
taining a boolean expression, that a programmer believes to be true at the time the
statement is executed. Thus the new keyword assert is introduced and support in
the library java.lang.AssertionError. The following program gives an example.
We compile with

javac -source 1.4 MyAssert.java

and run it with

java -ea MyAssert

The -ea switch is used to enable assertions at run time.

public class MyAssert

{

static double scalar(double[] v,double[] w)

{

assert v.length == w.length : "not the same length";

double temp = 0.0;

for(int i=0;i<v.length;i++)

temp += v[i]*w[i];

return temp;

}

public static void main(String args[])

{

double[] v = new double[2];

v[0] = 1.2; v[1] = 2.3;

double[] w = new double[3];

w[0] = 4.5; w[1] = 3.1; w[2] = 7.1;

double result = 0.0;

try

{

result = scalar(v,w);

System.out.println("result = " + result);

}

catch(AssertionError e)

{

System.out.println("exception: " + e);

}

}

}

62 CHAPTER 2. JAVA BASICS

2.19 Applets and HTML Parameters

The following example shows how to use HTML parameters in an Applet using the
getParameter() method.

// Parameters.java

import java.awt.*;

import java.applet.*;

public class Parameters extends Applet

{

// save the first HTML parameter as a String

String par1;

// second one should be an int

int par2;

// third one should be an int

int par3;

// we add par2 and par3

int sum;

public void init()

{

// method gets the specified parameter’s value

// out of the HTML code that is calling the applet

par1 = getParameter("parameter1");

// since parameter2 and parameter3 are read as string

// we need to transform them to integers using

// the wrapper class Integer

par2 = Integer.parseInt(getParameter("parameter2"));

par3 = Integer.parseInt(getParameter("parameter3"));

sum = par2 + par3;

}

public void paint(Graphics g)

{

// shows what is in the HTML parameter code

g.drawString("Parameter 1 is: " + par1,20,20);

g.drawString("Parameter 2 is: " + par2,20,40);

g.drawString("Parameter 3 is: " + par3,20,60);

g.drawString("Parameter 2 + Parameter 3 is: " + sum,20,80);

}

}

The HTML file is given by

2.19. APPLETS AND HTML PARAMETERS 63

<HTML>

<APPLET CODE="Parameters.class" width=275 height=135>

<PARAM NAME="parameter1" VALUE="Egoli">

<PARAM NAME="parameter2" VALUE="17">

<PARAM NAME="parameter3" VALUE="-5">

</APPLET>

</HTML>

Chapter 3

String Manipulations

3.1 String Class

The String class

public final class String extends Objects

is a general class of objects to represent character Strings. Strings are constant,
their values cannot be changed after creation. The compiler makes sure that each
String constant actually results in a String object. A string can be created via
two methods

String s1 = "abcdef";

String s2 = new String("abcdef");

In the second method we use the constructor in the String class. Since String

objects are immutable they can be shared. We demonstrate the use of the following
methods

int length(), String substring(int beginIndex,int endIndex),

char charAt(int index), String concat(String str),

String replace(char oldChar,char newChar), String toLowerCase(),

String toUpperCase(), boolean equals(Object anObject), String trim()

The method length() finds the length of this string. The method

public int hashCode()

returns a hashcode for this string. This is a large number of the character values in
the string.

64

3.1. STRING CLASS 65

// Mstring.java

public class Mstring

{

public static void main(String[] args)

{

String mine = "cde";

System.out.println("abc" + mine); // => abccde

String st = new String("summer");

System.out.println("spring and " + st); // => spring and summer

// some frequently used methods in the String class

String city = "egoli";

int n = city.length();

System.out.println(n); // => 5

String sub = city.substring(0,2);

System.out.println(sub); // => eg

char c;

c = city.charAt(2);

System.out.println(c); // => o

String region = "-Gauteng";

String str = city.concat(region);

System.out.println(str); // => egoli-Gauteng

String name = new String("Otto");

String new_name = name.replace(’t’,’l’);

System.out.println(new_name); // => Ollo

char data[] = { ’3’, ’5’, ’c’ };

String d = new String(data);

System.out.println(d); // => 35c

String m = new String("Cape");

String upper = m.toUpperCase();

System.out.println(upper); // => CAPE

int result = m.hashCode();

System.out.println(result); // => 3530789

boolean bool = st.equals(d);

System.out.println(bool); // => false

66 CHAPTER 3. STRING MANIPULATIONS

// array of Strings

String keys[] = { "Red", "Green", "Blue" };

System.out.println(keys[1]); // => Green

// removing white space from both ends of this string

String ws = new String(" xxxyyy ");

ws.trim();

System.out.println("ws = " + ws);

int size = ws.length();

System.out.println(size); // => 8

}

}

3.1. STRING CLASS 67

Next we discuss how to convert strings to numbers (integer type or floating point
type) and numbers to strings. This technique is important when we read in a number
from the keyboard as a string. The abstract class Number is the superclass of the
wrapper classes

Byte, Short, Integer, Long, Float, Double

These subclasses of class Number must provide methods to convert the represented
numeric value to byte, short, int, long, float and double.

Assuming the specified string represents an integer, the method

public static Integer valueOf(String s) throws NumberFormatException

returns a new Integer object initialized to that value. The method throws an
exception if the String cannot be parsed as an int. The radix is assumed to be 10.
The method

public int intValue()

returns the value of this Integer as an int. It overrides intValue() in class Number.
Analogously we can consider the methods

byteValue(), shortValue(), longValue(),

floatValue(), doubleValue()

in the classes Byte, Short, Long, Float and Double, respectively.

The method

public static String toString(int i)

in class Integer returns a new String object representing the specified integer. The
radix is assumed to be 10. Analogously we have the method

public static String toString(long l)

in the class Long etc.

All these classes have the data fields MAX_VALUE and MIN_VALUE. For example, for
the class Double MAX_VALUE is the largest positive finite value of type double.

68 CHAPTER 3. STRING MANIPULATIONS

// Convert.java

class Convert

{

public static void main(String[] args)

{

String str;

str = "25";

int i = Integer.valueOf(str).intValue();

System.out.println(" i = " + i); // => 25

String s = new String("-45678901");

long l = Long.valueOf(s).longValue();

System.out.println(" l = " + l); // => -45678901

str = "25.6";

float f = Float.valueOf(str).floatValue();

System.out.println(f); // => 25.6

double d = Double.valueOf(str).doubleValue();

System.out.println(d); // => 25.6

String m;

double j = 1234.7;

m = Double.toString(j);

System.out.println(m); // => 1234.7

int k = 3412;

String n = new String("000000000000000");

n = Integer.toString(k);

System.out.println(n); // => 3412

String name;

name = "Olli";

int x = Integer.valueOf(name).intValue();

System.out.println(x); // => NumberFormatException

}

}

3.2. STRINGTOKENIZER CLASS 69

3.2 StringTokenizer Class

The class StringTokenizer allows an application to break a string into tokens.
The StringTokenizer methods do not distinguish among identifiers, numbers and
quoted strings, nor do they recognize and skip comments.

The constructor

public StringTokenizer(String str)

constructs a string tokenizer for a specified string. The tokenizer uses the default
delimiter set, which is

" \t\n\r\f"

the space character, the tab character, the newline character, the carrige-return
character, and the form-feed character.

The constructor

public StringTokenizer(String str,String delim)

constructs a string tokenizer for a specified string. The characters in the delim

arguments are the delimiters for separating tokens. Delimiter characters themselves
will not be treated as tokens.

The method

public String nextToken()

returns the next token from this StringTokenizer. The method

public String nextToken(String delim)

returns the next token in this string tokenizer’s string. The method

boolean hasMoreTokens()

tests if there are more token available from the tokenizer’s string. The method

int countTokens()

calculates the number of times that this tokenizer’s nextToken() method can be
called before it generates an exception.

70 CHAPTER 3. STRING MANIPULATIONS

The next program shows how the StringTokenizer class can be applied.

// Tokenizer.java

import java.util.*;

public class Tokenizer

{

public static void main(String[] args)

{

String st = new String("Egoli Gauteng Africa");

StringTokenizer tok = new StringTokenizer(st);

String s = tok.nextToken();

System.out.println(s); // => Egoli

s = tok.nextToken();

System.out.println(s); // => Gauteng

s = tok.nextToken();

System.out.println(s); // => Africa

String u = new String("Olli Willi Susi Otto Karl Ludwig Nela");

String v;

String name = new String("Nela");

boolean found = false;

tok = new StringTokenizer(u);

int i;

for(i=1; i <= 7; i++)

{

v = tok.nextToken();

if(v.equals(name))

{

found = true;

break;

}

} // end for loop

if(found == true)

System.out.println("name in string"); // => name in string

else

System.out.println("name not in string");

3.2. STRINGTOKENIZER CLASS 71

String comma = new String("123,4567,50001,444");

String number = new String("50002");

StringTokenizer tokdel = new StringTokenizer(comma,",");

String temp;

boolean in = false;

int count = tokdel.countTokens();

System.out.println("count = " + count);

for(i=1; i <= count; i++)

{

temp = tokdel.nextToken();

if(temp.equals(number))

{

in = true;

break;

}

} // end for loop

if(in == true)

System.out.println("number in string");

else

System.out.println("number not in string");

} // end main

}

When we use the StringTokenizer class, we specify a set of delimiter characters;
instances of StringTokenizer then return words delimited by these characters.
However, the class has some limitations, in particular when we parse text that rep-
resents human language. The class java.text.BreakIterator is a class designed
to parse human language text into words, lines and sentences.

72 CHAPTER 3. STRING MANIPULATIONS

3.3 StringBuffer Class

The instances (objects) of the String class suffer the restriction of being immutable.
This means they cannot be changed. Whenever a string has to be modified we have
to construct a new String object, either explicitly or implicitly. Java provides the
separate StringBuffer class for string objects that need to be changed. The reason
for this dichotomy is that providing the flexibility for changing a string requires
substantial overhead (more space and complexity). In situations where we do not
need to change the string, the simpler String class is preferred.

The constructor

public StringBuffer(int length)

constructs a string with no characters in it and an initial capacity specified by the
length argument. The method

public StringBuffer append(String)

appends the string to the string buffer.

// Buffer.java

public class Buffer

{

public static void main(String[] args)

{

StringBuffer buf = new StringBuffer(20);

buf.append("Good Morning");

System.out.println("buf = " + buf);

System.out.println("buf.length() = " + buf.length()); // => 12

System.out.println("buf.capacity() = " + buf.capacity()); // => 20

buf.append(" Egoli Gauteng");

System.out.println("buf = " + buf);

System.out.println("buf.length() = " + buf.length()); // => 26

System.out.println("buf.capacity() = " + buf.capacity()); // => 42

}

}

Chapter 4

Classes and Objects

4.1 Introduction

A Java program is a collection of one or more text files that contains Java classes,
at least one of which is public and contains a method named main() that has this
form

public static void main(String[] args)

{ ... }

A Java class is a specific category of objects, similar to a Java basic data type (e.g.
int, double). Thus a class is a Java aggregate that may contain methods and types
in addition to data. It can also be a user-defined data type. A service offered by
most classes is that of allowing the user to create instances of the class. These
services are called constructors and have the name of the class, no return value and
any arguments. The default constructor takes no argument. An unfortunate aspect
of Java inherited from C++ is that the compiler writes a default constructor if and
only if no other constructors has been defined for the class. A Java class specifies
the range of the objects of that class can have. Thus a class includes

Constructors

Methods

Fields

The programmmer can add his own classes to the built-in classes.

The following tables summarize the modifiers

private, public, protected, abstract, final, static,

transient, volatile, native, synchronized

that can appear in the declaration of classes, fields, local variables, and methods.

73

74 CHAPTER 4. CLASSES AND OBJECTS

Class Modifiers

Modifier Meaning

public It is accessible from all other classes

abstract The class cannot be instantiated

final No subclasses can be declared

Constructor Modifiers

Modifier Meaning

public It is accessible from all classes

protected It is accessible only from within its own class

and its subclasses

private It is accessible only from within its own class

Field Modifiers

Modifier Meaning

public It is accessible from all classes

protected It is accessible only from within its own class

and its subclasses

private It is accessible only from within its own class

static Only one value of the field exists for all instances

of the class

transient It is not part of the persistent state of an object

volatile It may be modified by asynchronous threads

final It must be initialized and cannot be changed

Local Variable Modifiers

Modifier Meaning

final It must be initialized and cannot be changed

Method Modifiers

Modifier Meaning

public It is accessible from all classes

protected It is accessible only from within its own class

and its subclasses

private It is accessible only from within its own class

and its subclasses

abstract It has no body and belongs to an abstract class

final No subclasses can override it

static It is bound to the class itself instead of an instance

of the class

native Its body is implemented in another programming language

synchronized It must be locked before a thread can invoke it

4.2. WRAPPER CLASSES 75

4.2 Wrapper Classes

Every basic data type has a wrapper class

byte -> Byte

short -> Short

int -> Integer

long -> Long

float -> Float

double -> Double

char -> Character

boolean -> Boolean

Elements in these classes are objects. Each type wrapper class enables us to
manipulate basic data types as objects. The Boolean class includes the fields
static Boolean TRUE, static Boolean FALSE, and static Class TYPE (the class
object representing the basic data type boolean).

Each of the numeric classes

Byte, Short, Integer, Long, Float, Double

inherits from the class Number. Each of the type wrappers is declared final, so
their methods are implicitly final and may not be overridden.

// Wrap.java

class Wrap

{

public static void main(String[] args)

{

Integer i = new Integer(5);

Integer j = new Integer(123);

int result = i.intValue() + j.intValue();

Integer k = new Integer(result);

System.out.println("result = " + result); // => 128

System.out.println("k = " + k); // => 128

double x = 3.14;

double y = 2.79;

Double X = new Double(x);

Double Y = new Double(y);

double sum = X.doubleValue() + Y.doubleValue();

System.out.println("sum = " + sum); // => 5.93

}

}

76 CHAPTER 4. CLASSES AND OBJECTS

The Character class wraps a value of the basic data type char in an object. An
object of type Character contains a single field whose type is char. This class
provides several methods for determing the type of a character and converting up-
percase to lowercase and vice versa. First we look at the constructors and methods
in the Character class. The constructor

Character(char)

constructs a Character object with the specified value. The method

public char charValue()

returns the value of this Character object. The method

public static boolean isDigit(char ch)

determines if the specified character is a ISO-LATIN-1 digit. The method

public static int digit(char ch,int radix)

returns the numeric value of the character digit using the specified radix. The
method

public boolean equals(Object obj)

compares this object against the specified object. Thus the class Character over-
rides the equals() method from the Object class. The method

static char toUpperCase(char ch)

converts the character argument to uppercase. Analogously the method

static char toLowerCase(char ch)

maps the given character to its lowercase equivalent. The class also overrides the
method

String toString()

from the class Object. The method

int getNumericValue(char ch)

returns the numeric value of a character digit, using the value specified in an inter-
nal table called the Unicode Attribute Table. For example, \u217c is the Roman
Numeral L, which has the value of 50.

4.2. WRAPPER CLASSES 77

// Charact.java

class Charact

{

public static void main(String[] args)

{

Character k = new Character(’#’);

System.out.println(k); // => #

char c = k.charValue();

System.out.println(c); // => #

char m = ’5’;

Character j = new Character(m);

boolean b1 = j.isDigit(m);

System.out.println(b1); // => true

char n = ’9’;

Character z = new Character(n);

int a = z.digit(n,10);

System.out.println(a); // => 9

boolean b2 = z.equals(j);

System.out.println(b2); // => false

Character y = new Character(’$’);

char x = y.toLowerCase(’A’);

System.out.println(x); // => a

Character c1 = new Character(’&’);

String s1 = c1.toString();

System.out.println(s1); // => &

int number = Character.getNumericValue(’\u217c’);

System.out.println("number = " + number);

}

}

78 CHAPTER 4. CLASSES AND OBJECTS

4.3 Vector Class

The Vector class is a container class. The Vector class implements a growable
array of objects. It cannot contain basic data types. This means it only can hold
Object handles. The constructor

Vector(int intialCapacity)

constructs an empty vector with the specified initial capacity. To insert elements
into the container class we apply the method

void addElement(Object obj)

adds the specified component to the end of this vector. The method

Object elementAt(int index)

returns the component at the specified index. The method

void insertElementAt(Object obj,int index)

shifts up elements in order to insert an element. The method

void removeElementAt(int index)

removes an element and shifts down all elements above it. The method

boolean isEmpty()

tests if this vector has no components. The method

boolean contains(Object obj)

tests if the specified object is a component in this Vector.

// Vec.java

import java.util.*;

class Vec

{

public static void main(String[] args)

{

Vector v = new Vector(5);

Double x = new Double(3.1);

Character c = new Character(’X’);

Double z = new Double(5.3);

4.3. VECTOR CLASS 79

Integer n = new Integer(-14);

String st = new String("New Year");

v.addElement(x); // position 0

v.addElement(c); // position 1

v.addElement(z); // position 2

v.addElement(n); // position 3

v.addElement(st); // position 4

Character a = (Character) v.elementAt(1);

System.out.println(a);

String s = (String) v.elementAt(4);

System.out.println(s);

Integer m = (Integer) v.elementAt(3);

System.out.println(m);

boolean b = v.isEmpty();

System.out.println(b); // => false

Character aa = new Character(’S’);

v.insertElementAt(aa,2);

Character ch = (Character) v.elementAt(2);

System.out.println(ch); // => S

Double d = (Double) v.elementAt(3);

System.out.println(d); // => 5.3

Character f = (Character) v.elementAt(1);

System.out.println(f); // => X

v.removeElementAt(3);

Integer zz = (Integer) v.elementAt(3);

System.out.println(zz); // => -14

v.removeElementAt(4);

String k = new String("New York");

v.addElement(k);

boolean b1 = v.contains(k);

System.out.println(b1); // => true

boolean b2 = v.contains("New York");

System.out.println(b2); // => true

boolean b3 = v.contains("New Year");

System.out.println(b3); // => false

}

}

80 CHAPTER 4. CLASSES AND OBJECTS

4.4 Math Class

The Math class contains methods for performing basic numeric operations such as
elementary exponential, logarithm, square root and trigonometric functions. The
Math class includes the fields

public static final double PI

public static final double E

for the real numbers 3.14159... and 2.71828..., respectively. The class includes the
overloaded function

int abs(int), long abs(long), float abs(float), double abs(double)

The Math class also contains all the standard mathematical functions such as

sin(), cos(), tan(), acos(), asin(), atan(),

exp(), log(), sqrt()

The data type passed to these functions is double and the return data type is also
double. Furthermore, we have the functions

pow(), ceil(), floor(), max(), min()

and

double toDegree(double angrad), double toRadians(double angdeg)

The class also includes a method to generate random number (data type double)
in the interval [0, 1])

public static double random()

The following program shows an application of the Math class.

// MathClass.java

class MathClass

{

public static void main(String[] args)

{

double g = Math.PI;

System.out.println(" Pi = " + g); // => 3.14159...

double f = Math.cos(g);

System.out.println(f); // => -1.0

double exp = Math.E;

4.4. MATH CLASS 81

System.out.println(" exp = " + exp); // => 2.71828...

int a = -7;

int b = Math.abs(a);

System.out.println(b); // => 7

double c = -8.9;

double d = Math.abs(c);

System.out.println(d); // => 8.9

long i = Math.max(123L,23456789L);

System.out.println(i); // => 23456789

double r1 = Math.random();

System.out.println(r1); // => 0.62872...

double r2 = Math.random();

System.out.println(r2); // => 0.33179...

double j = Math.pow(Math.E,2.0);

System.out.println(" j = " + j); // => 7.38905...

double k = 7.34;

double l = Math.floor(k);

double m = Math.ceil(k);

System.out.println(l); // => 7.0

System.out.println(m); // => 8.0

double n = 5.1;

double p = 2.1;

double q = Math.IEEEremainder(n,p); // => 0.899999999999995

// returns the remainder of n divided by p

// as defined by IEEE 754 => 0.9 (rounding errors)

System.out.println(q);

double v = 2.0;

double z = Math.sqrt(v);

System.out.println(z); // => 1.41...

double r = -2.0;

double s = Math.sqrt(r);

System.out.println(s); // => NaN

}

}

82 CHAPTER 4. CLASSES AND OBJECTS

4.5 BitSet Class

The BitSet class implements a vector of bits that grows as needed. Each component
of the bit set has a boolean value. The bits of the BitSet class are indexed by
nonnegative integers. Individual indexed bits can be examined, set or cleared.

// MyBitSet.java

import java.util.*; // for BitSet

public class MyBitSet

{

public static void main(String[] args)

{

String[] table = { "sno", "sname", "address", "cno", "cname",

"instructor", "office" };

int size = table.length;

BitSet bits = new BitSet(size);

System.out.println("bits = " + bits);

bits.set(2); bits.set(5);

System.out.println("bits = " + bits);

for(int i=0; i < size; i++)

{

if(bits.get(i) == true)

{

System.out.println(table[i]);

}

}

BitSet[] bitarray = new BitSet[128];

for(int k=0; k < 128; k++)

bitarray[k] = new BitSet(7);

} // end main

}

The output is

bits = { }

bits = {2, 5}

address

instructor

4.6. BIGINTEGER AND BIGDECIMAL CLASS 83

4.6 BigInteger and BigDecimal Class

The class BigInteger provides immutable arbitrary-precision integers. The con-
structor

BigInteger(String val)

translates the decimal string representation of a BigInteger into a BigInteger.
The class BigInteger contains the data fields

public static final ZERO

public static final ONE

Thus, for example we can write

BigInteger b1 = BigInteger.ZERO;

BigInteger b2 = BigInteger.ONE;

BigInteger b3 = b1.add(b2);

Methods we can use with this class are

abs(), add(), compareTo(), divide(), equals(), gcd(),

negate(), multiply(), remainder(), subtract(), toString()

The class BigDecimal provides immutable arbitrary precision signed decimal num-
bers. The constructor

BigDecimal(String val)

translates the String representation of a BigDecimal into a BigDecimal. Fields in
the class BigDecimal are

static int ROUND_CEILING

static int ROUND_DOWN

static int ROUND_FLOOR

Methods in this class we can use are

abs(), add(), compareTo(), divide(), equals(), multiply(),

negate(), subtract(), toString()

84 CHAPTER 4. CLASSES AND OBJECTS

The following program shows how to use the BigDecimal and BigInteger class.

// MyDecimal.java

import java.math.*;

public class MyDecimal

{

public static void main(String args[])

{

String t1 = new String("234567");

String t2 = new String("-5678910009");

String t3;

BigInteger b1 = new BigInteger(t1);

BigInteger b2 = new BigInteger(t2);

BigInteger b3 = b1.multiply(b2);

System.out.println("b3 = " + b3);

t3 = b3.toString();

System.out.println("t3 = " + t3);

boolean bool = b2.equals(b1);

System.outprintln("bool = " + bool);

BigInteger c1 = BigInteger.ZERO;

BigInteger c2 = BigInteger.ONE;

BigInteger c3 = c1.add(c2);

System.out.println(c3); // => 1

String s1 = new String("1.234567890123");

String s2 = new String("-5.4678912345");

String s3;

BigDecimal d1 = new BigDecimal(s1);

BigDecimal d2 = new BigDecimal(s2);

BigDecimal d3 = d1.add(d2);

System.out.println("d3 = " + d3);

s3 = d3.toString();

System.out.println("s3 = " + s3);

BigDecimal d4 = d1.multiply(d2);

System.out.println("d4 = " + d4);

}

}

4.7. OBJECT CLASS 85

4.7 Object Class

Java defines one special class, the Object class, which is the ancestor of every other
class. It declares twelve members: a constructor and eleven methods. Four of them,

clone(), equals(), hashCode(), toString()

are intended to be overriden. Thereby they provide clean and consistent facilities
for duplicating objects and determining when they are the same.

The class Object does not define any data members. It defines only the default
constructor (taking no arguments) and a number of methods. Since all classes are
directly or indirectly derived from Object they all inherit these methods.

The equals() method in the class Object simply checks whether the object itself
and the argument are the same object in the sense they share the same memory
position. The method is very often overriden for more meaningful comparisons. For
example, the String class overides equals() for string comparison.

The clone() method is Java’s copy construtor. It allocates memory for a new
instance of the class and makes an identical copy of the object itself. As it is the
case for the copy constructor in C++, the default behaviour of the clone() method
is to make a byte-for-byte copy of our object. If our object contains other objects,
the class members are actually pointers to these objects and making a byte-by-byte
copy would only copy the pointers and would not create copies of the contained
objects. For this reason the clone() method is declared protected and Java forces
override the clone() method.

The toString() method returns a string which represents the value of the object.
The method is overriden frequently. When we call the print() or println() meth-
ods to display an object in text mode on the screen, Java calls the toString()

method automatically to obtain a string representing the state of the object.

The method finalize() is Java’s version of the destructor in C++. This method
has to be overriden by any class that requires specialized processing when the object
is destroyed.

The method getClass() identifies the class of an object by returning an object of
the class Class.

The methods wait() and notify are used for multithreading and will be discussed
later.

86 CHAPTER 4. CLASSES AND OBJECTS

// MyObject.java

import java.math.*; // for BigInteger, BigDecimal

public class MyObject

{

public static void main(String args [])

{

Object[] a = new Object[5]; // array of 5 objects

a[0] = new String("Good Morning");

a[1] = new Integer(4567);

a[2] = new Character(’X’);

a[3] = new Double(3.14);

a[4] = new BigInteger("234567890");

for(int i=0; i<a.length; i++)

{

System.out.println(a[i]);

}

a[3] = new BigDecimal("11.5678903452111112345");

System.out.println(a[3]);

boolean b = a[4].equals(a[3]);

System.out.println("b = " + b); // => false

Object[] x = new Object[1];

x[0] = new Float(2.89);

boolean r = x.equals(a);

System.out.println("r = " + r); // => false

}

}

The following program shows how to override the

clone(), equals(Object p), toString()

methods.

4.7. OBJECT CLASS 87

// MyClone.java

//

// protected Object clone() // in Object class

// creates a new object of the same class as this object

class Point

{

private double x, y;

Point(double a,double b) { x = a; y = b; }

public Object clone() { return new Point(x,y); }

public boolean equals(Object p)

{

if(p instanceof Point)

return (x == ((Point) p).x && y == ((Point) p).y);

else return false;

}

public String toString()

{

return new String("(" + x + ", " + y + ")");

}

} // end class Point

class MyClone

{

public static void main(String args[])

{

Point p = new Point(2.0,3.0);

System.out.println("p = " + p);

Point q = (Point) p.clone();

System.out.println("q = " + q);

if(q == p)

System.out.println("q == p");

else System.out.println("q != p"); // => q != p

if(q.equals(p))

System.out.println("q equals p"); // => q equals p

else System.out.println("q does not equal p");

}

}

88 CHAPTER 4. CLASSES AND OBJECTS

4.8 The this Object

When we want to access the current object in its entirety and not a particular
instance variable, Java has a convenient shortcut for this the this keyword. In a
method, the keyword this refers to the object on which the method operates.

// Pair.java

public class Pair

{

private int a, b;

public Pair(int x)

{

a = x;

b = x + 1;

}

public Pair increment_pair()

{

a++; b++; return this;

}

public void print_pair()

{

System.out.print(a);

System.out.println(b);

}

public static void main(String[] args)

{

Pair P;

P = new Pair(19);

P.increment_pair();

P.print_pair(); // => 2021

Pair Q;

Q = new Pair(55);

Q.increment_pair();

Q.print_pair(); // => 5657

}

}

4.8. THE THIS OBJECT 89

Thus the this reference is not instance data stored in an object itself. Rather, the
this reference is passed into the object as an implicit argument in every non-static
method call.

// ThisTest.java

import java.awt.Graphics;

import java.applet.Applet;

public class ThisTest extends Applet

{

private int i = 12;

public void paint(Graphics g)

{

g.drawString(this.toString(),25,25);

}

public String toString()

{

return "i = " + i + " this.i = " + this.i;

}

}

The HTML file is

<HTML>

<APPLET CODE="ThisTest.class" width=275 height=35>

</APPLET>

</HTML>

The output is

i = 12 this.i = 12

90 CHAPTER 4. CLASSES AND OBJECTS

The following C++ program demonstrates how the this pointer works. The reader
should compare this and the addresses of the objects x and y.

// myclass.cpp

#include <iostream.h>

class X

{

public:

X();

~X();

};

X::X()

{

cout << "this = " << this << endl;

}

X::~X()

{

cout << "this = " << this << endl;

cout << "destructor called" << endl;

}

int main()

{

X x;

cout << "&x = " << &x << endl;

X y;

cout << "&y = " << &y << endl;

return 0;

}

The output is

this = 0x0063FDF4

&x = 0x0063FDF4

this = 0x0063FDF0

&y = 0x0063FDF0

this = 0x0063FDF0

destructor called

this = 0x0063FDF4

destructor called

4.9. THE CLASS CLASS 91

4.9 The Class Class

The class Class has methods for querying constructors, methods and attributes (in
the sense of data fields) of a class. Methods, in turn can be further queried for their
arguments, return values and any exceptions they might throw.

The method

static Class forName(String className)

returns the Class object associated with the class with the given string name. The
method

Class[] getClasses()

returns an array containing Class objects representing all the public classes and
interfaces that are members of the class represented by this Class object. The
methods

Constructors[] getConstructors()

Method[] getMethods()

Field[] getFields

return an array containing Constructor (Method, Field) objects reflecting all the
public constructors of the class represented by this Class object.

The method

boolean isInstance(Object obj)

is dynamic equivalent of the Java language instanceof operator. The method

boolean isPrimitive()

determines if the specified Class object represents a primitive (basic) data type.
The method

Class[] getSuperclass()

returns the object that represents the superclass of that class if this object represents
any class other than the class Object.

92 CHAPTER 4. CLASSES AND OBJECTS

The following application takes as command line argument the name of a class and
lists the public attributes, constructors and methods of the class.

// MyClass.java

import java.lang.reflect.*;

public class MyClass

{

public static void main(String[] args)

throws ClassNotFoundException

{

Class descriptor = Class.forName(args[0]);

Constructor[] constructors = descriptor.getConstructors();

if(constructors.length > 0)

System.out.println("Constructors = ");

int i;

for(i=0; i < constructors.length; ++i)

System.out.println(constructors[i]);

Method[] methods = descriptor.getMethods();

if(methods.length > 0)

System.out.println("\nMethods = ");

for(i=0; i < methods.length; i++)

System.out.println(methods[i]);

Field[] fields = descriptor.getFields();

if(fields.length > 0)

System.out.println("\nFields = ");

for(i=0; i < fields.length; i++)

System.out.println(fields[i]);

}

}

4.10. THE CALENDAR CLASS 93

4.10 The Calendar Class

The class Calendar is an abstract class for converting between a Date object and a
set of integer fields such as

YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MILLISECOND

For the DAY we have to select from

DAY_OF_MONTH, DAY_OF_WEEK, DAY_OF_WEEK_IN_MONTH, DAY_OF_YEAR

A Date object represents a specific instant in time with millisecond precision. Sub-
classes of the Calendar class interpret a Date according to the rules of a spe-
cific calendar system. One concrete subclass of Calendar is provided, namely
GregorianCalendar. The method

Calendar getInstance()

returns a GregorianCalendar object whose time fields given above have been ini-
tialized with current date and time. The method

int get(int field)

in the class Calendar gets the value for a given time field.

A Calendar object can produce all the time field values needed to implement the
date-time formatting for a particular language and calendar style. The interpreta-
tion of noon and midnight is as follows: 24:00:00 belongs to the following day and
is am, noon belongs to pm.

The Calendar class provides support for date conversion that were previously imple-
mented by the Date class. The support provided by Calendar is more comprehensive
and international. The Calendar class is an abstract class that can be extended to
provide conversions for specific calendar systems. The GregorianCalendar subclass
supports the predominant Calendar class used by many countries. It supports the
eras B.C. and A.D. by defining them as class constants. It provides seven construc-
tors that allow GregorianCalendar objects to be created using a combination of
different date, time zone, and local values. It methods override those provided by
the Calendar class.

In the following program using the Calendar class we measure the time in seconds
we need to run two nested for loops and then we provide the present time in hours,
minutes, seconds, and milliseconds.

94 CHAPTER 4. CLASSES AND OBJECTS

// MyCalendar.java

import java.util.Calendar;

public class MyCalendar

{

public static void main(String args[])

{

int i, j;

int t1, t2;

Calendar time = Calendar.getInstance();

t1 = time.get(Calendar.SECOND);

for(i=0;i<40000;i++)

{

for(j=0;j<40000;j++)

{

j++;

} // end for loop j

j = 0;

} // end for loop i

time = Calendar.getInstance();

t2 = time.get(Calendar.SECOND);

int diff = t2 - t1;

System.out.println("diff = " + diff);

int hour = time.get(Calendar.HOUR);

int minute = time.get(Calendar.MINUTE);

int second = time.get(Calendar.SECOND);

int milli = time.get(Calendar.MILLISECOND);

System.out.println("hour = " + hour);

System.out.println("minute = " + minute);

System.out.println("second = " + second);

System.out.println("millisecond = " + milli);

} // end main

}

4.10. THE CALENDAR CLASS 95

We can also use the Calendar class to find the age of a person, where the birthdate
of the person is given.

// Person.java

import java.text.SimpleDateFormat;

import java.text.ParseException;

import java.util.Calendar;

import java.util.GregorianCalendar;

class Person

{

final String name;

final GregorianCalendar dob;

Person(String name,GregorianCalendar dob)

{ this.name = name; this.dob = dob; }

int age()

{

final GregorianCalendar today = new GregorianCalendar();

final int diff = today.get(Calendar.YEAR) - dob.get(Calendar.YEAR);

final int this_day = today.get(Calendar.DAY_OF_YEAR);

final int dob_day = dob.get(Calendar.DAY_OF_YEAR);

if(this_day > dob_day) { return diff; }

else { return (diff - 1); }

}

public static final SimpleDateFormat dmy =

new SimpleDateFormat("yyyy.mm.dd");

public static GregorianCalendar date(String x) throws ParseException

{

final GregorianCalendar r = new GregorianCalendar();

r.setTime(dmy.parse(x));

return r;

}

public static void main(String[] args) throws ParseException

{

Person p = new Person("Tibertus Smith",date("1955.03.20"));

System.out.println("Tibertus Smith age is " + p.age());

}

}

96 CHAPTER 4. CLASSES AND OBJECTS

To get the current date and time the class Timestamp from java.sql can be used.

// TimeTest.java

import java.sql.Timestamp;

import java.util.Date;

public class TimeTest

{

public static Timestamp getCurrentTime()

{

return new Timestamp(new Date().getTime());

}

public static void main(String[] args)

{

System.out.println(getCurrentTime());

}

}

The output would like

2003-07-16 17:54:27.601

4.11. DESTROYING OBJECTS 97

4.11 Destroying Objects

Java has no explicit way to destroy an object. However, when there exists no refer-
ence to the object, nobody knows where it is and nobody can send messages to this
object. The Java run-time system creates a Garbage Collector for our application
which is a separate execution thread identifying objects which are no longer refer-
enced. Such objects are deleted by the garbage collector. However, before deleting
an object, the garbage collector gives the object one more chance to do any clean-up
tasks it wishes to do by calling the object’s finalize() method. This process is
known as finalization. All objects inherit this method from the common superclass
Object. One can explicitly drop an object reference by setting the variable to null.

// Destroy.java

class Destroy

{

static public void main(String[] args)

{

String s = new String("Egoli");

System.out.println("s = " + s); // => Egoli

s = null;

System.out.println("s = " + s); // => null

s = new String("Gauteng");

System.out.println("s = " + s); // => Gauteng

}

}

The next program shows how to use the method finalize().

// Final.java

class End

{

int myId;

public End(int sequenceNumber) { myId = sequenceNumber; }

public void finalize() { System.out.println(myId); }

}

class Final

{

public static void main(String args[])

{

End sampleObject;

for(int k=0;k < 5;k++) sampleObject = new End(k);

}

}

98 CHAPTER 4. CLASSES AND OBJECTS

4.12 Regular Expression

A regular expression is a string of characters which tells the searcher which string
(or strings) we are looking for. The javax.util.regex package is a new package in
Java 2 Platform, Standard Edition version 1.4. The package provides a regular
expression library. A regular expression is a pattern of characters that describes
a set of strings, and is often used in pattern matching. Using the classes in the
javax.util.regex package we can match sequences of characters against a regular
expression. These classes, which comprise the regular expression library, use the
Perl 5 regular expression pattern syntax, and provide a much more powerful way of
parsing text than was previously available with the java.io.StreamTokenizer and the
java.util.StringTokenizer classes. The regular expression library has three classes:

Pattern, Matcher, PatternSyntaxException

We have is one class to define the regular expression we want to match (the Pattern),
and another class (the Matcher) for searching a pattern in a given string. Most of
the work of using the regular expression library is understanding its pattern syntax.
The actual parsing is the easy part. The simplest kind of regular expression is
a literal. A literal is not simply a character within the regular expression, but a
character that is not part of some special grouping or expression within the regular
expression. For instance, the literal "x" is a regular expression. Using the literal,
a matcher, and a string, we can ask ”Does the regular expression ’x’ match the
entire string?” Here’s an expression that asks the question

boolean b = Pattern.matches("x",someString);

If the pattern "x" is the string referenced by someString, then b is true. Otherwise,
b is false. The matcher is defined by the Pattern class, not the Matcher class. The
matches method is defined by the Pattern class as a convenience for when a regular
expression is used just once. Normally, we would define a Pattern class, a Matcher

class for the Pattern, and then use the matches method defined by the Matcher

class

Pattern p = new Pattern("x");

Matcher m = p.matcher("sometext");

boolean b = m.matches();

Regular expressions can be more complex than literals. Adding to the complexity
are wildcards and quantifiers. There is only one wildcard used in regular expressions.
It is the period (.) character. A wildcard is used to match any single character,
possibly even a newline. The quantifier characters are the + and *. The question
mark is also a quantifier character. The + character placed after a regular expression
allows for a regular expression to be matched one or more times. The * is like the
+ character, but works zero or more times. For instance, if we want to find a string
with a j at the beginning, a z at the end, and at least one character between the two,

4.12. REGULAR EXPRESSION 99

we use the expression "j.+z". If there doesn’t have to be any characters between the
j and the z, we use "j.*z" instead. The pattern matching tries to find the largest
possible hit within a string. So if we request a match against the pattern "j.*z", us-
ing the string "jazjazjazjaz", it returns the entire string, not just a single "jaz".
This is called greedy behaviour. It is the default in a regular expression unless we
specify otherwise. By placing multiple expressions in parentheses, we can request a
match against multi-character patterns. For instance, to match a j followed by a
z, we can use the "(jz)" pattern. It is the same as "jz". But, by using parenthe-
sis, we can use the quantifiers and say match any number of "jz" patterns: "(jz)+".

Another way of working with patterns is through character classes. With character
classes, we specify a range of possible characters instead of specifying individual
characters. For instance, if we want to match against any letter from j to z, we
specify the range j-z in square brackets: "[j-z]". We could also attach a quantifier
to the expression, for example, "[j-z]+", to get an expression matching at least
one character between j and z, inclusively. Certain character classes are predefined.
These represent classes that are common, and so they have a common shorthand.
Some of the predefined character classes are

\d A digit ([0-9])

\D A non-digit ([^0-9])

\s A whitespace character [\t\n\x0B\f\r]

\S non-whitespace character: [^\s]

\w A word character: [a-zA-Z_0-9]

\W A non-word character: [^\w]

For character classes, ^ is used for negation of an expression. There is a second
set of predefined character classes, called POSIX character classes. These are taken
from the POSIX specification, and work with US-ASCII characters only

\p{Lower} A lower-case alphabetic character: [a-z]

\p{Upper} An upper-case alphabetic character:[A-Z]

\p{ASCII} All ASCII:[\x00-\x7F]

\p{Alpha} An alphabetic character:[\p{Lower}\p{Upper}]

\p{Digit} A decimal digit: [0-9]

\p{Alnum} An alphanumeric character:[\p{Alpha}\p{Digit}]

\p{Punct} Punctuation: one of !"#$%&’()*,-./:;<=>?@[\]^_‘{|}~

\p{Graph} A visible character: [\p{Alnum}\p{Punct}]

\p{Print} A printable character: [\p{Graph}]

\p{Blank} A space or a tab: [\t]

\p{Cntrl} A control character: [\x00-\x1F\x7F]

\p{XDigit} A hexadecimal digit: [0-9a-fA-F]

\p{Space} A whitespace character: [\t\n\x0B\f\r]

The final set of character classes listed here are the boundary matchers. These are
meant to match the beginning or end of a sequence of characters, specifically a line,
word, or pattern.

100 CHAPTER 4. CLASSES AND OBJECTS

^ The beginning of a line

$ The end of a line

\b A word boundary

\B A non-word boundary

\A The beginning of the input

\G The end of the previous match

\Z The end of the input but for the final terminator, if any

\z The end of the input

The key thing to understand about all the character class expressions is the use of
the \. When we compose a regular expression as a Java string, we must escape the \
character. Otherwise, the character following the \ will be treated as special by the
javac compiler. To escape the character, specify a double \\. By placing a double
\\ in the string, we are saying we want the actual \ character there. For instance, if
we want to use a pattern for any string of alphanumeric characters, simply having
a string containing \p{Alnum}* is not sufficient. We must escape the \ as follows

boolean b = Pattern.matches("\\p{Alnum}*",someString);

The Pattern class is for defining patterns, that is, it defines the regular expression
we want to match. Instead of using matches to see if a pattern matches the whole
string, what normally happens is we check to see if a pattern matches the next part
of the string. To use a pattern we must compile it. The commmand is

Pattern pattern = Pattern.compile(somePattern);

The matches method of the Pattern class compiles the pattern with each call. If
we want to use a pattern many times, we can avoid multiple compilation by getting
a Matcher class for the Pattern class and then using the Matcher class. After we
compile the pattern, we can request to get a Matcher for a specific string.

Matcher matcher = pattern.matcher(someString);

The Matcher provides a matches method that checks against the entire string. The
class also provides a find() method that tries to find the next sequence, possibly
not at the beginning of the string, that matches the pattern. After we know we have
a match, we can get the match with the group() method

if(matcher.find()) {

System.out.println(matcher.group());

}

We can also use the matcher as a search and replace mechanism. For instance, to
replace all occurrences of a pattern within a string, we use the following expression

String newString = matcher.replaceAll("replacement words");

4.12. REGULAR EXPRESSION 101

All occurrences of the pattern in question would be replaced by the replacement
words.

The following program takes three command line arguments. The first argument is
a string to search. The second is a pattern for the search. The third is the replace-
ment string. The replacement string replaces each occurrence of the pattern found
in the search string.

// MyRegExp.java

import java.util.regex.*;

public class MyRegExp

{

public static void main(String args[])

{

if(args.length != 3)

{

System.out.println("Use: source string, pattern, replacement string");

System.exit(-1);

}

String source = args[0];

String thePattern = args[1];

String replace = args[2];

Pattern pattern = Pattern.compile(thePattern);

Matcher match = pattern.matcher(source);

if(match.find())

{

System.out.println(match.replaceAll(replace));

}

} // end main

}

For example, if we compile the program, and then run it like this

java MyRegExp "the cat jumps over the cat" "cat" "dog"

It returns:

the dog jumps over the dog

102 CHAPTER 4. CLASSES AND OBJECTS

In next example we replace all small letter in the string Hello World by x.

// MyRegExp1.java

import java.util.regex.*;

public class MyRegExp1

{

public static void main(String args[])

{

String input = new String("Hello World");

Pattern p = Pattern.compile("[a-z]");

Matcher m = p.matcher(input);

if(m.find())

{

System.out.println(m.replaceAll("x"));

}

} // end main

}

The output is

Hxxxx Wxxxx

4.13. THE BYTECODE FORMAT 103

4.13 The Bytecode Format

Bytecodes are the machine language of the Java virtual machine (JVM). When a
JVM loads a class file, it gets one stream of bytecodes for each method in the class.
The bytecodes streams are stored in the method area of the JVM. The bytecodes for
a method are executed when that method is invoked during the course of running
the program. They can be executed by intepretation, just-in-time compiling, or any
other technique that was chosen by the designer of a particular JVM. A method’s
bytecode stream is a sequence of instructions for the Java virtual machine. Each
instruction consists of a one-byte opcode followed by zero or more operands. The
opcode indicates the action to take. If more information is required before the JVM
can take the action, that information is encoded into one or more operands that
immediately follow the opcode. Thus each bytecode consists of a one-byte opcode
followed by zero or more bytes of additional operand information. Each type of
opcode has a mnemonic. In the typical assembly language style, streams of Java
bytecodes can be represented by their mnemonics followed by any operand values.

For example consider the following Java program Exp1.java that finds the first 9001
digits of the number e.

// Exp1.java

public class Exp1

{

public static void main(String[] args)

{

int N = 9009;

int n = N;

int[] a = new int[N];

int x = 0;

while((--n != 0))

a[n] = 1 + 1/n;

for(;N > 9;System.out.print(x))

for(n=N--;(--n !=0);a[n]=x%n,x=10*a[n-1]+x/n);

}

}

We compile the Java code with

javac Exp1.java

to obtain the byte code (class file Exp1.class). To disassemble we enter

javap -c Exp1 > disassem.txt

104 CHAPTER 4. CLASSES AND OBJECTS

The contents of the file disassem.txt is

Compiled from Exp1.java

public class Exp1 extends java.lang.Object {

public Exp1();

public static void main(java.lang.String[]);

}

Method Exp1()

0 aload_0

1 invokespecial #1 <Method java.lang.Object()>

4 return

Method void main(java.lang.String[])

0 sipush 9009 // push two-byte signed integer

3 istore_1 // store integer in local variable 1

4 iload_1 // push integer from local variable 1

5 istore_2 // store integer in local variable 2

6 iload_1 // push integer in local variable 1

7 newarray int // allocate new array for int

9 astore_3 // store object reference in local variable 3

10 iconst_0 // push the integer constant 0

11 istore 4 // store integer in local variable

13 goto 24 // branch to address

16 aload_3 // retrieve object reference from local variable 3

17 iload_2 // push integer from local variable 2

18 iconst_1 // push integer constant 1

19 iconst_1 // push integer constant 1

20 iload_2 // push integer from local variable 2

21 idiv // divide one integer by another integer

22 iadd // add two integer

23 iastore // store in integer array

24 iinc 2 -1 // increment integer in local variable

27 iload_2 // push integer from local variable 2

28 ifne 16 // jump if nonzero

31 goto 80 // branches to address

34 iload_1 // pushes integer from local variable 1

35 dup // duplicate top single-word item on the stack

36 iconst_1 // push the integer constant 1

37 isub // subtract two integer

38 istore_1 // store integer in local variable 1

39 istore_2 // store integer in local variable 2

40 goto 65 // branches to address

43 aload_3 // retrieve object-reference from local variable 3

44 iload_2 // push integer from local variable 2

4.13. THE BYTECODE FORMAT 105

45 iload 4 // retrieve integer from local variable

47 iload_2 // push integer from local variable 2

48 irem // remainder of two integers

49 iastore // store an integer array

50 bipush 10 // push one-byte signed integer

52 aload_3 // retrieve object reference from local variable 3

53 iload_2 // push integer from local variable 2

54 iconst_1 // push the integer constant 1

55 isub // subtract two integers

56 iaload // retrieve integer from array

57 imul // multiply two integers

58 iload 4 // retrieve integer from local variable

60 iload_2 // pushes integer from local variable 2

61 idiv // divide an integer by another integer

62 iadd // add two integers

63 istore 4 // store integer in local variable

65 iinc 2 -1 // increment integer in local variable

68 iload_2 // push integer from local variable 2

69 ifne 43 // jump if nonzero

72 getstatic #2 <Field java.io.PrintStream out>

// get value of static field

75 iload 4 // retrieve integer from local variable

77 invokevirtual #3 <Method void print(int)>

// call an instance method

80 iload_1 // push integer from local variable 1

81 bipush 9 // push one-byte signed integer

83 if_icmpgt 34 // jump if one integer is greater than another

86 return // return from method

The bytecode instruction can be divided into several categories

Pushing constants onto the stack
Accessing and modifying the value of a register
Accessing arrays
Stack manipulation (swap, dup, pop)
Arithmetic, logical, and conversion instructions
Control transfer
Function return
Manipulating object fields
Method invocation
Object creation
Type casting

With the exception of two table lookup instruction, all instructions are fixed length
based on the opcode.

106 CHAPTER 4. CLASSES AND OBJECTS

The bytecode instruction set was designed to be compact. All instructions, except
two that deal with table jumping, are aligned on byte boundaries. The total num-
ber of opcodes is small enough so that opcodes occupy only one byte. This helps
minimize the size of class files that may be traveling across networks before being
loaded by a JVM. It also helps keep the size of the JVM implementation small. All
computation in the JVM centers on the stack. Because the JVM has no registers
for storing abitrary values, everything must be pushed onto the stack before it can
be used in a calculation. Bytecode instructions therefore operate primarily on the
stack. For example,

dup

duplicates top single-word items on the stack. Thus dup pops the top single-word
value off te operand stack, and then pushes that value twice - i.e. it makes an extra
copy of the top item on the stack. The command

ifne <label>

pops the top int off the operand stack. If the int does not equal zero, execution
branches to the address (pc + branchoffset), where pc is the address of the ifne

opcode in the bytecode and branchoffset is a 16-bit signed integer parameter follow-
ing the ifne opcode in the bytecode. If the int on the stack equals zero, execution
continues at the next instruction. The command

if_icmpgt <label>

pops the top two ints off the stack and compares them. If value2 is greater than
value1, execution branches to the address (pc + branchoffset), where pc is the
address of the if_icmpgt in the bytecode and branchoffset is a 16-bit signed integer
parameter following the if_icmpgt opcode in the bytecode. If value2 is less than
or equal to value1, execution continues at the next instruction.

Primitive types

As described in chapter 2 the JVM supports seven primitive data types. Java
programmers can declare and use variables of these data types, and Java bytecodes
operate upon these data types. The seven primitive types are listed in the following
table

Type Definition

==== ==========

byte one-byte signed two’s complement integer

short two-byte signed two’s complement integer

int 4-byte signed two’s complement integer

long 8-byte signed two’s complement integer

float 4-byte IEEE 754 single-precision float

double 8-byte IEEE 754 double-precision float

char 2-byte unsigned Unicode character

4.13. THE BYTECODE FORMAT 107

The primitive types appear as operands in bytecode streams. All primitive types
that occupy more than 1 byte are stored in big-endian order in the bytecode stream,
which means higher-order bytes precede lower-order bytes. For example, to push
the constant value 256 (hex 0100) onto the stack, we would use the sipush opcode
followed by a short operand. The short appears in the bytecode stream as 01
00 because the JVM is big-endian. If the JVM were little-endian, the short would
appear as 00 01.

Java opcodes generally indicate the type of their operands. This allows operands to
just be themselves, with no need to identify their type to the JVM. For example,
instead of having one opcode that pushes a local variable onto the stack, the JVM
has several. Opcodes iload, lload, fload, and dload push local variables of type
int, long, float, and double, respectively, onto the stack.

Pushing constants onto the stack

Many opcodes push constants onto the stack. Opcodes indicate the constant value
to push in three different ways. The constant value is either implicit in the opcode
itself, follows the opcode in the bytecode stream as an operand, or is taken from
the constant pool. Some opcodes by themselves indicate a type and constant value
to push. For example, the iconst_1 opcode tells the JVM to push integer value
one. Such bytecodes are defined for some commonly pushed numbers of various
types. These instructions occupy only 1 byte in the bytecode stream. They increase
the efficiency of bytecode execution and reduce the size of bytecode streams. The
opcodes that push ints and floats are shown in the following table

Opcode Operand(s) Description

====== ========== ===========

iconst_m1 none pushes int -1 onto the stack

iconst_0 none pushes int 0 onto the stack

iconst_1 none pushes int 1 onto the stack

iconst_2 none pushes int 2 onto the stack

iconst_3 none pushes int 3 onto the stack

iconst_4 none pushes int 4 onto the stack

iconst_5 none pushes int 5 onto the stack

fconst_0 none pushes float 0 onto the stack

fconst_1 none pushes float 1 onto the stack

fconst_2 none pushes float 2 onto the stack

The opcodes shown in the previous table push ints and floats, which are 32-bit
values. Each slot on the Java stack is 32 bits wide. Therefore each time an int

or float is pushed onto the stack, it occupies one slot. The opcodes shown in the
next table push longs and doubles. Long and double values occupy 64 bits. Each
time a long or double is pushed onto the stack, its value occupies two slots on the
stack. Opcodes that indicate a specific long or double value to push are shown in
the following table:

108 CHAPTER 4. CLASSES AND OBJECTS

Opcode Operand(s) Description

====== ========== ===========

lconst_0 none pushes long 0 onto the stack

lconst_1 none pushes long 1 onto the stack

dconst_0 none pushes double 0 onto the stack

dconst_1 none pushes double 1 onto the stack

One other opcode pushes an implicit constant value onto the stack. The aconst_null
opcode, shown in the following table, pushes a null object reference onto the stack.
The format of an object reference depends upon the JVM implementation. An ob-
ject reference will somehow refer to a Java object on the garbage-collected heap. A
null object reference indicates an object reference variable does not currently refer
to any valid object. The aconst_null opcode is used in the process of assigning
null to an object reference variable.

Opcode Operand(s) Description

========== ========== ===========

aconst_null none pushes a null object reference onto the stack

Two opcodes indicate the constant to push with an operand that immediately follows
the opcode. These opcodes, shown in the following table, are used to push integer
constants that are within the valid range for byte or short types. The byte or short
that follows the opcode is expanded to an int before it is pushed onto the stack,
because every slot on the Java stack is 32 bits wide. Operations on bytes and shorts
that have been pushed onto the stack are actually done on their int equivalents.

Opcode Operand(s) Description

====== ========== ===========

bipush byte1 expands byte1 (a byte type) to

an int and pushes it onto the stack

sipush byte1, byte2 expands byte1, byte2 (a short type)

to an int and pushes it onto the stack

Three opcodes push constants from the constant pool. All constants associated
with a class, such as final variables values, are stored in the class’s constant pool.
Opcodes that push constants from the constant pool have operands that indicate
which constant to push by specifying a constant pool index. The Java virtual
machine will look up the constant given the index, determine the constant’s type,
and push it onto the stack. The constant pool index is an unsigned value that
immediately follows the opcode in the bytecode stream. Opcodes lcd1 and lcd2

push a 32-bit item onto the stack, such as an int or float. The difference between
lcd1 and lcd2 is that lcd1 can only refer to constant pool locations one through
255 because its index is just 1 byte. Constant pool location zero is unused. lcd2

has a 2-byte index, so it can refer to any constant pool location. lcd2w also has
a 2-byte index, and it is used to refer to any constant pool location containing a
long or double, which occupy 64 bits. The opcodes that push constants from the
constant pool are shown in the following table

4.13. THE BYTECODE FORMAT 109

Opcode Operand(s) Description

====== ========== =====================================

ldc1 indexbyte1 pushes 32-bit constant_pool entry

specified by indexbyte1 onto the stack

ldc2 indexbyte1, indexbyte2 pushes 32-bit constant_pool

entry specified by indexbyte1,

indexbyte2 onto the stack

ldc2w indexbyte1, indexbyte2 pushes 64-bit constant_pool entry

specified by indexbyte1, indexbyte2

onto the stack

Pushing local variables onto the stack

Local variables are stored in a special section of the stack frame. The stack frame is
the portion of the stack being used by the currently executing method. Each stack
frame consists of three sections – the local variables, the execution environment,
and the operand stack. Pushing a local variable onto the stack actually involves
moving a value from the local variables section of the stack frame to the operand
section. The operand section of the currently executing method is always the top
of the stack, so pushing a value onto the operand section of the current stack frame
is the same as pushing a value onto the top of the stack. The Java stack is a
last-in, first-out stack of 32-bit slots. Because each slot in the stack occupies 32
bits, all local variables occupy at least 32 bits. Local variables of type long and
double, which are 64-bit quantities, occupy two slots on the stack. Local variables
of type byte or short are stored as local variables of type int, but with a value
that is valid for the smaller type. For example, an int local variable which repre-
sents a byte type will always contain a value valid for a byte (−128 ≤ value ≤ 127).

Each local variable of a method has a unique index. The local variable section of a
method’s stack frame can be thought of as an array of 32-bit slots, each one address-
able by the array index. Local variables of type long or double, which occupy two
slots, are referred to by the lower of the two slot indexes. For example, a double

that occupies slots two and three would be referred to by an index of two. Several
opcodes exist that push int and float local variables onto the operand stack. Some
opcodes are defined that implicitly refer to a commonly used local variable position.
For example, iload_0 loads the int local variable at position zero. Other local
variables are pushed onto the stack by an opcode that takes the local variable index
from the first byte following the opcode. The iload instruction is an example of
this type of opcode. The first byte following iload is interpreted as an unsigned
8-bit index that refers to a local variable. Unsigned 8-bit local variable indexes,
such as the one that follows the iload instruction, limit the number of local vari-
ables in a method to 256. A separate instruction, called wide, can extend an 8-bit
index by another 8 bits. This raises the local variable limit to 64 kilobytes. The
wide opcode is followed by an 8-bit operand. The wide opcode and its operand

110 CHAPTER 4. CLASSES AND OBJECTS

can precede an instruction, such as iload, that takes an 8-bit unsigned local vari-
able index. The JVM combines the 8-bit operand of the wide instruction with the
8-bit operand of the iload instruction to yield a 16-bit unsigned local variable index.

The opcodes that push int and float local variables onto the stack are shown in the
following table:

Opcode Operand(s) Description

====== ========== ===========

iload vindex pushes int from local variable position vindex

iload_0 none pushes int from local variable position zero

iload_1 none pushes int from local variable position one

iload_2 none pushes int from local variable position two

iload_3 none pushes int from local variable position three

fload vindex pushes float from local variable position vindex

fload_0 none pushes float from local variable position zero

fload_1 none pushes float from local variable position one

fload_2 none pushes float from local variable position two

fload_3 none pushes float from local variable position three

The next table shows the instructions that push local variables of type long and
double onto the stack. These instructions move 64 bits from the local variable
section of the stack frame to the operand section.

Opcode Operand(s) Description

====== ========== ===========

lload vindex pushes long from local variable positions vindex

and vindex+1

lload_0 none pushes long from local variable positions zero

and one

lload_1 none pushes long from local variable positions one

and two

lload_2 none pushes long from local variable positions two

and three

lload_3 none pushes long from local variable positions three

and four

dload vindex pushes double from local variable positions vindex

and vindex+1

dload_0 none pushes double from local variable positions zero

and one

dload_1 none pushes double from local variable positions one

and two

dload_2 none pushes double from local variable positions two

and three

dload_3 none pushes double from local variable positions three

and four

4.13. THE BYTECODE FORMAT 111

The final group of opcodes that push local variables move 32-bit object references
from the local variables section of the stack frame to the operand section. These
opcodes are shown in the following table:

Opcode Operand(s) Description

====== ========== ===========

aload vindex pushes object reference from local variable

position vindex

aload_0 none pushes object reference from local variable

position zero

aload_1 none pushes object reference from local variable

position one

aload_2 none pushes object reference from local variable

position two

aload_3 none pushes object reference from local variable

position three

Popping to local variables

For each opcode that pushes a local variable onto the stack there exists a correspond-
ing opcode that pops the top of the stack back into the local variable. The names
of these opcodes can be formed by replacing load in the names of the push opcodes
with store. The opcodes that pop ints and floats from the top of the operand stack
to a local variable are listed in the following table. Each of these opcodes moves one
32-bit value from the top of the stack to a local variable.

Opcode Operand(s) Description

====== ========== ===========

istore vindex pops int to local variable position vindex

istore_0 none pops int to local variable position zero

istore_1 none pops int to local variable position one

istore_2 none pops int to local variable position two

istore_3 none pops int to local variable position three

fstore vindex pops float to local variable position vindex

fstore_0 none pops float to local variable position zero

fstore_1 none pops float to local variable position one

fstore_2 none pops float to local variable position two

fstore_3 none pops float to local variable position three

The next table shows the instructions that pop values of type long and double into
a local variable. These instructions move a 64-bit value from the top of the operand
stack to a local variable.

Opcode Operand(s) Description

====== ========== ===========

lstore vindex pops long to local variable positions vindex

112 CHAPTER 4. CLASSES AND OBJECTS

and vindex+1

lstore_0 none pops long to local variable positions zero and one

lstore_1 none pops long to local variable positions one and two

lstore_2 none pops long to local variable positions two and three

lstore_3 none pops long to local variable positions three and four

dstore vindex pops double to local variable positions vindex

and vindex+1

dstore_0 none pops double to local variable positions zero and one

dstore_1 none pops double to local variable positions one and two

dstore_2 none pops double to local variable positions two and three

dstore_3 none pops double to local variable positions three and four

The final group of opcodes that pops to local variables are shown in the following
table. These opcodes pop a 32-bit object reference from the top of the operand
stack to a local variable.

Opcode Operand(s) Description

====== ========== ===========

astore vindex pops object reference to local variable position vindex

astore_0 none pops object reference to local variable position zero

astore_1 none pops object reference to local variable position one

astore_2 none pops object reference to local variable position two

astore_3 none pops object reference to local variable position three

Type conversions

The Java virtual machine has many opcodes that convert from one primitive type
to another. No opcodes follow the conversion opcodes in the bytecode stream. The
value to convert is taken from the top of the stack. The JVM pops the value at the
top of the stack, converts it, and pushes the result back onto the stack. Opcodes
that convert between int, long, float, and double are shown in the following table.
There is an opcode for each possible from-to combination of these four types:

Opcode Operand(s) Description

====== ========== ===========

i2l none converts int to long

i2f none converts int to float

i2d none converts int to double

l2i none converts long to int

l2f none converts long to float

l2d none converts long to double

f2i none converts float to int

f2l none converts float to long

f2d none converts float to double

d2i none converts double to int

d2l none converts double to long

d2f none converts double to float

4.13. THE BYTECODE FORMAT 113

Opcodes that convert from an int to a type smaller than int are shown in the
following table. No opcodes exist that convert directly from a long, float, or
double to the types smaller than int. Therefore converting from a float to a
byte, for example, would require two steps. First the float must be converted to
an int with f2i, then the resulting int can be converted to a byte with int2byte.

Opcode Operand(s) Description

====== ========== ====================

int2byte none converts int to byte

int2char none converts int to char

int2short none converts int to short

Although opcodes exist that convert an int to primitive types smaller than int

(byte, short, and char), no opcodes exist that convert in the opposite direction.
This is because any bytes, shorts, or chars are effectively converted to int before
being pushed onto the stack. Arithmetic operations upon bytes, shorts, and chars
are done by first converting the values to int, performing the arithmetic operations
on the ints, and being happy with an int result.

The maximum value for a byte is 127. The minimum value is −128. Values of type
int that are within this range convert directly to byte. Consider now the case,
when the int gets beyond the valid range for byte, things get interesting. The JVM
converts an int to a byte by truncating and sign extending. The highest order bit,
the sign bit, of longs, ints, shorts, and bytes indicate whether or not the integer
value is positive or negative. If the sign bit is zero, the value is positive. If the sign
bit is one, the value is negative. Bit 7 of a byte value is its sign bit. To convert an
int to a byte, bit 7 of the int is copied to bits 8 through 31. This produces an int

that has the same numerical value that the int’s lowest order byte would have if it
were interpreted as a byte type. After the truncation and sign extension, the int
will contain a valid byte value. What happens when an int that is just beyond the
valid range for byte types gets converted to a byte. For example, when the variable
has a value of 128 (0x00000080) and is converted to byte, the resulting byte value
is −128 (0xffffff80). Later, when the variable has a value of −129 (0xffffff7f) and is
converted to byte, the resulting byte value is 127 (0x0000007f).

Chapter 5

Inheritance and Abstract Classes

5.1 Introduction

Inheritance is an integral part of Java and any OOP language such as C++. In Java
we are always using inheritance when we create a class, because if we do not override
we inherit from Java’s standard root class Object. When we use inheritance we
say

The derived class is like the base class

with some additional information added to the derived class. In the class the key-
word is extends followed by the name of the base class. Inheritance does not just
copy the interface of the base class. When we create an object of the derived class
it contains within it a subobject of the base class. This subobject is the same as
if we had created an object of the base class itself. It is important that the base
class is initialized correctly. We are always doing inheritance when we create a class,
because if we do not say otherwise we inherit from Java’s root class Object. Java
does not support multiple inheritance. Thus a class can only have one super class.

An abstract class is a class that has at least one abstract method. An abstract
method is a method that is declared with only its signature; it has no implementa-
tion. Since it has at least one abstract method, an abstract class cannot be instan-
tiated. Classes and methods are declared to be abstract by means of the abstract

modifier. A number of Java classes are declared abstract. For example

public abstract class AbstractList

extends AbstractCollection

implements List

We also allowed to write our own abstract class and then in the derived classes give
the implementations.

In the following section we give examples for the use of abstract classes and inheri-
tance.

114

5.2. ABSTRACT CLASS 115

5.2 Abstract Class

In the following program the class Circle and the class Square implements the
abstract method

abstract double area();

An abstract method can be viewed as an outline or a specification contract. It spec-
ifies what its subclasses have to implement, but leaves the actual implementation
up to them. The abstract area() method is declared in the Shape class, because
we want every subclass to have a complete method that returns the areas of its in-
stances, and we want all those methods to have the same signature double area().
The abstract method in the abstract superclass enforces that specification.

// MTest.java

import java.math.*;

abstract class Shape

{

abstract double area();

}

class Circle extends Shape

{

private double radius;

Circle(double radius) // constructor

{

this.radius = radius;

}

double area()

{

return Math.PI*radius*radius;

}

} // end class Circle

class Square extends Shape

{

private double side;

Square(double side) // constructor

{

this.side = side;

116 CHAPTER 5. INHERITANCE AND ABSTRACT CLASSES

}

double area()

{

return side*side;

}

} // end class Square

class Triangle extends Shape

{

private double base, altitude;

Triangle(double base,double altitude) // constructor

{

this.base = base;

this.altitude = altitude;

}

double area()

{

return 0.5*base*altitude;

}

} // end class Triangle

class MTest

{

public static void main(String[] args)

{

Circle circle = new Circle(2.5);

System.out.println("area of circle is: " + circle.area());

Square square = new Square(3.1);

System.out.println("area of square is: " + square.area());

Triangle triangle = new Triangle(2.0,5.0);

System.out.println("area of triangle is: " + triangle.area());

}

}

5.3. INHERITANCE 117

5.3 Inheritance

Inheritance is the creation of one class by extending another class so that instances
of the new class automatically inherit the fields and methods of its parent class.
The keyword is extends. In the following program the line

class ClassB extends ClassA

defines class ClassB to be a subclass of class ClassA. We override toString().

// Inher.java

class ClassA

{

protected double x;

public String toString()

{

x = 4.5;

return new String("(" + x + ")");

}

}

class ClassB extends ClassA

{

private double y;

public String toString()

{

y = 1.5;

return new String("(" + x + "," + y + ")");

}

}

class Inher

{

public static void main(String[] args)

{

ClassA a = new ClassA();

System.out.println("a = " + a);

ClassB b = new ClassB();

System.out.println("b = " + b);

}

}

// output

// (4.5)

// (0.0,1.5)

118 CHAPTER 5. INHERITANCE AND ABSTRACT CLASSES

The following program shows how a subclass’s fields and methods override those
of its superclass. In the following program we override the methods void g() and
String toString().

// Inher1.java

class ClassA

{

protected int m;

protected int n;

void f()

{

System.out.println("In ClassA method f() ");

m = 15;

}

void g()

{

System.out.println("In ClassA method g() ");

n = 31;

}

public String toString()

{

return new String("{ m=" + m + ", n=" + n + " }");

}

} // end ClassA

class ClassB extends ClassA

{

private double n;

void g()

{

System.out.println("In ClassB method g() ");

n = 2.789;

}

public String toString()

{

return new String("{ m=" + m + ", n=" + n + " }");

}

} // end ClassB

5.3. INHERITANCE 119

class Inher1

{

public static void main(String[] args)

{

ClassA a = new ClassA();

a.f();

a.g();

System.out.println("a = " + a);

ClassB b = new ClassB();

b.f();

b.g();

System.out.println("b = " + b);

}

}

The output is

In ClassA method f()

In ClassA method g()

a = { m=15, n=31 }

In ClassA method f()

In ClassB method g()

b = { m=15, n=2.789 }

120 CHAPTER 5. INHERITANCE AND ABSTRACT CLASSES

5.4 Composition

Inheritance uses a - is a relationship -. Composition is the creation of one class
using another class for its component data. It uses the - has a relationship -. For
example a person has a name. It is very common to use composition and inheri-
tance together. The following program shows such a case. Both composition and
inheritance allow to place subobjects inside our new class. The protected keyword
says ”this is private as far as the class user is concerned”, but available to anyone
who inherits from this class.

Java uses the keyword super to refer to members of the parent class. When used
in the form super() it invokes the superclass’s constructor. When used in the form
super.f() it invokes the function f() declared in the superclass. Thus we can
override the override. The method String trim() in the String class removes
white space from both ends of this string.

// MInher.java

class Name

{

private String first;

private String middle;

private String last;

Name() { }

Name(String first, String last)

{ this.first = first; this.last = last; }

Name(String first, String middle, String last)

{ this(first,last); this.middle = middle; }

String first() { return first; }

String middle() { return middle; }

String last() { return last; }

void setFirst(String first) { this.first = first; }

void setMiddle(String middle) { this.middle = middle; }

void setLast(String last) { this.last = last; }

public String toString()

5.4. COMPOSITION 121

{

String s = new String();

if(first != null) s+= first + " ";

if(middle != null) s += middle + " ";

if(last != null) s += last + " ";

return s.trim();

}

}

class Person

{

protected Name name;

protected char sex; // ’M’ or ’F’

protected String id; // e.g., social Security number

Person(Name name,char sex)

{ this.name = name; this.sex = sex; }

Person(Name name,char sex,String id)

{ this.name = name; this.sex = sex; this.id = id; }

Name name() { return name; }

char sex() { return sex; }

String id() { return id; }

void setId(String id) { this.id = id; }

public String toString()

{

String s = new String(name + " (sex: " + sex);

if(id != null) s += "; id: " + id;

s += ")";

return s;

}

}

class Student extends Person

{

protected int credits; // credit hours earned

protected double gpa; // grad-point average

Student(Name name,char sex,int credits,double gpa)

{

122 CHAPTER 5. INHERITANCE AND ABSTRACT CLASSES

super(name,sex);

this.credits = credits;

this.gpa = gpa;

}

int credits() { return credits; }

double gpa() { return gpa; }

public String toString()

{

String s;

s = new String(super.toString()); // invokes Person.toString()

s += "\n\tcredits: " + credits;

s += "\n\tgpa: " + gpa;

return s;

}

}

class MInher

{

public static void main(String[] args)

{

Name fc = new Name("Francis", "Harry Compton", "Crick");

System.out.println(fc + " won the 1962 Nobel in Physiology.");

System.out.println("His first name was " + fc.first());

Name bobsName = new Name("Robert", "LKee");

Person bob = new Person (bobsName, ’M’);

System.out.println("bob: " + bob);

bob.name.setMiddle("Edward");

System.out.println("bob: " + bob);

Person ann = new Person(new Name("Ann", "Baker"), ’F’);

System.out.println("ann: " + ann);

ann.setId("0530117366");

System.out.println("ann: " + ann);

Name rolandsName = new Name("Roland", "Flechter");

Student roland = new Student(rolandsName,’M’,16,3.5);

System.out.println("Roland: " + roland);

}

}

5.5. CONSTRUCTORS 123

5.5 Constructors

When an object is created, its member can be initialized by a constructor method.
A constructor is not a method but a special operator which is executed when a new
instance of a class is created. Depending on the arguments passed to the class when
the instance is generated, a different constructor can be called. By default, every
class has a single constructor with no parameters the so-called default constructor.
Besides the default constructor we can define other constructors. We note that
constructors, unlike methods, are not inherited.

In the following program we provide for the class MPoint a default constructor
and a constructor which takes as argument two double. We override the methods
toString() and equals() from the Object class.

// MPoint.java

public class MPoint

{

private double x;

private double y;

public MPoint() // default constructor

{

x = 1.0; y = 0.0;

}

public MPoint(double a,double b) // constructor

{

x = a; y = b;

}

public double square_length(MPoint p) // method

{

return p.x*p.x + p.y*p.y;

}

public double square_distance(MPoint p,MPoint q) // method

{

return (p.x - q.x)*(p.x - q.x) + (p.y - q.y)*(p.y - q.y);

}

public boolean equals(MPoint p,MPoint q) // overriden method

{

if((p.x == q.x) && (p.y == q.y))

return true;

124 CHAPTER 5. INHERITANCE AND ABSTRACT CLASSES

else

return false;

}

public String toString() // overriden method

{

return new String("(" + x + ", " + y + ")");

}

public static void main(String[] args)

{

MPoint P;

P = new MPoint(4.5,5.5);

MPoint Q = new MPoint(3.0,1.0);

double length_square = P.square_length(P);

double distance_square = P.square_distance(P,Q);

System.out.print("Length of P squared = ");

System.out.println(length_square);

System.out.print("Distance between P and Q squared = ");

System.out.println(distance_square);

boolean b = P.equals(Q);

System.out.println("b = " + b);

String st = P.toString();

System.out.println("st = " + st);

MPoint access; // default constructor called

access = new MPoint();

double result = access.x;

System.out.println(result); // => 1.0

}

}

5.5. CONSTRUCTORS 125

The above program the class MPoint contains the main method. In the follow-
ing program we have two classes in one file. The class MMain contains the main

method. The class MPoint is standealone. In order that we can use construc-
tors, methods and data members of class MPoint in class MMain they have to be
declared public.

// MMain.java

class MPoint

{

private double x;

private double y;

public double z; // public data member

public MPoint() // default constructor

{

x = 0.0; y = 0.0; z = 1.0;

}

public MPoint(double a,double b) // constructor

{

x = a; y = b;

}

public double square_length(MPoint p) // method

{

z = p.x*p.x + p.y*p.y;

return p.x*p.x + p.y*p.y;

}

public boolean equals(MPoint p,MPoint q) // method

{

if((p.x == q.x) && (p.y == q.y))

return true;

else

return false;

}

public String toString() // overriden method

{

return new String("(" + x + ", " + y + ")");

}

} // end class MPoint

126 CHAPTER 5. INHERITANCE AND ABSTRACT CLASSES

class MMain

{

public static void main(String[] args)

{

MPoint P;

P = new MPoint(4.5,5.5);

double distance_square = P.square_length(P);

System.out.println(distance_square); // 50.5

double value = P.z;

System.out.println(value); // 50.5

}

}

If we change the line in the above program

public double z;

in the class MPoint to

private double z;

then we obtain the error message

variable z in class MPoint is not accessible from class MMain

After compiling the program with

javac MMain.java

we obtain two class files

MPoint.class MMain.class

Next we put the two classes into two different files. The file MMPoint.java contains
the class MMPoint. It does not contain a main method. To use it we have to compile
it using javac MMPoint.java. This provides us with the class file MMPoint.class.
The file MMain.java contains the main method.

5.5. CONSTRUCTORS 127

// MMPoint.java

public class MMPoint

{

private double x;

private double y;

public double z;

public MMPoint()

{

x = 0.0;

y = 0.0;

z = 0.0;

}

public MMPoint(double a,double b)

{

x = a; y = b;

}

public double square_length(MMPoint p)

{

z = p.x*p.x + p.y*p.y;

return p.x*p.x + p.y*p.y;

}

public boolean equals(MPoint p,MPoint q)

{

if((p.x == q.x) && (p.y == q.y))

return true;

else

return false;

}

public String toString()

{

return new String("(" + x + ", " + y + ")");

}

}

128 CHAPTER 5. INHERITANCE AND ABSTRACT CLASSES

The class MMMain calls the class MMPoint which is in a separate file. To run the
program we first have to compile the file MMPoint.java, i.e.

javac MMPoint.java

to obtain the file

MMPoint.class

Then we compile file MMMain.java by entering the commmand

javac MMMain.java

To run the program we enter

java MMMain

The file MMMain.java only includes the class MMMain with the main method. It
uses the constructor

MMPoint(double,double)

and the method

square_length(MMPoint)

of the class MMPoint. Furthermore we access the public data member z of class
MMPoint. This can be done, because double z is declared public.

// MMMain.java

public class MMMain

{

public static void main(String[] args)

{

MMPoint P;

P = new MMPoint(4.5,5.5);

double distance_square = P.square_length(P);

System.out.println(distance_square); // 50.5

double value = P.z;

System.out.println(value); // 50.5

}

}

5.6. INNER CLASSES 129

5.6 Inner Classes

A feature added to JDK 1.1 are inner classes. Inner classes are defined within the
scope of an outer (or top-level) class. The inner class is a useful feature because it
allows to group classes that logically belong together and control the visibility of one
within the other. These inner classes can be defined within a block of statements or
(anonymously) within an expression. The following program gives an application of
this concept.

// Employee.java

public class Employee

{

int age = 0;

public String name = "Charles";

double rate = 111.34;

Address address;

Wage wage;

public Employee(String aName,int number, String aStreet,

String aCity,double ratePerHour,int hours)

{

name = aName;

rate = ratePerHour;

address = new Address(number,aStreet,aCity);

wage = new Wage(hours);

}

// inner class

class Address

{

int number = 0;

String street = "";

String city = "";

Address(int num,String aStreet,String aCity)

{

number = num;

street = aStreet;

city = aCity;

}

void printDetails()

{

130 CHAPTER 5. INHERITANCE AND ABSTRACT CLASSES

System.out.println(number + " " + street + " , " + city);

}

} // end class Address

// inner class

class Wage

{

int hoursWorked = 0;

Wage(int hours)

{

hoursWorked = hours;

}

void printDetails()

{

System.out.println("Pay packet = " + hoursWorked*rate);

}

} // end class Wage

public static void main(String[] args)

{

Employee[] e = new Employee[2];

e[0] = new Employee("Bob",33,"Lane Street","Springfield",4.5,56);

e[1] = new Employee("Lucky",123,"Pop Street","Lancing",5.7,34);

e[0].printInformation();

e[1].printInformation();

}

public void printInformation()

{

System.out.println("\nFor Employee: " + name);

address.printDetails();

wage.printDetails();

}

}

5.7. INTERFACES 131

5.7 Interfaces

Subclasses are used to redefine the behaviour and data structures of a superclass.
As mentioned before Java supports single inheritance while C++ supports multiple
inheritance. Multiple inheritance is where a subclass can inherit from more than
one superclass. However, problems can arise when attempting to determine which
methods are executed. Java introduces the concept of interfaces to overcome one of
the most significant problems with single inheritance. Thus the interface keyword
takes the abstract concept one step further. Thus the interface is used to establish
a protocol between classes. The Java interface construct is essentially a skeleton
which specifies the protocol that a class must provide if it implements that interface.
That is, it indicates which must be available from any class which implements that
interface. The interface itself does not define any functionality. The format for
an interface is

access-modifier interface name

{

static variable definitions

method headers ...

}

For example

// ColorConstants.java

public interface ColorConstants

{

int red = 0xff0000; int green = 0x00ff00; int blue = 0x0000ff;

}

We compile the file ColorConstants.java to obtain the class file. We can now
apply the interface with the following program

// ColorImpl.java

public class ColorImpl implements ColorConstants

{

public static void main(String[] args)

{

int myblue = ColorConstants.blue;

System.out.println("myblue = " + myblue); // => 255

}

}

Chapter 6

The GUI and its Components

6.1 Introduction

The AWT (Abstract Window Tookit) allows Java developers to quickly build Java
applets and applications using a group of prebuilt user interface components. A
number of Java IDE’s are available which support the creation of user interfaces
using the AWT by dragging-and-dropping components off a toolbar. These IDE’S
actually generate Java code on the fly based on what we do in the graphical design
environment. This is in contrast to toolset such as Microsoft Visual Basic which
separate user interface design from the application code. The advantage of the Java
approach is that we can edit our GUI either through a graphical IDE or by simple
modifying the Java code and recompiling.

The three steps common to all Java GUI applications are:

1. Creation of a container

2. Layout of GUI components

3. Handling of events

This container object is actually derived from the java.awt.Container class and
is one of (or inherited from) three primary classes:

java.awt.Window, java.awt.Panel, java.awt.ScrollPane .

The Window class represents a standalone window (either an application window in
the form of a java.awt.Frame, or a dialog dox in the form of a java.awt.Dialog).

The java.awt.Panel class is not a standalone window in and of itself; instead,
it acts as a backgroud container for all other components on a form. for instance,
the java.awt.Applet class is a derect descendant of java.awt.Panel.

132

6.1. INTRODUCTION 133

The main primitive objects derived from class Component are

Button, Checkbox, Label, List, ScrollBar, TextArea, TextField

Container objects are derived from Component. The main ones derived from that
are

Dialog, FileDialog, Frame, Panel, Window

GUI components can be arranged on a container using one of two methords. the first
method involves the exact positioning (by pixel) of components on the container.
the second method involves the use of what Java calls Layout Managers. If we think
about it, vitually all GUIs arrange components based on the row-column metaphor.
In other words, buttons, text boxes, and list generally are not located at random
all over a form. Instead, they are usually neatly arranged in rows or columns with
an OK or Cancel button arranged at the bottom or on the side. Layout Managers
allow us to quickly add components to the manager and then have it arrange them
automatically. The AWT provides six layout managers for our use:

1. java.AWT.BorderLayout
2. java.awt.FlowLayout
3. java.awt.CardLayout
4. java.awt.GridLayout
5. java.awt.GridBagLayout
6. java.awt.BoxLayout

The Container class contains the setLayout() method so that we can set the
default LayoutManager to be used by our GUI. To actually add components to the
container, we use the container’s add() method.

All events generated are subclasses of java.awt.AWTEvent, and contain information
such as the position where the event was caused and the source (the class where the
event is generated). Different event classes can be used, for example a MouseEvent

is generated when a mouse is used. If a programmer is only interested in the mouse
when it is used to press a button (and not in whether it is the left or right mouse
button that has been pressed), they can simply use an ActionEvent.

A piece of code that needs to know if an event happens should implement an
EventListener and and register it with components that may generate an event.
If an event is generated the listener is called with the event as a parameter.

134 CHAPTER 6. THE GUI AND ITS COMPONENTS

The class Button provides buttons. Buttons are for clicking. We can specify their
labels and control what happens when they are clicked.

A Checkbox is a graphical component that can be in either an ”on” (true) or ”off”
(false) state. Clicking on a Checkbox changes it state from ”on” to ”off” or from
”off” to ”on”. With a Checkbox any number can be selelected at the same time.
The constructor Checkbox(String label) creates a checkbox with the specified
label.

The Choice class presents a pop-up menu of choices. The current choice is displayed
as the title of the menu. Thus their are drop-down lists from which the user can
select one option.

A Label object is a component for placing text in a container. A label displays a
single line of read-only text. Labels are purely for display. We need them because
there is no reliable way to integrate drawString items with GUI components. The
drawString items have their positions set by co-ordinates, while GUI components
are placed whereever they will fit with Layouts giving us some control.

The List component presents the user with a scrolling list of text items. The list
can be set up so that the user can choose either one item or multiple items.

A TextField object is a text component that allows for the editing of a single line
of text. The constructor Textfield(String text,int cols) constructos a new
Textfield, text is the text to be displayed and cols is the number of columns.

A TextArea object is a multiline region that displays text. It can be set to allow
editing or to be read-only. With the TextArea constructor we can control whether
a TextArea will have scroll bars: vertical, horizontal, both or neither.

6.2. CLASS COMPONENT AND CLASS CONTAINER 135

6.2 Class Component and Class Container

A component is an object having a graphical representation that can be displayed on
the screen and that can interact with the user (for example a button or a textfield).
The generic Abstract Window Toolkit (AWT) container object is a component that
can contain other AWT components. Components added to a container are tracked
in a list. The method

void add(Component) // class Container

in class Container adds the specified component to the end of the container. The
component could be for example a Button or a TextField.

The method

void setSize(int width,int height) // class Component

resizes this component so that it has width width and height height. The method

addWindowListener(this) // class Window

adds the specified window listener to receive window events from this window. In a
method, the keyword this refers to the object on which the method operates. The
method

void setTitle(String title) // class Frame

sets the title for the frame of the specified title.

Layout managers help to produce portable, presentable user interfaces. There are a
number of different layout managers which use different philosophies to handle the
way in which they lay out components. They are

FlowLayout, BorderLayout, GridLayout, GridBagLayout, CardLayout

The constructor FlowLayout() in the class FlowLayout constructs a new flow
layout. The FlowLayout manager is the simplest manager. It lays the components
out in a row across a window. When there is no more space left, it starts on the
next row, and so until no more space is left. The BorderLayout class breaks up
the available space on the container component into five regions, north, south, east,
west and centre. When adding a component to a border layout we have to specify
which region it will go. There are two constructors for the BorderLayout class. The
constructor

BorderLayout()

creates a new BorderLayout with the default horizontal and vertical gaps of zero.
The constructor

136 CHAPTER 6. THE GUI AND ITS COMPONENTS

BorderLayout(int hor,int ver)

creates a new BoderLayout with the specified horizontal and vertical gaps between
the components. The BorderLayout class contains the following data fields

static String CENTER (middle of container)

static String EAST (right side of container)

static String NORTH (top of container)

static String SOUTH (bottom of container)

static Strig WEST (left side of container)

The GridLayout class divides the container area into a rectangular grid. Every new
compnent we add goes into a single grid cell. The cells are filled from left to right
and top to bottom. The GridLayout() constructor creates a grid layout with a
default of one column per component, in a single row. The constructor

GridLayout(int rows,int cols,int hgap,int vgap)

creates a grid layout with the specified number of columns and rows. This class is a
flexible layout manager that aligns components vertically and horizontally without
requiring that the components be the same size. The CardLayout object is a layout
manager for a container. It treats each component in the container as a card. Only
one card is visible at the time, and the containter acts as a stack of cards.

The method

void setLayout(LayoutManger mgr) // class Container

sets the layout manger for this container.

The class WindowListener includes the methods

windowClosing, windowClosed, windowOpened, windowDeiconified

windowIconified, windowActivated, windowDeactivated

The method windowClosing is invoked when a window is in the process of being
closed. It uses the method exit() from the System class.

The method

void setVisible(boolean b) // class Component

shows or hides this component depending on the value of parameter b.

The following two programs show an application of the classes Container and
Component togther with the classes Button, Checkbox, Choice, Label, List and
TextField.

6.2. CLASS COMPONENT AND CLASS CONTAINER 137

// GUI.java

import java.awt.*;

import java.awt.event.*;

class GUI extends Frame

{

public GUI() // default constructor

{

setSize(200,200);

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); }});

setTitle("GUI and its component");

setLayout(new FlowLayout());

Button b1 = new Button("Button 1");

Button b2 = new Button("Button 2");

add(b1); add(b2);

Checkbox ch1 = new Checkbox("one",null,true);

Checkbox ch2 = new Checkbox("two");

Checkbox ch3 = new Checkbox("three");

add(ch1); add(ch2);

Label l1 = new Label("Hello Egoli");

Label l2 = new Label("Good Night");

add(l1); add(l2);

TextField t = new TextField(20);

add(t);

} // end default constructor GUI

public static void main(String[] args)

{

GUI gui = new GUI();

gui.setVisible(true);

}

}

138 CHAPTER 6. THE GUI AND ITS COMPONENTS

// GUI1.java

import java.awt.*;

import java.awt.event.*;

class GUI1 extends Frame

{

public GUI1() // default constructor

{

setSize(200,200);

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); }});

setLayout(new FlowLayout());

String[] names = { "Nela", "Alda", "Helen" };

Choice choice = new Choice();

choice.addItem(names[0]);

choice.addItem(names[1]);

choice.addItem(names[2]);

add(choice);

List lst = new List(3,false);

lst.add("Nela");

lst.add("Alda");

lst.add("Helen");

add(lst);

} // end default constructor GUI1

public static void main(String[] args)

{

GUI1 gui = new GUI1();

gui.setVisible(true);

}

}

6.3. ACTIONLISTENER AND ACTIONEVENT 139

6.3 ActionListener and ActionEvent

The interface

public abstract ActionListener extends EventListener

is the listener interface for receiving action events. The class that is interested in
processing an action event implements this interface and the object created with that
class is registered with a component using the component’s addActionListener

method. When the action event occurs that object’s actionPerformed method
is invoked. The class ActionEvent provides for a semantic event which indicates
that a component-defined action occured. This high-level event is generated by a
component (such as a button) when the component specific action occurs (such as
being pressed). The event is passed to every ActionListener object that registered
to receive such events using the component’s addActionListener method. The
method

void actionPerformed(ActionEvent e) // class ActionListener

is invoked when an action occurs.

// ButtonWA.java

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class ButtonWA extends Applet

{

Button b1, b2;

TextField t = new TextField(20); // specified number of columns

public void init()

{

b1 = new Button("Button 1");

b2 = new Button("Button 2");

b1.addActionListener(new B1());

b2.addActionListener(new B2());

add(b1); add(b2); add(t);

} // end init

// The listener interface for receiving action events

class B1 implements ActionListener

{

public void actionPerformed(ActionEvent e)

140 CHAPTER 6. THE GUI AND ITS COMPONENTS

{

t.setText("Button 1");

}

} // end class B1

class B2 implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

t.setText("Button 2");

}

} // end class B2

// to close the application

static class WL extends WindowAdapter

{

public void windowClosing(WindowEvent e)

{

System.exit(0);

}

} // end class WL

// A main() for application

public static void main(String[] args)

{

ButtonWA applet = new ButtonWA();

Frame aFrame = new Frame("ButtonWA");

aFrame.addWindowListener(new WL());

aFrame.add(applet,BorderLayout.CENTER);

aFrame.setSize(300,200);

applet.init();

applet.start();

aFrame.setVisible(true);

}

}

6.4. CLASS PANEL 141

6.4 Class Panel

The class Panel is a container class in which components can be placed. Panel is
derived from class Container. Components are placed on containers with container
method add. In Java we can divide a top-level window into panels. Panels act as
(smaller) containers for interface elements and can themselves be arranged inside
the window. For example we can have one panel for the buttons and another for the
text fields. Push button are created with the Button class. The class GridLayout

arranges the components into rows and columns.

// ButtonGame.java

import java.awt.*;

import java.awt.event.*;

class ButtonGame extends Frame implements ActionListener

{

private int nRows, nCols, nButtons;

private int blankCol, blankRow, clickedRow, clickedCol;

private Button[][] buttons;

private TextField textField;

public ButtonGame()

{

setSize(200,200);

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); }});

nRows = 4; nCols = 4; nButtons = nRows*nCols;

Panel panel = new Panel();

panel.setLayout(new GridLayout(nRows,nCols));

buttons = new Button[nRows][nCols];

for(int nRow=0;nRow<nRows;nRow++)

{

for(int nCol=0;nCol<nCols;nCol++)

{

buttons[nRow][nCol] = new Button("");

buttons[nRow][nCol].addActionListener(this);

panel.add(buttons[nRow][nCol]);

}

}

142 CHAPTER 6. THE GUI AND ITS COMPONENTS

add("Center",panel);

textField = new TextField("",80);

textField.setEditable(false);

add("South",textField);

int labelsUsed[] = new int[nButtons];

for(int i=0;i<nButtons;i++)

{

boolean labelUsed;

int label;

do

{

label = random(nButtons)+1;

labelUsed = false;

for(int j=0;j<i;j++)

labelUsed = ((labelUsed) || (label==labelsUsed[j]));

} while (labelUsed);

labelsUsed[i] = label;

int nRow = i/nCols;

int nCol = i - nRow*nCols;

buttons[nRow][nCol].setLabel((new Integer(label)).toString());

}

getButtonPosition((new Integer(nButtons)).toString());

blankRow = clickedRow; blankCol = clickedCol;

Button blank = buttons[clickedRow][clickedCol];

blank.setLabel(""); blank.setBackground(Color.green);

} // end constructor ButtonGame

private int random(int k) {return (int)(k*Math.random()-0.1);}

private void getButtonPosition(String label)

{

for(int nr=0;nr<nRows;nr++)

{

for(int nc=0;nc<nCols;nc++)

{

if(buttons[nr][nc].getLabel().equals(label))

{

clickedRow = nr; clickedCol = nc;

textField.setText("["+ nr +’,’ + nc + "]" + label);

}

6.4. CLASS PANEL 143

}

}

}

public void actionPerformed(ActionEvent e)

{

getButtonPosition(e.getActionCommand());

textField.setText("["+blankRow+","+blankCol+"] => ["

+clickedRow +","+clickedCol+"]");

if(clickedRow == blankRow)

{

if(Math.abs(clickedCol-blankCol) == 1)

moveBlank(blankRow,blankCol,clickedRow,clickedCol);

}

else if(clickedCol == blankCol)

{

if(Math.abs(clickedRow-blankRow) == 1)

moveBlank(blankRow,blankCol,clickedRow,clickedCol);

}

}

public void moveBlank(int oldRow,int oldCol,int newRow,int newCol)

{

Button oldBlank = buttons[oldRow][oldCol];

Button newBlank = buttons[newRow][newCol];

String label = newBlank.getLabel();

newBlank.setLabel(""); newBlank.setBackground(Color.green);

oldBlank.setLabel(label); oldBlank.setBackground(Color.lightGray);

blankRow = newRow; blankCol = newCol;

}

public static void main(String[] args)

{

new ButtonGame().setVisible(true);

}

}

144 CHAPTER 6. THE GUI AND ITS COMPONENTS

In many applications it is useful to group components into separate containers and
inserting these containers into the window. For example, for a CAD application we
would like to have a drawing area and some button on either side of the drawing
area. In such a case it is useful to generate two panels of buttons and insert them in
the West and East of the frame window using border layout for the frame window
and inserting the drawing canvas into the centre of the frame.

// ColorDraw.java

import java.util.*;

import java.awt.*;

import java.awt.event.*;

public class ColorDraw extends Frame

{

private DrawCanvas drawCanvas;

private Panel colorButtons;

public ColorDraw()

{

setTitle("Mouse Drawing Application");

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); }});

drawCanvas = new DrawCanvas();

drawCanvas.setBackground(Color.white);

int nGradingsInEachColor = 4;

int nColors =

nGradingsInEachColor*nGradingsInEachColor*nGradingsInEachColor;

Panel colorButtons = new Panel();

int nRows = 16;

if(nColors < nRows)

nRows = nColors;

colorButtons.setLayout(new GridLayout(nRows,0));

int gradeInterval = 256/(nGradingsInEachColor-1);

for(int gradeRed=0;gradeRed < nGradingsInEachColor;gradeRed++)

{

int red = gradeRed*gradeInterval;

for(int gradeGreen=0;gradeGreen < nGradingsInEachColor;gradeGreen++)

{

6.4. CLASS PANEL 145

int green = gradeGreen*gradeInterval;

for(int gradeBlue=0;gradeBlue < nGradingsInEachColor;gradeBlue++)

{

int blue = gradeBlue*gradeInterval;

Button b = new Button("");

Color color = new Color(red,green,blue);

b.setBackground(color);

colorButtons.add(b);

ColorListener colorListener = new ColorListener(color,drawCanvas);

b.addActionListener(colorListener);

}

}

} // end outer foor loop

add("West",colorButtons);

add("Center",drawCanvas);

} // end constructor ColorDraw()

public static void main(String[] args)

{

Frame frame = new ColorDraw();

frame.setSize(400,300);

frame.setVisible(true);

}

} // end class ColorDraw

class Line

{

public Point start, end;

public Color color;

public Line(Point pStart,Point pEnd,Color color)

{

start = new Point(pStart.x,pStart.y);

end = new Point(pEnd.x,pEnd.y);

this.color = color;

}

} // end class Line

class DrawCanvas extends Canvas

implements MouseListener, MouseMotionListener

{

private Point lineStart = new Point(0,0);

private Graphics g = getGraphics();

146 CHAPTER 6. THE GUI AND ITS COMPONENTS

private Color penColor = Color.blue;

private Vector lines = new Vector();

public DrawCanvas()

{

addMouseListener(this);

addMouseMotionListener(this);

}

public void paint(Graphics g)

{

for(Enumeration enum=lines.elements(); enum.hasMoreElements();)

{

Line line = (Line) enum.nextElement();

g.setColor(line.color);

g.drawLine(line.start.x,line.start.y,line.end.x,line.end.y);

}

g.setColor(penColor);

} // end paint

public void setPenColor(Color color)

{

penColor = color;

} // end setPenColor

public void mousePressed(MouseEvent mouseEvent)

{

if((mouseEvent.getModifiers() & InputEvent.BUTTON1_MASK) ==

InputEvent.BUTTON1_MASK)

lineStart.move(mouseEvent.getX(),mouseEvent.getY());

if((mouseEvent.getModifiers() & InputEvent.BUTTON3_MASK) ==

InputEvent.BUTTON3_MASK)

repaint();

} // end mousePressed

public void mouseReleased(MouseEvent mouseEvent) { }

public void mouseEntered(MouseEvent mouseEvent) { }

public void mouseExited(MouseEvent mouseEvent) { }

public void mouseClicked(MouseEvent mouseEvent) { }

public void mouseMoved(MouseEvent mouseEvent) { }

public void mouseDragged(MouseEvent mouseEvent)

{

int newX = mouseEvent.getX();

6.4. CLASS PANEL 147

int newY = mouseEvent.getY();

g = getGraphics();

g.setColor(penColor);

g.drawLine(lineStart.x,lineStart.y,newX,newY);

lines.addElement(new Line(lineStart,new Point(newX,newY),penColor));

lineStart.move(newX,newY);

} // end mouseDragged

} // end class DrawCanvas

class ColorListener implements ActionListener

{

private Color color;

private DrawCanvas destination;

public ColorListener(Color color,DrawCanvas destination)

{

this.color = color;

this.destination = destination;

}

public void actionPerformed(ActionEvent actionEvent)

{

destination.setPenColor(color);

}

} // end class ColorListener

148 CHAPTER 6. THE GUI AND ITS COMPONENTS

6.5 Mouse Listener and Mouse Event

When we click the mouse of move it a series of events occurs. Java provides some
classes which allow to detect that an event has occured and to take some action in
response. We can choose which events we want to listen for and which we want to ig-
nore. This event is used both for mouse events (click, enter, exit) and mouse motion
events (moves and drags). A MouseEvent object is passed to every MouseListener

or MouseAdapter object which registered to receive the interesting mouse events
using the component’s addMouseListener() method. The method

Point getPoint()

in class MouseEvent returns the (x, y) position of the event relative to the source
component. The method

int getClickCount()

returns the number of mouse clicks associated with this event. The methods

isAltDown(), isControlDown(), isMetaDown(), isShiftDown()

are inherited from class InputEvent.

// Mouse.java

import java.applet.Applet;

import java.awt.Graphics;

import java.awt.Color;

import java.awt.*;

import java.awt.event.*;

public class Mouse extends Applet

implements MouseListener, MouseMotionListener

{

private static final int r = 7;

private String[] message;

private int index;

private int posX = 0;

private int posY = 0;

private Point clickPoint = null;

private MouseEvent mouseEvent = null;

private boolean bMoved = false;

private int intMoved = 0;

6.5. MOUSE LISTENER AND MOUSE EVENT 149

private boolean bDragged = false;

private int intDragged = 0;

private String whichButton;

public void init()

{

addMouseListener(this);

addMouseMotionListener(this);

InitButtonTrail();

showStatus("Started Mouse");

}

public void paint(Graphics g)

{

setBackground(Color.white);

if(clickPoint != null)

g.fillOval(clickPoint.x-r,clickPoint.y-r,r*2,r*2);

posX = 150;

posY = 0;

if(mouseEvent != null)

{

g.drawString("Mouse Position: "+ mouseEvent.getPoint(),posX,posY+=15);

g.drawString("Mouse Clicks: "+ mouseEvent.getClickCount(),posX,posY+=15);

g.drawString("Mouse Button: "+ whichButton,posX,posY+=15);

}

if(bMoved)

{

g.drawString("mouseMoved(): " + spin("mouseMoved"),posX,posY+=15);

bMoved = false;

}

if(bDragged)

{

g.drawString("mouseDragged(): " + spin("mouseDragged"),posX,posY+=15);

bDragged = false;

}

posX = 5;

posY = 0;

int x;

for(x=0;x<message.length;x++)

150 CHAPTER 6. THE GUI AND ITS COMPONENTS

if(message[x] == null) break;

else g.drawString(message[x],posX,posY+=15);

} // end paint()

private char spin(String mode)

{

int pos = 0;

char c = ’ ’;

pos = (mode == "mouseMoved" ? intMoved : intDragged);

pos++;

switch(pos) {

case 1:

c = ’|’; break;

case 2:

c = ’/’; break;

case 3:

c = ’-’; break;

case 4:

c = ’\\’; break;

default:

c = ’|’;

pos = 1; break;

}

if(mode == "mouseMoved") intMoved = pos;

else intDragged = pos;

return c;

} // end spin

public void mousePressed(MouseEvent event)

{

mouseEvent = event;

whichButton = WhichButton();

InitButtonTrail();

ButtonTrail("mousePressed");

clickPoint = event.getPoint();

repaint();

} // end mousePressed

public void mouseClicked(MouseEvent event)

{

mouseEvent = event;

6.5. MOUSE LISTENER AND MOUSE EVENT 151

whichButton = WhichButton();

ButtonTrail("mouseClicked");

repaint();

} // end mouseClicked

public void mouseReleased(MouseEvent event)

{

mouseEvent = event;

whichButton = WhichButton();

ButtonTrail("mouseReleased");

repaint();

} // end mouseReleased

public void mouseEntered(MouseEvent event)

{

mouseEvent = event;

whichButton = "";

ButtonTrail("mouseEntered");

repaint();

} // end mouseReleased

public void mouseExited(MouseEvent event)

{

mouseEvent = event;

whichButton = "";

ButtonTrail("mouseExited");

repaint();

} // end mouseExited

public void mouseDragged(MouseEvent event)

{

mouseEvent = event;

whichButton = WhichButton();

clickPoint = event.getPoint();

bDragged = true;

repaint();

} // end mouseDragged

public void mouseMoved(MouseEvent event)

{

mouseEvent = event;

whichButton = "";

bMoved = true;

repaint();

} // end mouseMoved

152 CHAPTER 6. THE GUI AND ITS COMPONENTS

private String WhichButton()

{

String str = "";

if(mouseEvent.isShiftDown())

str = (mouseEvent.isMetaDown() ? "Shift + (Right)" :

"Shift + (Left)");

else if(mouseEvent.isControlDown())

str = (mouseEvent.isMetaDown() ? "Ctrl + (Right)" :

"Ctrl + (Left)");

else if(mouseEvent.isAltDown())

str = (mouseEvent.isMetaDown() ? "Alt + (Right)" :

"Alt + (Left) also (center)");

else if(mouseEvent.isMetaDown())

str = "(right) also Meta + (Left) ";

else

str = "(left)";

return str;

} // end WhichButton

void ButtonTrail(String msg)

{

if(index < message.length-1)

message[index] = msg;

else

{

InitButtonTrail();

message[index] = msg;

}

index++;

} // end ButtonTrail

void InitButtonTrail()

{

index = 0; message = new String[10];

}

} // end class Mouse

6.6. CLASS GRAPHICS 153

6.6 Class Graphics

The Graphics class is the abstract base class for all graphics contexts that allow an
application to draw onto components that are realized on various devices. Anytime
we want to put text or graphics into a window, we need to override the paint

method from the Component class. The paint method

void paint(Graphics g)

has one parameter of type Graphics. It paints this component. The Graphics class
contains all the drawing methods. The method

abstract void drawLine(int x1,int y1,int x2,int y2)

draws a line between the coordinates (x1,y1) and (x2,y2). The line is drawn below
and to the left of the logical coordinates. x1 - the first point x coordinate, y1 - the
first point y coordinate, x2 - the second point x coordinate, y2 - the second point y
coordinate. The method

abstract void drawRect(int x,int y,int width,int height)

draws the outline of the specified rectangle. The left and right edges of the rectangle
are at x and x+width. The top and buttom edges are at y and y+height. The
method

abstract void drawOval(int x,int y,int width,int height)

draws the outline of an oval. The result is a circle or ellipse that fits within the
rectangle specified by the x, y, width and height argument. The method

abstract void drawArc(int x,int y,int width,int height,

int startAngle,int arcAngle)

draws the outline of a circular or elliptical arc covering the specified rectangle. The
method

abstract void drawPolygon(int[] xPoint,int[] yPoint,int nPoints)

draws a closed polygon defined by the arrays xPoint and yPoint. Each pair of
(xPoint[i],yPoint[i]) coordinates defines a point. The lines of the polygon can
intersect.

The method

abstract void dispose()

disposes of this graphics context and releases any system resources that it is using.
A graphics object cannot be used after dispose has been called. The method

154 CHAPTER 6. THE GUI AND ITS COMPONENTS

Graphics getGraphics()

is a method in class Component an creates a graphics context for this component.
This method will return null if this component is currently not on the screen.

The following program shows the use of the methods drawLine and drawRect.

// GraphA.java

import java.awt.Graphics;

public class GraphA extends java.applet.Applet

{

double f(double x)

{

return (Math.cos(x/5.0)+Math.sin(x/7.0)+2.0)*getSize().height/4.0;

}

public void paint(Graphics g)

{

for(int x=0;x<getSize().width;x++)

{

g.drawLine(x,(int)f(x),x+1,(int)f(x+1));

}

g.drawRect(20,20,400,400);

g.dispose();

g.drawRect(80,80,200,200);

}

}

The second and third pieces of the applet tag indicate the width and the height of
the applet in pixel. The upper left corner of the applet is always at x-coordinate 0
and y-coordinate 0. The values for height and width are provided in the HTML
file.

<HTML>

<COMMENT> HTML file GraphA.html for GraphA.java </COMMENT>

<TITLE> Graph of Mathematical Function </TITLE>

<APPLET CODE="GraphA.class" width=300 height=120>

</APPLET>

</HTML>

The following program shows the use of the method drawArc. We use this method
twice to draw a circle, where half of the circle is filled with color gold and the other
half with the color blue.

6.6. CLASS GRAPHICS 155

// Arc.java

import java.awt.*;

import java.awt.Frame;

import java.awt.event.*;

import java.awt.Graphics;

public class Arc extends Frame

{

public Arc()

{

setTitle("Arc");

setSize(400,400);

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); }});

}

public void paint(Graphics g)

{

Color color1 = new Color(255,215,0);

g.setColor(color1);

g.drawArc(140,150,150,150,0,180);

g.fillArc(140,150,150,150,0,-180);

Color color2 = new Color(255,175,175);

g.drawArc(140,150,150,150,0,-180);

g.setColor(color2);

g.fillArc(140,150,150,150,0,-180);

}

public static void main(String[] args)

{

Frame f = new Arc();

f.setVisible(true);

}

}

156 CHAPTER 6. THE GUI AND ITS COMPONENTS

In the following program we find the time evolution of the logistic map

ut+1 = 4ut(1− ut), t = 0, 1, 2, . . .

where u0 ∈ [0, 1]. We display ut as a function of t

// DrawLogistic.java

import java.awt.Frame;

import java.awt.event.*;

import java.awt.Graphics;

public class DrawLogistic extends Frame

{

public DrawLogistic()

{

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event) { System.exit(0); }});

setTitle("Logistic Map");

setSize(200,100);

}

public void paint(Graphics g)

{

int t;

int size = 280;

double[] u = new double[size];

u[0] = 1.0/3.0; // initial value

for(t=0;t<(size-1);t++)

u[t+1] = 4.0*u[t]*(1.0 - u[t]);

int[] us = new int[size];

for(t=0;t<size;t++) us[t] = (int) (200*u[t]);

int[] x = new int[size];

for(t=0;t<size;t++) x[t] = 20 + t*3;

int[] y = new int[size];

for(t=0;t<size;t++) y[t] = 400;

for(t=0;t<size;t++)

g.drawLine(x[t],y[t],x[t],y[t]-us[t]);

} // end paint

public static void main(String[] args)

{

Frame f = new DrawLogistic(); f.setVisible(true);

}

}

6.7. GRAPHICS2D CLASS 157

6.7 Graphics2D Class

The class Graphics2D can be considered as a better Graphics class. The class
Graphics2D extends abstract class Graphics in order to maintain backwards com-
patibility. We use Graphics2D by casting (type conversion) a Graphics reference
to a Graphics2D reference. The Graphics2D class is mainly used with three other
classes, namely

GeneralPath, AffineTransform, RenderingHints

The class GeneralPath represents a geometric path constructed from straight lines,
quadratic and cubic (Bezier) curves. It can contain multiple subpaths. The method

void moveTo(float x,float y)

adds a point to the path by moving to the specified coordinates. The method

void lineTo(float x,float y)

adds a point to the path by drawing a straight line.

// Path.java

import java.awt.*;

import java.awt.geom.*;

import java.awt.event.*;

import javax.swing.*;

public class Path extends JFrame

{

public static void main(String[] args)

{

Path test = new Path();

test.addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e)

{ System.exit(0); }

});

test.setBounds(0,0,300,200);

test.setVisible(true);

}

public void paint(Graphics g)

{

158 CHAPTER 6. THE GUI AND ITS COMPONENTS

Graphics2D g2 = (Graphics2D) g;

g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

g2.setStroke(new BasicStroke(4.0f));

GeneralPath polygon =

new GeneralPath(GeneralPath.WIND_EVEN_ODD);

polygon.moveTo(40,40);

polygon.lineTo(250,180);

polygon.quadTo(120,100,50,160);

polygon.curveTo(20,90,180,160,220,40);

polygon.closePath();

g2.draw(polygon);

}

}

The Shape interface provides definitions for objects that represent some form of
geometric shape. The Java 2D definition of a shape does not require the shape
to enclose an area. A Shape object may represent an open curve such as a line
or parabola. For example, RectangularShape is an implementation of this inter-
face with the subclasses Arc2D, Ellipse2D, Rectangle2D, RoundRectangle2D. An
application is given below.

// Path1.java

import java.awt.*;

import java.awt.geom.*;

import java.awt.event.*;

import javax.swing.*;

public class Path1 extends JFrame

{

public static void main(String[] args)

{

Path1 test = new Path1();

test.addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e)

{ System.exit(0); }

});

test.setBounds(0,0,300,200);

test.setVisible(true);

}

6.7. GRAPHICS2D CLASS 159

public void paint(Graphics g)

{

Graphics2D g2 = (Graphics2D) g;

g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

g2.setStroke(new BasicStroke(1.0f));

Shape round = new GeneralPath(GeneralPath.WIND_EVEN_ODD);

round = new Ellipse2D.Float(100.0f, 100.0f, 100.0f, 100.0f);

g2.draw(round);

Shape square = new GeneralPath(GeneralPath.WIND_EVEN_ODD);

square = new Rectangle2D.Float(50.0f, 50.0f, 100.0f, 100.0f);

g2.draw(square);

Shape rrect = new GeneralPath(GeneralPath.WIND_EVEN_ODD);

rrect = new RoundRectangle2D.Float(20.0f,60.0f,160.0f,80.0f,20.0f,20.0f);

g2.draw(rrect);

}

}

The class AffineTransform represents a 2D affine transformation which performs
a linear mapping in the two-dimensional space. It preserves the straightness and
parallelness of lines. The transformation is represented by two dimensional arrays
(matrices) of date type float or double. The method

void setToRotation(double theta)

sets this transform to a rotation transformation. The method

void setToTranslation(double tx,double ty)

sets this transform to a translation transformation.

// Affine.java

import java.awt.geom.AffineTransform;

import java.util.*;

public class Affine

{

public static void main(String[] args)

{

AffineTransform at = new AffineTransform();

160 CHAPTER 6. THE GUI AND ITS COMPONENTS

double[] src = { 2.1, 4.2, 2.1, 2.6 };

float[] dst = new float[4];

at.rotate(Math.PI);

// transforms an array of double precision coordinates

// by this transform (rotate)

// and stores the result in to an array of floats.

// Each point is stored as a pair of x, y coordinates.

// srcOff(set) = 0 dstOff(set) = 0

// numPts = 2 number of point objects are to be transformed

at.transform(src,0,dst,0,2);

System.out.print("source points: ");

for(int i=0; i<4; i++)

if((i%2) == 0)

System.out.print("(" + src[i] + "," + src[i+1] + ")");

System.out.println("");

System.out.print("destination points: ");

for(int i=0; i<4; i++)

if((i%2) == 0)

System.out.print("(" + dst[i] + "," + dst[i+1] + ")");

System.out.println("");

}

}

// source points: (2.1,4.2) (2.1,2.6)

// destination points: (-2.1,-4.2) (-2.1,-2.6)

The class RenderingHints contains rendering hints that can be used by the class
Graphics2D.

In the following program all four classes are used

Graphics2D, GeneralPath, AffineTransform, RenderingHints .

// Graph2D2.java

import java.awt.Frame;

import java.awt.event.*;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.Color;

import java.awt.geom.AffineTransform;

import java.awt.geom.GeneralPath;

import java.awt.Font;

import java.awt.RenderingHints;

6.7. GRAPHICS2D CLASS 161

public class Graph2D2 extends Frame

{

public Graph2D2()

{

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); }});

setTitle("Graphics2D Application");

setSize(400,400);

}

public void paint(Graphics g)

{

Graphics2D g2d = (Graphics2D) g; // type conversion

// the boundary of the figure will look smoother

g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

GeneralPath path = new GeneralPath(GeneralPath.WIND_EVEN_ODD);

path.moveTo(0.0f,0.0f);

path.lineTo(0.0f,125.0f);

path.quadTo(100.0f,100.0f,225.0f,125.0f);

path.curveTo(260.0f,100.0f,130.0f,50.0f,225.0f,0.0f);

path.closePath();

AffineTransform at = new AffineTransform();

at.setToRotation(-Math.PI/8.0);

g2d.transform(at);

at.setToTranslation(0.0f,150.0f);

g2d.transform(at);

g2d.setColor(Color.red);

g2d.fill(path);

Font fo = new Font("TimesRoman",Font.PLAIN,40);

g2d.setFont(fo);

g2d.setColor(Color.blue);

g2d.drawString("ISSC",0.0f,0.0f);

} // end paint

public static void main(String[] args)

{

Frame f = new Graph2D2();

f.setVisible(true);

}

}

162 CHAPTER 6. THE GUI AND ITS COMPONENTS

6.8 Color Class

Objects of the Color class are used to specify graphics operations. One way to
specify color is the three-component RGB code, where R stands for Red, G for Green
and B for blue. For example, the RGB code for the color orange is (255,200,0). The
three integer numbers identify how much red, green, and blue is used to form the
color. Each number can range from 0 to 255. Thus the RGB code (255,255,0) for
orange means that it has as much red as it can, it has about 80% of the green that it
could have, and no blue. The Color class defines constants for the 13 special colors
shown in the table. We can specify

256× 256× 256 = 16777216

different RGB code and therefore 16 777 216 colors. For example, (255, 215, 0)
is gold, (127, 255, 212) is aquamarine, and (160, 32, 240) is purple. The built-in
standard colors are

Object RGB code

Color.black (0,0,0)

Color.blue (0,0,255)

Color.cyan (0,255,255)

Color.darkGray (64,64,64)

Color.gray (128,128,128)

Color.green (0,255,0)

Color.lightGray (192,192,192)

Color.magenta (255,0,255)

Color.orange (255,200,0)

Color.pink (255,175,175)

Color.red (255,0,0)

Color.white (255,255,255)

Color.yellow (255,255,0)

The constructor

Color(int r,int g,int b)

creates an opaque sRGB color with the specified red, green and blue values in the
range (0, 255). The method

void setColor(Color)

in class Graphics sets this graphics context’s current color to the specified color.

6.8. COLOR CLASS 163

In the next program we show an application of the Color class. We draw a pink,
blue and red polygon. The lines of the ”polygon” intersect. Explain why ? Try to
fix it so that it is really a polygon. In this case a rectangle.

// FrameW.java

import java.awt.*;

import java.awt.Frame;

import java.awt.event.*;

import java.awt.Graphics;

public class FrameW extends Frame

{

public FrameW()

{

setTitle("Polygon");

setSize(400,400);

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); }});

} // end constructor FrameW

public void paint(Graphics g)

{

int x[] = { 40, 180, 30, 180 };

int y[] = { 40, 30, 180, 180 };

g.setColor(Color.blue); // to draw a blue polygon

g.drawPolygon(x,y,4);

int u[] = { 20, 40, 320, 400, 420 };

int v[] = { 25, 100, 80, 200, 400 };

g.setColor(Color.pink); // to draw a pink polygon

g.drawPolygon(u,v,5);

int a[] = { 80, 250, 300 };

int b[] = { 100, 300, 320 };

g.setColor(Color.red); // to draw a red polygon

g.drawPolygon(a,b,3);

g.fillPolygon(a,b,3);

}

public static void main(String[] args)

{

Frame f = new FrameW();

f.setVisible(true);

164 CHAPTER 6. THE GUI AND ITS COMPONENTS

}

}

A Frame is a top-level window with a title and a border. The class Frame inherts
the method

pblic void setVisible(boolean b)

from class Component. This method shows or hides this component depending on
the value of the parameter b.

Another application of the Color class is shown in the next program. It also demon-
strates the use of the method

void setXORMode(Color c1)

This method sets the paint mode of this graphics context to alternate between this
graphics context’s current color and the new specified color.

// XOR.java

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class XOR extends Applet

{

private Color strawberry = new Color(0xcc,0,0x66);

private Color chocolate = new Color(0x66,0x33,0);

private Color vanilla = new Color(0xff,0xff,0x99);

private Color scoop = new Color(0x33,0x99,0xcc);

private static final int BORDER = 10;

public void init()

{

setBackground(chocolate);

addMouseListener(

new MouseAdapter() {

public void mousePressed(MouseEvent e) {

Graphics g = getGraphics();

g.setColor(chocolate);

g.setXORMode(scoop);

6.8. COLOR CLASS 165

Dimension dim = getSize();

int diameter = dim.height - (2*BORDER);

int xStart = (dim.width/2) - (diameter/2);

int yStart = BORDER;

g.fillOval(xStart,yStart,diameter,diameter);

g.setPaintMode();

}

}

); // end addMouseListener

} // end init

public void paint(Graphics g)

{

Dimension dim = getSize();

int width = dim.width/3;

int height = dim.height;

g.setColor(strawberry);

g.fillRect(0,0,width,height);

g.setColor(vanilla);

g.fillRect(dim.width-width,0,width,height);

} // end paint

} // end class XOR

166 CHAPTER 6. THE GUI AND ITS COMPONENTS

6.9 Class Image

The abstract class Image is the superclass of all classes that represent graphical
images.

The

public class MemoryImageSource

is an implementation of the ImageProducer interface which uses an array to produce
pixel values for an Image. The method

Image createImage(ImageProducer produces)

in the Component class creates an image from the specified image producer. The
interface

public abstract interface ImageProducer

is an interface for objects which can produce the image data for Images. Each image
contains an ImageProducer which is used to reconstruct the image whenever it is
needed. When a image file has been read into an Image object, the Image object
can be displayed using the drawImage methods in the Graphics class. The method

boolean drawImage(Image img,int x,int y,ImageObserver observer)

draws as much of the specified image as is currently available. The image is drawn
with its top-left corner at (x, y) in the graphics context’s coordinate space. The
method

boolean drawImage(Image img,int x,int y,int width,int height,

ImageObserver oberserver)

draws an image inside the specified rectangle of this graphics context’s coordinate
space and is scaled if necessary, where width is the width of the rectangle and
height is the height of the rectangle. The interface

public abstract interface ImageObserver

is an asynchronous interface for receiving notifications about Image information as
the Image is constructed.

The next two programs show an application of the drawImage methods.

6.9. CLASS IMAGE 167

// HappyFace.java

import java.applet.*;

import java.awt.*;

import java.awt.image.*;

public class HappyFace extends Applet

{

protected static final int y = Color.yellow.getRGB();

protected static final int b = Color.black.getRGB();

protected static final int w = Color.white.getRGB();

protected static final int[] imageData = {

w, w, w, w, y, y, y, y, y, y, y, y, w, w, w, w,

w, w, w, y, y, y, y, y, y, y, y, y, y, w, w, w,

w, w, y, y, y, y, y, y, y, y, y, y, y, y, w, w,

w, y, y, y, b, b, y, y, y, y, b, b, y, y, y, w,

y, y, y, y, b, b, y, y, y, y, b, b, y, y, y, y,

y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y,

y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y,

y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y,

y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y,

y, y, y, b, y, y, y, y, y, y, y, y, b, y, y, y,

y, y, y, y, b, y, y, y, y, y, y, b, y, y, y, y,

y, y, y, y, y, b, b, y, y, b, b, y, y, y, y, y,

w, y, y, y, y, y, y, b, b, y, y, y, y, y, y, w,

w, w, y, y, y, y, y, y, y, y, y, y, y, y, w, w,

w, w, w, y, y, y, y, y, y, y, y, y, y, w, w, w,

w, w, w, w, y, y, y, y, y, y, y, y, w, w, w, w

};

Image happy;

public void init()

{

happy =

createImage(new MemoryImageSource(16,16,imageData,0,16));

}

public void paint(Graphics g)

{

g.drawImage(happy,10,10,128,128,this);

}

}

168 CHAPTER 6. THE GUI AND ITS COMPONENTS

In the next program we display a 400 x 400 image representating a fade from black
to blue along the x-axis and a fade from black to red along the y-axis.

// Pixel.java

import java.awt.*;

import java.awt.event.*; // includes WindowEvent, WindowListener

import java.awt.Graphics;

import java.awt.image.*;

public class Pixel extends Frame

{

public Pixel()

{

setTitle("400 x 400 Image");

setSize(400,400);

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); }});

}

public void paint(Graphics g)

{

int w = 400; int h = 400;

int pix[] = new int[w*h];

int index = 0;

for(int y=0; y < h; y++)

{

int red = (y*255)/(h-1);

for(int x=0; x < h; x++)

{

int blue = (x*255)/(w-1);

pix[index++] = (255 << 24) | (red << 16) | blue;

}

}

Image img;

img = createImage(new MemoryImageSource(w,h,pix,0,w));

g.drawImage(img,0,0,null);

}

public static void main(String[] args)

{

Frame f = new Pixel(); f.setVisible(true);

}

}

6.9. CLASS IMAGE 169

The Java image display mechanism has the ability to shrink or stretch images to fit
a particular size. Normally, when we display an image, we only specify the x and
y coordinates for the upper left corner of the image. We can, however, specify, an
alternate width and height for the image. Java automatically scales the images to
fit the new width and height. The following applet takes an image and displays it
stretched and shrunk.

// Media.java

import java.applet.Applet;

import java.awt.Graphics;

import java.awt.Image;

import java.awt.MediaTracker;

public class Media extends Applet

{

Image image;

public void init()

{

image = getImage(getDocumentBase(),"output.jpg");

MediaTracker tracker = new MediaTracker(this);

tracker.addImage(image,0);

try { tracker.waitForAll(); }

catch(Exception ignore) { }

}

public void paint(Graphics g)

{

int width = image.getWidth(this);

int height = image.getHeight(this);

// draw the image in its normal size

g.drawImage(image,10,10,width,height,this);

// draw the image at half-size

g.drawImage(image,width+20,10,width/2,height/2,this);

// draw the image at twice its size

g.drawImage(image,width*3/2+30,10,width*2,height*2,this);

}

}

170 CHAPTER 6. THE GUI AND ITS COMPONENTS

6.10 Class Toolkit

The AWT-Abstract Window Toolkit-uses, in fact, a ”toolkit” to do windowing tasks.
The Component class provides a

getToolkit()

method to give a reference to the toolkit. The toolkit for the system will be a
subclass of the abstract Toolkit class created for our host. Toolkit uses various
native peer code to access the system GUI. There is also the static method

java.awt.Toolkit.getDefaultToolkit()

in the abstract Toolkit class that returns a reference to the toolkit.

Toolkit provides all sorts of useful services:

1. Get images for applications
2. Printing the screen
3. Info on screen size and resolution:

java.awt.Toolkit.getScreenSize()

java.awt.Toolkit.getScreenResolution()

4. Beep the keyboard

java.awt.Toolkit.beep()

5. System colors (use index constants in SystemColor class to relate index to a
given window component):

java.awt.Toolkit.loadSystemColors(int[] systemColors)

For example,to create a frame that is sized to a particular proportion to the screen’s
size and in particular location is illustrated by the following code:

6.10. CLASS TOOLKIT 171

// PlaceFrame.java

import java.awt.*;

import java.awt.event.*;

public class PlaceFrame extends Frame

{

public static void main(String [] arg)

{

PlaceFrame pf = new PlaceFrame();

pf.setTitle("Centered Frame");

// need this listener to get the window to close.

WindowListener listener = new WindowAdapter() {

public void windowClosing (WindowEvent e){

System.exit(0);

}

};

pf.addWindowListener(listener);

// need the toolkit to get info on system.

Toolkit tk = Toolkit.getDefaultToolkit();

// get the screen dimensions.

Dimension screen = tk.getScreenSize();

// make the frame 1/4 size of screen.

int fw = (int) (screen.getWidth()/4);

int fh = (int) (screen.getWidth()/4);

pf.setSize(fw,fh);

// and place it in center of screen.

int lx = (int) (screen.getWidth()*3/8);

int ly = (int) (screen.getHeight()*3/8);

pf.setLocation(lx,ly);

pf.setVisible(true);

}

}

172 CHAPTER 6. THE GUI AND ITS COMPONENTS

The following program shows that use of the beep() method.

// Beep.java

import java.util.Timer;

import java.util.TimerTask;

import java.awt.Toolkit;

// Demo that uses java.util.Timer to schedule a task

// to execute once 5 seconds have passed.

public class Beep

{

Toolkit toolkit;

Timer timer;

public Beep(int sec)

{

toolkit = Toolkit.getDefaultToolkit();

timer = new Timer();

timer.schedule(new Task(),sec*1000);

}

class Task extends TimerTask

{

public void run()

{

System.out.println("Time’s up!");

toolkit.beep();

System.exit(0); // stops the AWT thread (and everything else)

}

}

public static void main(String args[])

{

System.out.println("About to schedule task.");

new Beep(5);

System.out.println("Task scheduled.");

}

}

Chapter 7

Exception Handling

7.1 Introduction

An exception is an error that occurs at run time. An example is division by zero.
Another example is if we try to open a file which does not exist an error will occur.
We can catch this, display an error message and ask for another filename to be
specified. When an error of this type occurs an exception is generated and Java
provides a set of language constructs which allow us to handle them. Using Java’s
exception-handling subsystem we can in a structered and controlled manner handle
run-time error. Java exception handling like C++ is built upon three keywords

try, catch, throw

To respond to an exception, the call to the method that produces it must be placed
within a try block. Thus the try block indicates the code which is to be monitored
for the exceptions listed in the catch expressions. A try block is a block of code
beginning with the try keyword followed by a left and right curly brace. Every
try block is associated with one or more catch blocks. When any method in
the try block throws any type of exception, execution of the try block ceases.
Program control passes immediately to the associated catch block. We can use an
catch expression to indicate what to do when certain classes of exception occur
(e.g. resolve the problem or generate a warning message). If no catch expression is
included, the defining methods must use the throw clause.

In C++ we can throw an instance of any class when an expectional situation arises.
This is not the case in Java. In Java an exception is always an instance of the class
Throwable, i.e. it must be directly or indirectly derived from Throwable.

173

174 CHAPTER 7. EXCEPTION HANDLING

7.2 The Exception Class

All exceptions are subclasses of the Exception class. There are more than 200
exceptions defined in Java. We can also write our own exceptions if we cannot find
an existing one which is suitable for our case. The

public class Exception extends Throwable

are a form of Throwable that indicates conditions that a reasonable application
might want to catch. The method

public String getMessage() // in class Throwable

returns the detail message of this throwable object. It returns null if this Throwable
does not have a detail message.

Java distinguishes between internal errors caused by a problem in Java run-time
system and exceptions which are problems Java encounters when executing the
code. For example

NegativeArraySizeException, FileNotFoundException

report exceptional situations which might occur when using our classes. Further-
more, these exceptional cases not not indicate a coding error in our class. They
would typically occur due to illegal information obtained when our class communi-
cates with the outside world.

For example consider the following Java application

// Except.java

public class Except

{

public static void main(String[] args)

{

System.out.println(args[2]);

}

}

After compiling to obtain the class file we enter at the command line

java Except Good Morning

This leads to the error message

java.lang.ArrayIndexOutofBoundsException: 2

since

args[0] -> Good args[1] -> Morning

7.3. EXAMPLES 175

7.3 Examples

Besides using the built-in exceptions of Java we can also create our own exceptions.
In the following program an exception is thrown when the first int number is larger
than the second int number in the method numbers. The second call to the method
numbers throws an exception since the first integer is larger than the second integer.

// Except.java

import java.io.*;

import java.lang.Exception;

public class Except

{

public static void main(String[] args)

{

try

{

System.out.println(check(60,80)); // method check called

System.out.println(check(75,15)); // method check called <- problem

System.out.println(check(90,100));// method check called

} // end try block

catch(Exception e)

{

System.out.println("Caught exception: " + e.getMessage());

} // end catch block

} // end main

// method numbers

static boolean check(int first,int second) throws Exception

{

boolean returnCode = false;

if(first > second)

{

throw new Exception("invalid values");

}

if(first <= second) { returnCode = true; }

return returnCode;

} // end method check

}

The output is:

true

Caught exception: invalid values

176 CHAPTER 7. EXCEPTION HANDLING

To define an exception we can also create a subclass of the Exception class or one
of its subclasses. We apply this to the DivideByZeroException class.

// DivideByZeroException.java

public class DivideByZeroException extends Exception

{

public Object offender;

public DivideByZeroException(Object obj)

{

super("Divide by zero in " + obj);

offender = obj;

}

}

A program which uses this class is given by

// DivideZero.java

public class DivideZero

{

public int x, y;

public DivideZero(int a,int b) { x=a; y=b; }

public static void main(String args[])

{

double x = Math.random();

int i = (int) (4.0*x);

DivideZero temp = new DivideZero(5,i);

try { temp.test(); }

catch(DivideByZeroException e) { System.out.println("Oops"); }

} // end main

public void test() throws DivideByZeroException

{

if(y == 0) throw new DivideByZeroException(this);

else System.out.println(x/y);

} // end test

} // end class DivideZero

7.3. EXAMPLES 177

The following example shows the use of multiple catch clauses and of the keyword

finally .

The keyword finally is used to specify a control block to be executed after all
processing of a try block, including the processing for any exceptions (regardless
of whether those exceptions are handled by a catch clause within the try block or
not). Multiple catch clauses are typically used in file input and output operations.

// Copy.java

import java.io.*;

public class Copy

{

public static void main(String[] args)

{

if(args.length != 2)

{

System.out.println("Usage: java Copy inFile outFile");

System.exit(0);

}

FileInputStream fin = null;

FileOutputStream fout = null;

try

{

fin = new FileInputStream(args[0]);

fout = new FileOutputStream(args[1]);

int aByte = 0;

do

{

aByte = fin.read();

if(aByte != -1)

fout.write((byte) aByte);

}

while(aByte != -1);

} // end try block

// multiple catch clauses

catch(EOFException e)

{ }

catch(IOException ex)

{ System.out.println("Error when copying file."); }

178 CHAPTER 7. EXCEPTION HANDLING

finally

{

try

{

fin.close();

fout.close();

}

catch(Exception e)

{ }

} // end finally

} // end main

}

Chapter 8

File Manipulations

8.1 Introduction

The Java IO stream library allows to perform reading and writing with the console, a
file, a block of memory, or even across the Internet. It is possible by inheriting from
InputStream and OutputStream to create new types of input and output objects.

We output data using a DataOutputStream that is connected to a FileOutputStream
via a technique called chaining of stream objects. When the DataOutputStream

object output is created, its constructor is supplied a FileOutputStream object
as an argument. The statement creates a DataOutputStream object named out-
put associated with the file filename. The argument filename is passed to the
FileOutputStream constructor which opens the file. We input data using the
DataInputStream that is connected to the FileInputStream.

DataInputStream allows us to read all basic data types as well as String objects.
All the methods names start with read such as

readByte(), readShort(), readInt(), readLong(),

readFloat(), readDouble(),

readChar(), readUTF(), readBoolean()

The complement to DataInputStream is DataOutputStream which formats each of
the basic data types and String objects onto a stream in such a way that any
DataInputStream, on any machine, can read them. All the methods name start
with write such as

writeByte(), writeShort(), writeInt(), writeLong(),

writeFloat(), writeDouble()

179

180 CHAPTER 8. FILE MANIPULATIONS

writeChar(), writeUTF(), writeBoolean()

The methods writeFloat() and writeDouble() perform binary file manipluation,
i.e. the float and double take 4 and 8 bytes for storage, respectively .

The method

public int available() throws IOException

is inherited from class java.io.FilterInputStream. It returns the number of bytes
that can be read from this input stream without blocking.

The method

public void flush() throws IOException

flushes this data output stream. This forces any buffered ouput bytes to be written
out to the stream. The method

public void close() throws IOException

closes this output stream and releases any system resources with the stream.

Let us look at some of the read methods. The method

byte readByte()

returns the next byte of this input stream as a signed 8 bit byte. In most applications
we type convert the byte to char after reading the byte. The method

double readDouble()

reads eight input bytes and returns a double value. The method

String readUTF()

reads from the stream in a representation of a Unicode character string encoded in
UTF format. This string of characters is then returned as a String.

The method

String readLine()

in class DataInputStream is deprecated. We have to use the method

String readLine()

8.1. INTRODUCTION 181

in class BufferedReader which reads a line of text. A line is considered to be
terminated by any one of a line feed (’\n’), a carriage return (’\r’), or a carriage
return followed immediately by a line feed. The return string contains the contents
of the line, not including any line termination characters, or null if the end of the
stream has been reached. The class BufferedReader reads from character-input
stream, buffering characters so as to provide for the efficient reading of characters,
arrays and lines.

Let us now look at some of the write methods. The method

void writeByte(int v)

writes out a byte to the underlying output stream as 1-byte value. If no exception
is thrown the counter written is incremented by 1. The method

void writeBytes(String s)

writes out the string to the underlying output stream as a sequence of bytes. Each
character in the string is written out, in sequence, by discarding its high eight bits.
If no exception is thrown the counter written is incremented by the length of s.
For writing strings we can also use the method

void writeUTF(String str)

It writes a string to the underlying output stream using UTF-8 encoding in a ma-
chine independent manner. The method

void writeInt(int v)

writes an int to the underlying output stream as four bytes, high byte first. The
method

void writeDouble(double v)

converts the double argument to a long using the doubleToLongBits method in
the class Double, and then writes that long value to the underlying output stream
as an 8-byte quantity, high byte first.

182 CHAPTER 8. FILE MANIPULATIONS

8.2 Examples

We show how to write an int, char, String, and boolean to a file. Then we read
the contents back and display it. The file name is myout.dat.

// WriteTo.java

import java.io.*;

import java.util.*;

public class WriteTo

{

public static void main(String[] args) throws IOException

{

DataOutputStream output =

new DataOutputStream(new FileOutputStream("myout.dat"));

int x = -56; output.writeInt(x);

char c = ’X’; output.writeChar(c);

String s = new String("willi"); output.writeUTF(s);

boolean b = true; output.writeBoolean(b);

output.flush(); output.close();

int y;

char d;

String t;

boolean bool;

DataInputStream input =

new DataInputStream(new FileInputStream("myout.dat"));

y = input.readInt();

d = input.readChar();

t = input.readUTF();

bool = input.readBoolean();

System.out.println("y = " + y);

System.out.println("d = " + d);

System.out.println("t = " + t);

System.out.println("bool = " + bool);

input.close();

}

}

8.2. EXAMPLES 183

In the following program we include exception handling.

// FileExc.java

import java.io.*;

import java.lang.Exception;

public class FileExc

{

public static void main(String[] args)

{

int i = 92345;

int j = -6789;

double x = 3.45;

String name1 = new String("olli");

String name2 = new String("lipolo");

int m;

int n;

double y;

String name3;

String name4;

DataOutputStream output;

try

{

output = new DataOutputStream(new FileOutputStream("mydata.dat"));

output.writeInt(i);

output.writeUTF(name1);

output.writeDouble(x);

output.writeUTF(name2);

output.writeInt(j);

try

{

output.flush(); output.close();

}

catch(IOException e)

{

System.err.println("File not opened properly\n" + e.toString());

System.exit(1);

}

}

catch(IOException e)

184 CHAPTER 8. FILE MANIPULATIONS

{

System.err.println("File not opened properly\n" + e.toString());

System.exit(1);

}

try

{

DataInputStream in;

boolean moreRecords = true;

FileInputStream fin = new FileInputStream("mydata.dat");

in = new DataInputStream(fin);

try

{

m = in.readInt();

System.out.println("m = " + m);

name3 = in.readUTF();

System.out.println("name3 = " + name3);

y = in.readDouble();

System.out.println("y = " + y);

name4 = in.readUTF();

System.out.println("name4 = " + name4);

n = in.readInt();

System.out.println("n = " + n);

}

catch(EOFException eof)

{

moreRecords = false;

}

catch(IOException e)

{

System.err.println("Error during read from file\n" + e.toString());

System.exit(1);

}

}

catch(IOException e)

{

System.err.println("File not opened properly\n" + e.toString());

System.exit(1);

}

}

}

8.2. EXAMPLES 185

In the following program we use a for loop to write data of data type double to
a file. Then we read the data back using a while loop. Exception handling is
included.

// FileMani.java

import java.io.*;

import java.lang.Exception;

public class FileMani

{

public static void main(String args[])

{

DataOutputStream output;

try

{

output = new DataOutputStream(new FileOutputStream("timeev.dat"));

int T = 10;

double x0 = 0.618;

double x1;

output.writeDouble(x0);

System.out.println("The output is " + x0);

int t;

for(t=0; t<T; t++)

{

x1 = 4.0*x0*(1.0 - x0);

System.out.println("The output is " + x1);

output.writeDouble(x1);

x0 = x1;

}

try

{

output.flush();

output.close();

}

catch(IOException e)

{

System.err.println("File not closed properly\n" + e.toString());

System.exit(1);

}

186 CHAPTER 8. FILE MANIPULATIONS

}

catch(IOException e)

{

System.err.println("File not opened properly\n" + e.toString());

System.exit(1);

}

System.out.println("\nReading file:");

try

{

FileInputStream fin = new FileInputStream("timeev.dat");

DataInputStream in = new DataInputStream(fin);

while(true)

System.out.print(in.readDouble() + " ");

}

catch(Exception e) { }

}

}

8.2. EXAMPLES 187

In the following three programs we show how the method readLine() in class
BufferedReader is used. In the first program we read in the file as a string using
readLine() from the class BufferedReader. The ASCII file test.dat contains

1.234 Peter 23 6789012345678

The class StringTokenizer allows an application to break a string into tokens. The
method String nextToken() returns the next token from this string tokenizer.

// FileIn.java

import java.io.*;

import java.util.*;

import java.math.*;

public class FileIn

{

public static void main(String[] argv) throws IOException

{

FileInputStream fin = new FileInputStream("test.dat");

BufferedReader in = new BufferedReader(new InputStreamReader(fin));

String str = in.readLine();

StringTokenizer tokenizer = new StringTokenizer(str);

String s = tokenizer.nextToken();

double x = new Double(s).doubleValue();

System.out.println("x = " + x);

s = tokenizer.nextToken();

System.out.println("s = " + s);

s = tokenizer.nextToken();

int i = new Integer(s).intValue();

System.out.println("i = " + i);

s = tokenizer.nextToken();

BigInteger bi = new BigInteger(s);

System.out.println("bi = " + bi);

fin.close();

}

}

188 CHAPTER 8. FILE MANIPULATIONS

The following program finds the number of lines in the file data.dat. For example
if the file data.dat contains the lines

xxx yyy

123

olloo illi

the output will be 3. In Java the null keyword is used to identify a variable as not
referencing any object. The null keyword cannot be assigned to a variable that
is declared with a basic data type. It is left as an exercise to include exception
handling for the program.

// NoOfLines.java

import java.io.*;

import java.util.*;

public class NoOfLines

{

public static void main(String[] args) throws IOException

{

FileInputStream fin = new FileInputStream("data.dat");

BufferedReader in;

in = new BufferedReader(new InputStreamReader(fin));

int count = 0;

while(in.readLine() != null)

{

count++;

}

System.out.println("count = " + count);

} // end main

}

8.2. EXAMPLES 189

The following program counts the number of occurrences of the name Miller in the
file data.dat. All the lines in the file data.dat are read using the command

while(!(null == (buffer = in.readLine())))

The StringTokenizer class is used.

// NoOfNames.java

import java.io.*;

import java.util.*;

public class NoOfNames

{

public static void main(String[] args) throws IOException

{

FileInputStream fin = new FileInputStream("data.dat");

BufferedReader in;

in = new BufferedReader(new InputStreamReader(fin));

int count = 0;

String buffer;

String name = new String("Miller");

while(!(null == (buffer = in.readLine())))

{

StringTokenizer tok = new StringTokenizer(buffer);

while(tok.hasMoreTokens())

{

String s = tok.nextToken();

if(s.equals(name))

count++;

}

}

System.out.println("Name " + name + " occurse " + count + " times");

}

}

190 CHAPTER 8. FILE MANIPULATIONS

In the following three programs we show how readByte is used in file manipulation.
A file can be considered as a sequence of bytes.

In the following program we read in the file character by character or more precisly
byte by byte. Then we do type conversion to char. Everytime we read a byte
we test for the end of the file. This is done with the method available(). The
program counts the number of characters in the file.

// EndOfFile.java

import java.io.*;

public class EndOfFile

{

public static void main(String[] args)

{

long count = 0L;

try

{

DataInputStream in = new DataInputStream(

new BufferedInputStream(

new FileInputStream("EndOfFile.java")));

while(in.available() != 0)

{

System.out.print((char) in.readByte()); // type conversion

count++;

}

in.close();

} // end try block

catch(IOException e)

{

System.err.println("IOException");

}

System.out.println("count = " + count);

}

}

8.2. EXAMPLES 191

In the following program we find the number of curly brackets to the left { and
number of curly brackets to the right } in a file. This program can be used to check
for Java, C and C++ programs whether the number of left and right curly brackets
match. We recall that the curly bracket to the left { indicates a block begin and a
curly bracket to the right } indicates a block end.

// Oops.java

import java.io.*;

public class Oops

{

public static void main(String[] args)

{

char cl = ’{’;

int countcl = 0;

char cr = ’}’;

int countcr = 0;

try

{

DataInputStream in = new DataInputStream(

new BufferedInputStream(

new FileInputStream("Oops.java")));

while(in.available() != 0)

{

char c = (char) in.readByte();

if(c == cl) countcl++;

if(c == cr) countcr++;

}

} // end try block

catch(IOException e)

{ System.err.println("IOException"); }

System.out.println("countcl = " + countcl);

System.out.println("countcr = " + countcr);

}

}

192 CHAPTER 8. FILE MANIPULATIONS

In the following program we find the checksum (modulo 65535) of a file using the
ASCII table. Again we read the data input stream byte by byte.

// ReadFile.java

import java.io.*;

public class ReadFile

{

public static void main(String[] args)

{

long count = 0L;

int checksum = 0;

char c;

try

{

DataInputStream in =

new DataInputStream(

new BufferedInputStream(

new FileInputStream("ReadFile.java")));

while(in.available() != 0)

{

c = (char) in.readByte();

checksum += (int) c; // type conversion ASCII table

while(checksum > 65535)

{

checksum -= 65535;

}

System.out.print(c);

count++;

}

}

catch(IOException e)

{

System.err.println("Error readin file");

}

System.out.println("count = " + count);

System.out.println("checksum = " + checksum);

}

}

8.2. EXAMPLES 193

In the following program we copy a file byte for byte.

// Copy.java

import java.io.*;

class Copy

{

static public void main(String[] args)

{

if(args.length != 2)

{

System.out.println("Usage: java Copy inputfile outputfile");

System.exit(0);

}

FileInputStream fin = null;

FileOutputStream fout = null;

try

{

fin = new FileInputStream(args[0]);

fout = new FileOutputStream(args[1]);

int inputByte = fin.read();

while(inputByte != -1)

{

fout.write((byte) inputByte);

inputByte = fin.read();

}

} // end try

catch(EOFException eofError) { }

catch(FileNotFoundException notFoundError)

{ System.err.println("File " + args[0] + " not found!"); }

catch(IOException ioError)

{ System.err.println(ioError.getMessage()); }

finally

{

try

{

if(fin != null) fin.close();

if(fout != null) fout.close();

}

catch(IOException error) { }

} // end finally

} // end main

}

194 CHAPTER 8. FILE MANIPULATIONS

8.3 FileReader and FileWriter

The Reader class is an abstract class which has a set of subclasses for reading text.
We consider the two subclasses FileReader and BufferedReader. The constructor
FileReader(file) in the class FileReader creates a connection between the file

specified and the application. The class BufferedReader was already described
above. The class Writer is an abstract class which has a set of subclasses for writing
character files. We consider two subclasses FileWriter and BufferedWriter. The
class FileWriter is a class for writing character files. The constructors of this
class assume that the default character encoding and the default byte-buffer size are
acceptable. The class BufferedWriter writes text to a character-output stream,
buffering characters so as to provide for the efficient writing of single character
arrays, and strings. Why is the size of the file out1.dat 11 bytes?

// WriteLine.java

import java.io.*;

public class WriteLine

{

public static void main(String[] argv) throws IOException

{

BufferedWriter wr =

new BufferedWriter(new FileWriter("out1.dat"));

String s1 = new String("willi");

wr.write(s1,0,s1.length());

wr.newLine();

String s2 = new String("hans");

wr.write(s2,0,s2.length());

wr.flush(); wr.close();

DataOutputStream dos =

new DataOutputStream(new FileOutputStream("out2.dat"));

String t1 = new String("willi");

dos.writeUTF(t1);

dos.flush(); dos.close();

}

}

A checksum is a count of the number of bits in a transmission unit that is included
with the unit so that the receiver can check to see whether the same number of bits
arrived. The class CRC32 can be used to calculate the CRC-32 of a data stream.
The method

void update(byte[] b)

8.3. FILEREADER AND FILEWRITER 195

updates checksum with specified bytes. In the String class we have the method

byte[] getBytes()

which converts this String into bytes according to the platform’s default character
encoding, storing the result into a a new byte array. The method

public long getValue()

is in class CRC32 and returns a CRC-32 value.

In the following two programs we show how the classes FileReader, BufferedReader,
FileWriter, BufferedWriter and CRC32 can be used.

// WriteSum.java

import java.io.*;

import java.util.zip.CRC32;

public class WriteSum

{

static final String[] stringlist =

{ "International", "School", "for", "Scientific", "Computing" };

public static void main(String[] args) throws IOException

{

FileWriter fw = new FileWriter("out.dat");

BufferedWriter bw = new BufferedWriter(fw);

CRC32 sum = new CRC32();

bw.write(Integer.toString(stringlist.length));

bw.newLine();

int i = 0;

while(i < stringlist.length)

{

String name = stringlist[i];

bw.write(name);

bw.newLine();

sum.update(name.getBytes());

i++;

}

bw.write(Long.toString(sum.getValue()));

bw.newLine();

bw.close();

} // end main

}

196 CHAPTER 8. FILE MANIPULATIONS

// ReadSum.java

import java.io.*;

import java.util.zip.CRC32;

public class ReadSum

{

public static void main(String[] args) throws IOException

{

FileReader fr = new FileReader("out.dat");

BufferedReader br = new BufferedReader(fr);

CRC32 sum = new CRC32();

int len = Integer.parseInt(br.readLine());

String stringlist[] = new String[len];

int i = 0;

while(i < len)

{

stringlist[i] = br.readLine();

sum.update(stringlist[i].getBytes());

i++;

}

long cs = Long.parseLong(br.readLine());

br.close();

if(cs != sum.getValue())

{

System.err.println("bad checksum");

}

else

{

for(i=0; i < len; i++)

{

System.out.println(stringlist[i]);

}

}

} // end main

}

8.4. FILE CLASS 197

8.4 File Class

The class

public class File extends Object

implements Serializable, Comparable

is an abstract representation of file and directory pathnames. User interfaces and
operating systems use system-dependent pathname strings to name files and di-
rectories. This class presents an abstract, system-independent view of hierarchical
pathnames. An abstract pathname has two components. First an optional system-
dependent prefix string, such as a disk-drive specifier, "/" for the UNIX root direc-
tory, or "\\" for a Win32 UNC pathname, and second a sequence of zero or more
non-empty string names.

The File class can be used to open an disc file and write and read data to the file.
It also provides information about the file. There are three constructors in the class.
In the constructor

File(String)

the String is a file path name which is converted to an abstract path name. In the
constructor

File(File parent,String child)

the parent is a directory which contains the child file. In the constructor

File(String parent,String child)

the parent directory is specified as a String and contains the child file.

The class contains a method

boolean exists()

which we can use to check whether a file exists or not. Additionally there is a large
set of methods for finding out details about the file. These methods are

boolean canRead()

boolean canWrite()

boolean exists()

File getAbsoluteFile()

String getAbsolutePath()

String getName()

String getParent()

String getPath()

boolean isDirectory()

boolean isFile()

long length()

198 CHAPTER 8. FILE MANIPULATIONS

Furthermore the class has the methods boolean mkdir() to create the directory
named by this abstract pathname and boolean delete() which deletes the file or
directory denoted by this abstract pathname.

If we run the program under Linux we have to modify the lines

File f = new File("c:\\books\\java\\data.dat");

and

File newf = new File("c:\\books\\java\\mydata");

The Linux operating system is made up of several directories and many different
files. The /dev directory contains special files known as device files. These files are
used to access all of the different types of hardware on our Linux system.

// FileClass.java

import java.io.*;

public class FileClass

{

public FileClass() throws IOException // constructor

{

boolean tempFile = false;

boolean deleted = false;

File f = new File("c:\\books\\java\\data.dat");

if(!f.exists())

{

tempFile = f.createNewFile();

System.out.println("try to create temp file");

}

if(f.exists()) printFileDetails(f);

else

System.out.println("File does not exist and cannot be created");

if(tempFile)

{

deleted = f.delete();

if(deleted) System.out.println("temp file deleted");

else System.out.println("temp file not deleted");

}

} // end constructor FileClass

private void printFileDetails(File f)

8.4. FILE CLASS 199

{

System.out.println("File name: " + f.getName());

System.out.println("Absolute File: " + f.getAbsoluteFile());

System.out.println("Path: " + f.getAbsolutePath());

System.out.println("File length: " + f.length());

if(f.isFile()) System.out.println("File is normal");

if(f.isHidden()) System.out.println("File is not hidden");

if(f.isDirectory()) System.out.println("File is a directory");

if(f.canRead()) System.out.println("File is readable");

else System.out.println("File is not readable");

if(f.canWrite()) System.out.println("File is writeable");

else System.out.println("File is not writeable");

System.out.println("Path separator is: " + f.pathSeparator);

System.out.println("Name separator is: " + f.separator);

} // end method printFileDetails

public static void main(String[] args) throws IOException

{

new FileClass();

File newf = new File("c:\\books\\java\\mydata");

boolean b = newf.mkdir();

System.out.println("b = " + b);

}

}

200 CHAPTER 8. FILE MANIPULATIONS

To obtain the properties of a file or directory one uses Java’s File class. For example,
the following code displays the directory tree of the file system. Recursion is used
for the method subTree(). After compiling the file DirTree we run the program
with

java DirTree ..\..

// DirTree.java

import java.io.*;

class DirTree

{

static int nDir, nFiles; // number of directories, files

static public void main(String[] args)

{

if(args.length != 1)

{

System.err.println("Usage: java DirTree <starting dir>");

}

File root = new File(args[0]);

nDir = 0;

nFiles = 0;

if(!root.exists())

{

System.err.println("directory " + root + " not found");

System.exit(0);

}

subTree(root,"");

System.out.println(nDir + " directories with " + nFiles + " files");

} // end main

static private void subTree(File root,String prefix)

{

System.out.println(prefix + root.getName());

prefix = "+ " + prefix;

String[] dirList = root.list();

for(int entryNo = 0; entryNo < dirList.length; entryNo++)

8.4. FILE CLASS 201

{

String entryName = root.getAbsolutePath() + File.separatorChar

+ dirList[entryNo];

File item = new File(entryName);

if(item.isDirectory())

{

++nDir;

subTree(item,prefix);

}

else

++nFiles;

}

} // end subTree

}

Finally we show how the File class can be used to copy a file.

// Copy1.java

import java.io.*;

public class Copy1

{

public static void main(String[] args)

{

if(args.length != 2)

{

System.out.println("usage: java Copy1 source dest");

return;

}

File src_f = new File(args[0]);

File dst_f = new File(args[1]);

if(!src_f.exists() || !src_f.canRead())

{

System.out.println("cannot find source: " + src_f.getName());

return;

}

else if(dst_f.exists())

{

System.out.println("destination file " + dst_f.getName()

+ " already exsits");

202 CHAPTER 8. FILE MANIPULATIONS

return;

}

try

{

FileInputStream src = new FileInputStream(src_f);

FileOutputStream dst = new FileOutputStream(dst_f);

byte[] buffer = new byte[512];

while(true) {

int count = src.read(buffer);

if(count == -1) break;

dst.write(buffer,0,count);

}

src.close();

dst.close();

} catch(IOException e) {

System.out.println("error during copy: " + e.getMessage());

if(dst_f.exists()) dst_f.delete();

}

}

}

8.5. SERIALIZATION 203

8.5 Serialization

When we save object information to a file without serialization, we can only save
the ASCII version of the data held by the object. We have to reconstruct the data
into objects when we read the text file, which means we have to indicate that cer-
tain data is associated with certain objects and that certain objects are related.
This is time consuming and error prone. Java 1.1 onwards supports the powerful
feature of object serialization which allows to serialize objects of any class which
implements the Serializable interface. Furthermore if our class subclasses other
classes, all inherited data fields are serialized automatically. Serialization allows
to create persistent objects, that is, objects that can be stored in a file and then
reconstituted for later use. For example, if we want to use an object with a pro-
gram and then use the object again with a later invocation of the same program.
Declaring a member transient tells Java that this member should not be serialized.

In our example we store string s1 but not string s2.

// StringsToStore.java

import java.io.*;

public class StringsToStore implements Serializable

{

private String s1;

private transient String s2;

public StringsToStore(String s1,String s2)

{

this.s1 = s1;

this.s2 = s2;

}

}

The class StringsToStore is now used in class Transient.

// Transient.java

import java.io.*;

public class Transient

{

public static void main(String[] args)

{

try

{

FileOutputStream fos = new FileOutputStream("string.ser");

204 CHAPTER 8. FILE MANIPULATIONS

ObjectOutputStream oos = new ObjectOutputStream(fos);

oos.writeObject(new StringsToStore("One","Two"));

oos.close();

System.out.println("string.ser saved");

}

catch(IOException e)

{

System.out.println("could not write file" + e);

}

}

}

In a more complex example we consider to store the information about a book. We
have three files

Book.java WriteBook.java ReadBook.java

The file Book.java is given by

// Book.java

import java.io.*;

public class Book implements Serializable

{

public String title;

public String author;

public int ISBN;

public Book(String title,String author,int ISBN)

{

this.title = title;

this.author = author;

this.ISBN = ISBN;

}

public String toString()

{

return new String(title + "," + author + "," + ISBN);

}

}

8.5. SERIALIZATION 205

The file WriteBook.java is given by

// WriteBook.java

import java.io.*;

class WriteBook

{

public static void main(String[] args)

{

Book b = new Book("SymbolicC++","Steeb",1852332603);

ObjectOutputStream oos = null;

try

{

oos = new ObjectOutputStream(new FileOutputStream("Book.ser"));

oos.writeObject(b);

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

if(oos != null)

{

try { oos.flush(); }

catch(IOException ioe) { }

try { oos.close(); }

catch(IOException ioe) { }

} // end if

} // end finally

} // end main

} // end class

206 CHAPTER 8. FILE MANIPULATIONS

The file ReadBook.java is given by

// ReadBook.java

import java.io.*;

class ReadBook

{

public static void main(String[] args)

{

ObjectInputStream ois = null;

try

{

ois = new ObjectInputStream(new FileInputStream("Book.ser"));

Object o = ois.readObject();

System.out.println("Read object " + o);

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

if(ois != null)

{

try

{

ois.close();

}

catch(IOException ioe)

{ }

} // end if

} // end finally

} // end main

} // end class

8.5. SERIALIZATION 207

An ObjectOutputStream writes basic data types and graphs of Java objects to an
OutputStream. The objects can be read (reconstructed) using an

ObjectInputStream

Persistent storage of objects can be accomplished by using a file for the stream.

The class Book represents data we would like to make persistent. We want to
archive it to disk and reload in a later session. We had to declare that the Book

class implements the

java.io.Serializable

interface. The Serializable interface does not have any methods. It is simply a
signal interface that indicates to the Java virtual machine that we want to use the
default serialization mechanism.

We first compile the file Book.java

javac Book.java

to get the file Book.class. Then we compile the file WriteBook.java

javac WriteBook.java

to get the file WriteBook.class. Then we run this file. WriteBook creates an

ObjectOutputStream

for the Book object and writes it to a FileOutputStream named Book.ser. This
means it formats the object as a stream of bytes and saves it in the file Book.ser.
Next we compile the file ReadBook.java

javac ReadBook.java

to get the file ReadBook.class. Then we run this file

java ReadBook

This creates an ObjectInputStream from the FileInputStream, Book.ser. In
other words, it reads the byte stream from Book.ser and reconstitutes the Book

object from it. ReadBook then prints the object. The output is

Read object SymbolicC++,Steeb,1852332603

The meaning of the modifier transient is that it is not part of the persistent state
of an object.

208 CHAPTER 8. FILE MANIPULATIONS

The extension to arrays is given in the next programs. We also add as an other
attribute to Book the price as a floating point number.

// Book.java

import java.io.*;

public class Book implements Serializable

{

public String title;

public String author;

public float price;

public Book(String title,String author,float price)

{

this.title = title;

this.author = author;

this.price = price;

}

public String toString()

{

return new String(author + "," + title + "," + price);

}

}

8.5. SERIALIZATION 209

// WriteBook.java

import java.io.*;

import Book;

class WriteBook

{

public static void main(String[] args)

{

Book[] b = new Book[2];

b[0] = new Book("SymbolicC++","Steeb",(float) 123.45);

b[1] = new Book("Workbook","Willi",(float) 45.60);

ObjectOutputStream oos = null;

try

{

oos = new ObjectOutputStream(new FileOutputStream("Book.ser"));

oos.writeObject(b[0]);

oos.writeObject(b[1]);

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

if(oos != null)

{

try { oos.flush(); }

catch(IOException ioe) { }

try { oos.close(); }

catch(IOException ioe) { }

} // end if

} // end finally

} // end main

} // end class

210 CHAPTER 8. FILE MANIPULATIONS

// ReadBook.java

import java.io.*;

class ReadBook

{

public static void main(String[] args)

{

ObjectInputStream ois = null;

try

{

ois = new ObjectInputStream(new FileInputStream("Book.ser"));

Object[] o = new Object[2];

o[0] = ois.readObject();

o[1] = ois.readObject();

for(int i=0; i < o.length; i++)

System.out.println("Read object: " + o[i]);

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

if(ois != null)

{

try

{

ois.close();

}

catch(IOException ioe)

{ }

} // end if

} // end finally

} // end main

} // end class

8.6. GZIP AND ZIP COMPRESSION 211

8.6 GZIP and ZIP Compression

The class GZIPInputStream implements a stream filter for reading compressed data
in the GZIP format. It extends InflaterInputStream and defines two additional
variables and a constant. The

protected CRC32 crc

variable identifies the CRC32 checksum of the compressed data. The

protected boolean eos

variable identifies the end of the input strean. The

static int GZIP_MAGIC

constant identifies the magic number of the GZIP header. Magic numbers are used
to uniquely identify files of a given format. The GZIPInputStream() constructor
allow the InputStream object and the input buffer size to be specified.

The class GZIPOutputStream is the output analog of the GZIPInputStrean. The
class GZIPOutputStream implements a stream filter for writing compressed data in
the GZIP format. It extends DeflaterOutputStream to support GZIP compression.
It adds the crc field variable to calculate a CRC32 checksum on the compressed
data. The GZIPOutputStream() constructor allow the OutputStream object and
the buffer size to be specified. Thus these classes are for reading/writing data using
GZIP compression/decompression scheme.

The following program shows an example. The file to be compressed is passed on
the command line. For example after compiling we enter at the command line

java GZIP Graph2D1.java

The size of the compressed file myfile.gz is 390 bytes compared to the size of 733
bytes of the original file Graph2D1.java.

// GZIP.java

import java.io.*;

import java.util.zip.*;

public class GZIP

{

public static void main(String[] args)

{

try

212 CHAPTER 8. FILE MANIPULATIONS

{

BufferedReader in1 =

new BufferedReader(

new FileReader(args[0]));

BufferedOutputStream out =

new BufferedOutputStream(

new GZIPOutputStream(

new FileOutputStream("myfile.gz")));

System.out.println("writing file");

int c;

while((c = in1.read()) != -1)

out.write(c);

in1.close();

out.close();

System.out.println("reading file");

BufferedReader in2 =

new BufferedReader(

new InputStreamReader(

new GZIPInputStream(

new FileInputStream("myfile.gz"))));

String s;

while((s = in2.readLine()) != null)

System.out.println(s);

}

catch(Exception e)

{

e.printStackTrace();

}

} // end main

}

8.6. GZIP AND ZIP COMPRESSION 213

The classes ZipInputStream and ZipOutputStream are for reading/writing ZIP
archive files. The ZipFile class is used to read .zip files. The ZipFile() con-
structor opens a ZIP file for reading. A File object or a String object containing a
file name may be provided to the ZipFile() constructor. The method entries()

returns an Enumeration object containing the .zip file entries. The ZipEntry class
encapsulates a .zip entry. It represents a compressed file that is stored within the
.zip file. The DEFLATED and STORED constants are used to identify whether a .zip

entry is compressed or merely stored as uncompressed data within the .zip file.
The ZipEntry() constructor is used to create a named .zip entry.

The next two programs show the application of these classes, their methods and
data fields.

// MyZip.java

//

// use: java MyZip FileName.zip FileName.txt

import java.io.*;

import java.util.*;

import java.util.zip.*;

public class MyZip

{

public static void main(String[] args)

{

try

{

ZipOutputStream f =

new ZipOutputStream(new FileOutputStream(args[0]));

for(int i=1;i<args.length;i++)

{

System.out.println(args[i]);

try

{

byte[] b = new byte[1];

ZipEntry ze = new ZipEntry(args[i]);

FileInputStream is = new FileInputStream(args[i]);

f.putNextEntry(ze);

while(is.available()>0)

{

is.read(b);

f.write(b,0,1);

}

214 CHAPTER 8. FILE MANIPULATIONS

f.closeEntry();

is.close();

}

catch(Exception e)

{

System.out.println("Exception "+e.toString());

}

}

f.close();

}

catch(Exception e)

{

System.out.println("Exception "+e.toString());

}

}

}

// MyUnzip.java

//

// use: java MyUnzip FileName.zip

import java.io.*;

import java.util.*;

import java.util.zip.*;

public class MyUnzip

{

public static void main(String[] args)

{

try

{

byte[] b = new byte[1];

ZipFile f = new ZipFile(args[0]);

Enumeration entries = f.entries();

if(args.length==1)

for(int i=0;i<f.size();i++)

{

try

{

ZipEntry ze = (ZipEntry)entries.nextElement();

InputStream is = f.getInputStream(ze);

FileOutputStream os = new FileOutputStream(ze.getName());

System.out.println(ze.toString());

while(is.available()>0)

8.6. GZIP AND ZIP COMPRESSION 215

{

b[0]=(byte)is.read();

os.write(b,0,1);

}

is.close();

os.close();

}

catch(Exception e)

{

System.out.println("Exception "+e.toString());

}

}

else

for(int i=1;i<args.length;i++)

{

try

{

ZipEntry ze = f.getEntry(args[i]);

InputStream is = f.getInputStream(ze);

FileOutputStream os = new FileOutputStream(ze.getName());

System.out.println(ze.toString());

while(is.available()>0)

{

b[0] = (byte)is.read();

os.write(b,0,1);

}

is.close();

os.close();

}

catch(Exception e)

{

System.out.println("Exception "+e.toString());

}

}

}

catch(Exception e)

{

System.out.println("Exception "+e.toString());

}

}

}

216 CHAPTER 8. FILE MANIPULATIONS

8.7 JPEG Files

JPEG is short for Joint Photographic Experts Group. This is a group of experts
nominated by national standards bodies and major companies to work to produce
standards for continuous tone image coding.

JPEG codec encodes bitmaps as JPEG files. JPEG is designed for compressing ei-
ther full-color or gray-scale images of natural, real-world scenes. JPEG handles only
still images, but there is a related standard called MPEG for motion pictures. The
fundamental advantage of JPEG is that it stores full color information: 24bits/pixel
(16 million colors). GIF, the other image format widely used on the net, can only
store 8bits/pixel (256 colors or fewer colors).

The basic steps to save an image as a JPEG file are as follows:

1) Create a BufferdImage with the same dimensions as our Component.

2) Draw the Component into the BufferedImage.

3) Save the BufferedImage into a file using the JPEG package and FileOutputStream.

The following program shows an application. It stores the phase portrait of the
Ikeda Laser map as a jpg file. The data field TYPE_INT_RGB represents an image
with 8-bit RGB Color Components packed into integer pixels.

// JPEG1.java

import com.sun.image.codec.jpeg.*;

import java.awt.*;

import java.awt.geom.Line2D;

import java.awt.image.BufferedImage;

import java.io.FileOutputStream;

public class JPEG1 extends Frame

{

BufferedImage bi;

Graphics2D g2;

public JPEG1()

{

bi = new BufferedImage(400,400,BufferedImage.TYPE_INT_RGB);

g2 = bi.createGraphics();

double x = 0.5; double y = 0.5; // initial value

8.7. JPEG FILES 217

double x1, y1;

double c1 = 0.4, c2 = 0.9, c3 = 9.0;

double rho = 0.85;

int T = 20000;

for(int t=0; t < T; t++)

{

x1 = x; y1 = y;

double taut = c1 - c3/(1.0 + x1*x1 + y1*y1);

x = rho + c2*x1*Math.cos(taut) - y1*Math.sin(taut);

y = c2*(x1*Math.sin(taut) + y1*Math.cos(taut));

double m = 90*x + 200;

double n = 90*y + 200;

g2.draw(new Line2D.Double(m,n,m,n));

}

try

{

FileOutputStream jpegOut = new FileOutputStream("output.jpg");

JPEGImageEncoder jie = JPEGCodec.createJPEGEncoder(jpegOut);

jie.encode(bi);

jpegOut.close();

System.exit(0);

}

catch(Exception e) { }

} // end constructor JPEG1()

public static void main(String args[])

{

JPEG1 jp = new JPEG1();

}

}

218 CHAPTER 8. FILE MANIPULATIONS

8.8 Internationalization

With Internationalization our Java program can be adapted to various languages
and regions without code changes. The term Internationalization is abbreviated as
I18N, since there are 18 letters between the first I and the last N. Support for new
languages does not require recompilation or code changes.

A Locale object is an identifier for a particular combination of language and region:

en US (English and USA)

en GB (English and Great Britian)

fr FR (French and France)

de DE (German and Germany)

In the following two programs we show how Internationalization works. In the first
example we have a JFrame with two buttons Yes and No. We want these buttons to
display Ja and Nein for its German version and Oui and No for its French version.
First we write an ASCII file (text file) with the contents

yesMessage=Yes

noMessage=No

and save this file as Messages_en_UK.properties. The we write another ASCII file
for the German version

yesMessage=Ja

noMessage=Nein

and save it as Messages_de_DE.properties. Finally we write the French version

yesMessage=Oui

noMessage=No

and save it as Messages_fr_FR.properties. Notice that yesMessage and noMessage

are the same in the English, German and French files, these words are keys. These
keys must no change. After compiling the Java file I18N.java we run the program
with

java I18N de DE

or

java I18N fr FR

and so on.

8.8. INTERNATIONALIZATION 219

// I18N.java

import java.util.*;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class I18N extends JFrame

{

String yesCaption;

String noCaption;

static String language;

static String country;

JButton yesButton, noButton;

public I18N() // default constructor

{

Locale locale = new Locale(language,country);

ResourceBundle captions =

ResourceBundle.getBundle("Messages",locale);

yesCaption = captions.getString("yesMessage");

noCaption = captions.getString("noMessage");

yesButton = new JButton(yesCaption);

noButton = new JButton(noCaption);

getContentPane().add(yesButton,BorderLayout.WEST);

getContentPane().add(noButton,BorderLayout.EAST);

} // end default constructor

static public void main(String[] args)

{

if(args.length != 2)

{ System.out.println("Usage: java I18N Language country");

System.out.println("For example: java I18N de DE");

System.exit(0);

}

language = new String(args[0]);

country = new String(args[1]);

220 CHAPTER 8. FILE MANIPULATIONS

I18N frame = new I18N();

frame.addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e)

{ System.exit(0); }

});

frame.setBounds(0,0,200,100);

frame.setVisible(true);

} // end main

}

Obviously Internationalization can also be applied in text mode. The following
example shows this. The file text MessagesBundle.properties contains

greetings=Hello

inquiry=How are you?

farewell=Goodbye

The text file MessagesBundle_de_DE.properties contains

greetings=Hallo

inquiry=Wie geht es Ihnen?

farewell=Auf Wiedersehen

The text file MessagesBundle_fr_FR.properties contains

greetings=Bonjour

inquiry=Commet allez-vous?

farewell=Au revoir

The Java file is given by

// I18N1.java

import java.util.*;

public class I18N1

{

static public void main(String[] args)

{

String language;

String country;

8.8. INTERNATIONALIZATION 221

if(args.length != 2)

{

language = new String("en");

country = new String("GB");

}

else

{

language = new String(args[0]);

country = new String(args[1]);

}

Locale currentLocale;

ResourceBundle messages;

currentLocale = new Locale(language,country);

messages = ResourceBundle.getBundle("MessagesBundle",

currentLocale);

System.out.println(messages.getString("greetings"));

System.out.println(messages.getString("inquiry"));

System.out.println(messages.getString("farewell"));

} // end main

}

222 CHAPTER 8. FILE MANIPULATIONS

8.9 Locking Files for Shared Access

Using the FileLock class and FileChannel class we can use a file lock to restrict
access to a file from multiple processes. We have the option of restricting access to
an entire file or just a region of it. A file-lock is either shared or exclusive. A file
lock object is created each time a lock is acquired on a file via one of the lock()

or tryLock() methods of the FileChannel class. A file-lock is initially valid. It
remains valid until the lock is released by invoking the release() method. The
release() method is in the FileLock class. The following two programs show an
example.

We compile the program LockFile.java which accesses the file data.dat for read
and write. Then we run the program. The program gets an exclusive lock on the
file data.dat, reports when it has the lock, and then waits until we press the Enter
key. Before we press the Enter key we start a new process by compiling and running
the program NoOfLines.java. This program counts the numbers of lines in the file
data.dat. Since the file data.dat is locked it cannot access the file only after we
press the Enter key in the first process. Then the lock is released.

// LockFile.java

import java.io.*;

import java.nio.*;

import java.nio.channels.*;

public class LockFile

{

public static void main(String[] args) throws IOException

{

File f = new File("data.dat");

RandomAccessFile raf = new RandomAccessFile(f,"rw");

FileChannel channel = raf.getChannel();

FileLock lock = channel.lock();

try

{

System.out.println("locked");

System.out.println("Press ENTER to continue");

System.in.read(new byte[10]);

}

finally

{

lock.release();

}

}

}

8.9. LOCKING FILES FOR SHARED ACCESS 223

// NoOfLines.java

import java.io.*;

import java.util.*;

public class NoOfLines

{

public static void main(String[] args) throws IOException

{

FileInputStream fin = new FileInputStream("data.dat");

BufferedReader in;

in = new BufferedReader(new InputStreamReader(fin));

int count = 0;

while(in.readLine() != null)

{

count++;

}

System.out.println("count = " + count);

} // end main

}

224 CHAPTER 8. FILE MANIPULATIONS

8.10 Security API, Signature and DSA Algorithm

The Digitial Signature Standard (DSS), created by the NIST, specifies DSA (Digi-
tal Signature Algorithm) as the algorithm for digital signatures and SHA-1 (Secure
Hash Algorithm) for hashing. DSA is for signatures only and is not an encryption
algorithm. The DSA has three components:

1) key generation

2) signature creation

3) signature verification

DSA is a public key algorithm; the secret key operates on the message hash gen-
erated by SHA-1; to verify a signature, one recomputes the hash of the message,
uses the public key to decrypt the signature and then compare the results. The
key size is variable from 512 to 1024 bits which is adequate for current computing
capabilities as long as we use more than 768 bits. Signature creation is roughly
the same speed as with RSA, but is 10 to 40 times as slow for verification. How-
ever, these numbers depend partially on the assumptions made by the benchmarker.
Since verification is more frequently done than creation, this is an issue worth noting.

The only known cracks (forgery) are easily circumvented by avoiding the particular
moduli (prime factor of p−1 where p is the public key) that lead to weak signatures.
DSS is less susceptible to attacks than RSA; the difference is that RSA depends on
a secret prime while DSA depends on a public prime. The verifier can check that
the prime number is not a fake chosen to allow forgery. It is possible to implement
the DSA algorithm such that a “subliminal channel” is created that can expose key
data and lead to forgable signatures so one is warned not to used unexamined code.

8.10. SECURITY API, SIGNATURE AND DSA ALGORITHM 225

Java provides all the tools of the DSA. The

KeyPairGenerator

is used to generate pairs of public and private keys. Key pairs generators are con-
structed using the getInstance() factory method. The Signature class is used
to provide applications the functionality of a digital signature algorithm. Digital
signature are used for the authorization and integrity assurance of digital data. The
method

byte[] sign()

returns the signature bytes of all the data updated. The method

void initSign(PrivateKey)

initializes this object for signing. The interface PrivateKey merely serves to group
(and provide type safety for) all private key interfaces. The method

boolean verify(byte[])

verfies the passed in signature.

For the following example assume that we have a text file data.dat containing the
line

amount: 2000

If we run the program with

java MySignature data.dat

then the program stops and waits for input from the keyboard. If we change at this
stage the file data.dat, for example to

amount: 3000

then after entering an arbitrary string we obtain the output

signature verifies: false

Obviously if we do not change the file the output will be

signature verifies: true

226 CHAPTER 8. FILE MANIPULATIONS

The program is

// MySignature.java

import java.io.*;

import java.security.*;

class MySignature

{

public static void main(String[] args)

{

try {

// generate a key pair

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA");

keyGen.initialize(1024,new SecureRandom());

KeyPair pair = keyGen.generateKeyPair();

// create a Signature object

// to use for signing and verify

Signature dsa = Signature.getInstance("SHA/DSA");

// initialize the Signature object for signing

PrivateKey priv = pair.getPrivate();

dsa.initSign(priv);

// Update and sign the data

FileInputStream fis = new FileInputStream(args[0]);

byte b;

while(fis.available() != 0) {

b = (byte) fis.read();

dsa.update(b);

} // end while

fis.close();

// sign it

byte[] sig = dsa.sign();

// to stop the system we read from

// the keyboard an arbitrary string

System.out.print("enter string: ");

BufferedReader kbd =

new BufferedReader(new InputStreamReader(System.in));

String str = kbd.readLine();

// verify the signature

8.10. SECURITY API, SIGNATURE AND DSA ALGORITHM 227

PublicKey pub = pair.getPublic();

dsa.initVerify(pub);

// update and verify the data

fis = new FileInputStream(args[0]);

while(fis.available() != 0) {

b = (byte) fis.read();

dsa.update(b);

} // end while

fis.close();

boolean verifies = dsa.verify(sig);

System.out.println("signature verifies: " + verifies);

} // end try block

catch(Exception e) {

System.err.println("Caught exceptio " + e.toString());

}

} // end main

}

Chapter 9

Threads

9.1 Introduction

Multitasking and multithreading are two types of concurrencies. Multitasking refers
to the ability of executing more than one program at the time. It is usually supported
on the operating system level. Multithreading, on the other hand, refers to a single
pogram which has more than one execution thread running concurrently. Each of
these independent subtasks is called a thread. An execution thread refers to the
execution of a single sequence of instructions. In Java support for multithreaded
programmming is built into the language.

Threads are sequences of code that can be executed independently alongside one
another. The Java Virtual Machine allows an application to have multiple threads
of execution running concurrently. Thus a thread is an independent sequential flow
of control within a process. Threads run with programs. A single application or
applet can have many threads doing different things independently. The Thread

class is defined in java.lang as a subclass of the Object class. To use Threads
in a program, one needs to define a local subclass of the Thread class and therein
override its void run() method. We put the code that we want the threads of that
subclass to execute in that void run() method.

The public abstract interface Runnable should be implemented by any class
whose instances are intended to be executed by a thread. The class must define a
method of no arguments called run().

There are two ways in which to initiate a new thread of execution. The first is to
create a subclass of the Thread class and redefine the run() method to perform the
set of actions that the thread is intended to do. The second one is to define a new
class that implements the Runnable interface. It must define the run() method and
can be started by passing an instance of the class to a new Thread instance. In both
cases we define a class which specifies the operations or actions that the new thread
(of execution) performs.

228

9.1. INTRODUCTION 229

A thread can be in any one of four states:

1) New: the thread object has been created but it has not been started yet so it
cannot run.

2) Runnable: this means that a thread can be run when the time-slicing mecha-
nism has CPU cycles available for the thread. Thus, the thread might or might not
be running, but there is nothing to prevent it from being run if the scheduler can
arrange it. It is not dead or blocked.

3) Dead: the normal way for a thread to die is by returning from its run() method.

4) Blocked: the thread could be run but there is something that prevents it. While
a thread is in the blocked state the scheduler will simply skip over it and not give
any CPU time. Until a thread re-enters the runnable state it will not perform any
operations. A thread can be blocked for five reasons. First we have put the thread
to sleep by calling the method sleep(milliseconds), in which case it will not be
run for the specified time. Second we have suspended the execution of the thread by
calling the method suspend(). It will not become runnable again until the thread
gets the resume() message. Third we have suspended the execution of the thread
with the method wait(). The method

public final void wait() throws InteruptedException

waits to be notified by another thread of a change in this object. It will not become
runnable again until the thread gets the notify() or notifyAll() message. The
method

public final native void notify()

wakes up a single thread that is waiting on this object’s monitor. A thread waits
on an object’s monitor by calling one of the wait methods. The method

public final native void notifyAll()

wakes up all threads that are waiting on this object’s monitor. A thread waits
on an object’s monitor by calling one of the wait methods. Fourth the thread is
waiting for some Input/Output to complete. Finally the thread is trying to call
a synchronized method on another object and that object’s lock is not available.
The keyword synchronized indicates that while a method is accessing an object,
other synchronized methods are blocked from accessing that object.

230 CHAPTER 9. THREADS

9.2 Thread Class

The Thread class provides all the facilities required to create a class which can
execute within its own lightweight process (within the JVM). Next we give the
methods that can change the state of a thread. The

void start()

method in class Thread causes this thread to begin execution. The Java Virtual
Machine calls the run() method of this thread. The Runnable interface has a single
method called run(). The class which implements the Runnable interface must
therefore supply its own run() method. Starting a thread causes the run() method
to be executed. This method is executed for a brief time and then another thread
of the application is executed. This thread runs briefly and is then suspended so
another thread can run and so on. If this thread was constructed using a separate
Runnable object, then that Runnable object’s run() method is called; otherwise,
this method does nothing and returns. The method

static void sleep(long millis)

in the Thread class causes the currently executing thread to sleep (temporarily cease
execution) for the specified number of milliseconds. The method

void yield()

causes the currentlty executing thread object to temporarily pause and allow other
threads to execute. The method

void destroy()

destroys this thread without any cleanup.

There are a number of methods in the class Thread that provide information about
the status of the process. The method

boolean isAlive()

tests to see if the thread has started execution. On the other hand the method

boolean isInterrupted()

tests if this thread has been interrupted.

Every thread has a unique name. If we do not provide one, then a name is auto-
matically generated by the system. There are two methods that access and set a
thread’s name. The method

String getName() // in Thread class

9.2. THREAD CLASS 231

returns this thread’s name. The method

void setName(String name)

changes the name of this thread to be equal to the argument name.

The field

static int MAX_PRIORITY

is an integer which defines the maximum priority of a thread. The field

static int MIN_PRIORITY

is an integer which defines the minimum priority of a thread.

The methods

void resume(), void stop(), void suspend()

are deprecated. Instead of using the stop() method, it is recommended that threads
monitor their execution and stop by returning from their run() method.

In many cases we call the method

void repaint()

inside the run() method. The method repaint() is in class Component. It repaints
this component, i.e. it calls the method paint(). The method paint() is in class
Component. It paints this component. The method

void repaint(long tm)

repaints the component. This will result in a call to update() within tm milliseconds,
i.e. tm is the maximum time in milliseconds before update.

232 CHAPTER 9. THREADS

9.3 Examples

In our first two examples we implement two balls one moving in x direction the
other in y direction. In the first program for loops are used to pass the time. In
the second program we use the Calendar class.

// MoveBalls1.java

import java.awt.Graphics;

import java.awt.*;

import java.applet.Applet;

public class MoveBalls1 extends Applet implements Runnable

{

int x = 0, y = 0;

public void init()

{

Thread thread = new Thread(this);

thread.start();

}

public void run()

{

int i, j, k;

for(j=0; j < 200; j++)

{

x++; y++;

repaint(50);

for(i=0; i < 1000; i++) { for(k=0; k < 1000; k++) { } }

}

for(j=0; j < 200; j++)

{

x--; y--;

repaint(50);

for(i=0; i < 1000; i++) { for(k=0; k < 1000; k++) { } }

}

} // end run()

public void paint(Graphics g)

{

g.setColor(Color.blue); g.drawOval(x,100,20,20);

g.setColor(Color.red); g.drawOval(100,y,20,20);

} // end paint(Graphics g)

} // end class MoveBalls1

9.3. EXAMPLES 233

// MoveBalls2.java

import java.awt.Graphics;

import java.awt.*;

import java.applet.Applet;

import java.util.Calendar;

public class MoveBalls2 extends Applet implements Runnable

{

int d = 0;

public void init()

{

Thread thread = null;

if(thread == null)

{

thread = new Thread(this);

thread.start();

}

}

public void run()

{

for(;;)

{

Calendar now = Calendar.getInstance();

d = now.get(Calendar.MILLISECOND);

repaint(5);

} // end for loop

} // end run

public void paint(Graphics g)

{

d = d + 5;

g.setColor(Color.red); g.fillOval(d,25,50,50);

g.setColor(Color.blue); g.fillOval(25,d,50,50);

} // end paint(Graphics g)

} // end class MoveBalls2

234 CHAPTER 9. THREADS

In our third example we define a new class called Counter that implements the
Runnable interface. It defines a run() method and will be started by passing an
instance of the class to a new Thread instance.

// Counter.java

import java.awt.*;

import java.applet.*;

public class Counter extends Applet implements Runnable

{

Thread timer = null;

int count = 0;

public void start()

{

if(timer == null)

{

timer = new Thread(this);

timer.start();

}

}

public void run()

{

while(timer != null)

{

try { Thread.sleep(1000); }

catch(Exception e) { }

count++;

repaint();

}

}

public void paint(Graphics g)

{

g.setFont(new Font("SanSerif",Font.BOLD,24));

g.drawString("Count = " + count,10,20);

}

}

The HTML file is given by

9.3. EXAMPLES 235

<HTML>

<COMMENT> Counter.html </COMMENT>

<APPLET CODE="Counter.class" width=275 height=135>

</APPLET>

</HTML>

In our fourth example we create a subclass TestThread of class Thread and redefine
the run() method to perform the set of actions that the thread is intended to do.
The names of the threads are 0, 1, 2, 3.

// MyThread.java

class TestThread extends Thread

{

int sleepTime;

public TestThread(String s)

{

super(s);

sleepTime = (int) (500*Math.random());

System.out.println("Name: " + getName() + "\t Sleep: " + sleepTime);

} // end constructor TestThread

public void run()

{

try { sleep(sleepTime); }

catch(Exception e) { }

System.out.println("Thread " + getName());

} // end run

} // end class TestThread

public class MyThread

{

public static void main(String[] args)

{

TestThread thread0, thread1, thread2, thread3;

thread0 = new TestThread("0"); thread1 = new TestThread("1");

thread2 = new TestThread("2"); thread3 = new TestThread("3");

thread0.start();

thread1.start();

thread2.start();

thread3.start();

} // end main

} // end class MyThread

236 CHAPTER 9. THREADS

A typical output is

first run:

Name: 0 Sleep: 223

Name: 1 Sleep: 55

Name: 2 Sleep: 401

Name: 3 Sleep: 482

Thread 0

Thread 2

Thread 3

Thread 1

second run

Name: 0 Sleep: 36

Name: 1 Sleep: 145

Name: 2 Sleep: 345

Name: 3 Sleep: 290

Thread 0

Thread 3

Thread 1

Thread 2

9.4. PRIORITIES 237

9.4 Priorities

The priority of a thread tells the scheduler how important this thread is. If there
are a number of threads blocked and waiting to be run, the scheduler will run
the one with the highest priority first. However, this does not mean that threads
with lower priority do not get run. This means we cannot deadlocked because of
priorities. Lower priority threads just tend to run less often. In Java we can read the
priority of a thread with the method getPriority() and change it with the method
setPriority(). The following program shows an application of these methods.

// Bounce.java

import java.awt.*;

import java.awt.event.*;

public class Bounce extends Frame

implements WindowListener, ActionListener

{

Canvas canvas;

public Bounce()

{

setTitle("BouncingBalls");

addWindowListener(this);

canvas = new Canvas();

add("Center",canvas);

Panel panel = new Panel();

add("North",panel);

Button b = new Button("Normal Ball");

b.addActionListener(this);

panel.add(b);

b = new Button("High Priority Ball");

b.addActionListener(this);

panel.add(b);

b = new Button("Close");

b.addActionListener(this);

panel.add(b);

} // end constructor Bounce()

238 CHAPTER 9. THREADS

public void windowClosing(WindowEvent e) { System.exit(0); }

public void windowClosed(WindowEvent e) { }

public void windowOpened(WindowEvent e) { }

public void windowDeiconified(WindowEvent e) { }

public void windowIconified(WindowEvent e) { }

public void windowActivated(WindowEvent e) { }

public void windowDeactivated(WindowEvent e) { }

public void actionPerformed(ActionEvent action)

{

if(action.getActionCommand() == "Normal Ball")

{

Ball ball = new Ball(canvas,Color.blue);

ball.setPriority(Thread.NORM_PRIORITY);

ball.start();

}

else if(action.getActionCommand() == "High Priority Ball")

{

Ball ball = new Ball(canvas,Color.red);

ball.setPriority(Thread.NORM_PRIORITY+1);

ball.start();

}

else if(action.getActionCommand() == "Close")

System.exit(0);

}

public static void main(String[] args)

{

Frame frame = new Bounce();

frame.setSize(400,300);

frame.setVisible(true);

}

} // end class Bounce

class Ball extends Thread

{

Canvas box;

private static final int diameter = 10;

private int x = 0;

private int y = 0;

private int dx = 2;

private int dy = 2;

Color color;

9.4. PRIORITIES 239

Ball(Canvas canvas,Color col)

{

box = canvas;

color = col;

}

public void draw()

{

Graphics g = box.getGraphics();

g.setColor(color);

g.fillOval(x,y,diameter,diameter);

g.dispose();

} // end draw

public void move()

{

Graphics g = box.getGraphics();

g.setColor(color);

g.setXORMode(box.getBackground());

g.fillOval(x,y,diameter,diameter);

x += dx;

y += dy;

Dimension d = box.getSize();

if(x < 0) { x = 0; dx = -dx; }

if(x+diameter >= d.width) { x = d.width-diameter; dx = -dx; }

if(y < 0) { y = 0; dy = -dy; }

if(y+diameter >= d.height) { y = d.height - diameter; dy = -dy; }

g.fillOval(x,y,diameter,diameter);

g.dispose();

} // end move

public void run()

{

draw();

for(;;)

{

move();

try { sleep(10); }

catch(InterruptedException e) { }

} // end for loop

} // end run

} // end class Ball

240 CHAPTER 9. THREADS

9.5 Synchronization and Locks

Threads behave fairly independently with the Java virtual machine switching be-
tween the threads. This can cause problems since it is not known when a thread
will be paused to allow another thread to run. Java has built-in support to prevent
collisions over one kind of resource: the memory in an object. We typically make the
data elements of a class private and access that memory only through methods,
we can prevent collisions by making a particular method synchronized. Only one
thread at the time can call a synchronized method for a particular object. Thus
to prevent one thread from interfering with the other the synchronized modifier
can be used when defining a method.

Any method can be preceded by the word synchronized. The rule is: no two
threads may be executing synchronized methods of the same object at the same
time. The Java system enforces this rule by associating a monitor lock with each
object. When a thread calls a synchronized method of an object, it tries to grab the
object’s monitor lock. If another thread is holding the lock, it waits until that thread
releases it. A thread releases the monitor lock when it leaves the synchronized

method. Of one synchronized method of a call contains a call to another, a thread
may have the same lock multiple times. Java keeps track of that correctly.

Thus there is a lock with every object. The synchronized statement computes a
reference to an object. It then attempts to perform a lock operation on that object
and does not proceed further until the lock operation has successfully completed. A
lock operation may be delayed because the rules about locks can prevent the main
memory from participating until some other thread is ready to perform one or more
unlock operations. After the lock operation has been performed, the body of the
synchronized statement is executed. Normally, a compiler ensures that the lock
operation implemented by a monitorenter instruction executed prior to the execu-
tion of the body of the synchronized statement is matched by an unlock operation
implemented by a monitorexit instruction whenever the synchronized statement
completes, whether completion is normal or abrupt. The Java Virtual Machine pro-
vides separate monitorenter and monitorexit instructions that implements the lock
and unlock operations.

A synchronized method automatically performs a lock operation when it is invoked.
Its body is not executed until the lock operation has successfully completed. If the
method is an instance method, it locks the lock associated with the instance for
which it was invoked. This means, the object that will be known as this during
execution of the method’s body. If the method is static, it locks the lock associated
with the Class object that represents the class in which the method is defined. If
execution of the method’s body is ever completed, either normally or abruptly, an
unlock operation is automatically performed on that same lock.

9.5. SYNCHRONIZATION AND LOCKS 241

In the following program we start two threads f1 and f2. The method display()

is synchronized. The output the program Synchronized.java is

100 101 102

100 101 102

100 101 102

100 101 102

100 101 102

100 101 102

If we change the line

synchronized void display()

in the program to

void display()

the output is

100 100 101 101 102 102

100 100 101 101 102 102

100 100 101 101 102 102

242 CHAPTER 9. THREADS

// Synchronized.java

public class Synchronized

{

Count f1, f2;

Synchronized()

{

f1 = new Count(this);

f2 = new Count(this);

f1.start();

f2.start();

} // end constructor Synchronized

synchronized void display()

{

System.out.print("100 ");

System.out.print("101 ");

System.out.print("102 ");

System.out.println();

}

public static void main(String[] args)

{

new Synchronized();

}

} // end class Synchronized

class Count extends Thread

{

Synchronized current;

Count(Synchronized thread)

{

current = thread;

}

public void run()

{

int i;

for(i=0; i < 3; i++)

current.display();

}

}

9.5. SYNCHRONIZATION AND LOCKS 243

In the followings programs BankAccount.java and Transfer.java we consider the
problem of transferring money between bank accounts. It is left as an exercise
to the reader to investigate whether or not the method getBalance() should be
synchronized or not in the following two programs.

// BankAccount.java

public class BankAccount

{

private double balance;

public BankAccount(double balance)

{

this.balance = balance;

}

public double getBalance()

{

return balance;

}

public synchronized void deposit(double amount)

{

balance += amount;

}

public synchronized void withdraw(double amount)

throws RuntimeException

{

if(amount > balance)

{

throw new RuntimeException("Overdraft");

}

balance -= amount;

}

public synchronized void transfer(double amount,BankAccount destination)

{

this.withdraw(amount);

Thread.yield();

destination.deposit(amount);

}

} // end class BankAccount

244 CHAPTER 9. THREADS

// Transfer.java

import BankAccount;

public class Transfer implements Runnable

{

public static void main(String[] args)

{

Transfer x =

new Transfer(new BankAccount(100.0),new BankAccount(100.0),50.0);

Thread t = new Thread(x);

t.start();

Thread.yield(); // the thread on which yield() is invoked would

// move from running state to ready state

System.out.println("Account A has Dollar: " + x.A.getBalance());

System.out.println("Account B has Dollar: " + x.B.getBalance());

}

public BankAccount A, B;

public double amount;

public Transfer(BankAccount A,BankAccount B,double amount)

{

this.A = A;

this.B = B;

this.amount = amount;

}

public void run()

{

System.out.println("Before transfer A has Dollar: "

+ A.getBalance());

System.out.println("Before transfer B has Dollar: "

+ B.getBalance());

A.transfer(amount,B);

System.out.println("After transfer A has Dollar: "

+ A.getBalance());

System.out.println("After transfer B has Dollar: "

+ B.getBalance());

}

}

9.6. PRODUCER CONSUMER PROBLEM 245

9.6 Producer Consumer Problem

The producer consumer problem is a classic synchronization problem. The producer
and consumer processes share a common buffer. The producer executes a loop in
which it puts new items into the buffer and the consumer executes a loop in which
it removes items from the buffer. The following important conditions have to be
satisfied by the producer and consumer. At most one process (producer or consumer)
may be accessing the shared buffer at any time. This condition is called mutual
exclusion. When the buffer is full, the producer should be put to sleep. It should
only wake up when an empty slot becomes available. This is called synchronization.
When the buffer is empty, the consumer should be put to sleep. It should only wake
up when at least one slot becomes full. This is also called synchronization.

The following four programs

Producer.java

Consumer.java

Buffer.java

Main.java

give a solution to this problem. The methods wait() and notify() are in the class
Object. Class Object is the root of the class hierarchy. Every class has Object

as a superclass. All objects, including arrays, implement the methods of this class.
The method wait() causes the current thread to wait until another thread invokes
the notify() method or the notifyAll() method for this object. The method
notify() wakes up a single thread that is waiting on this object’s monitor. If any
threads are waiting on this object, one of them is chosen to be awakend. The choice
is arbitrary and occurs at the discretion of the implementation. A thread waits on
an object’s monitor by calling one of the wait methods.

// Producer.java

public class Producer extends Thread

{

private Buffer buffer;

public Producer(Buffer b)

{

buffer = b;

}

public void run()

{

for(int i=0; i < 10; i++)

{

246 CHAPTER 9. THREADS

buffer.put(i);

System.out.println("Producer put: " + i);

try

{

sleep((int) (Math.random()*100));

}

catch(InterruptedException e) { }

}

}

}

// Consumer.java

public class Consumer extends Thread

{

private Buffer buffer;

public Consumer(Buffer b)

{

buffer = b;

}

public void run()

{

int value = 0;

for(int i=0; i < 10; i++)

{

value = buffer.get();

System.out.println("Consumer got: " + value);

}

}

}

// Buffer.java

public class Buffer

{

private int contents;

private boolean available = false;

public synchronized int get()

{

9.6. PRODUCER CONSUMER PROBLEM 247

while(available == false)

{

try

{

wait();

}

catch(InterruptedException e) { }

}

available = false;

notify();

return contents;

}

public synchronized void put(int value)

{

while(available == true)

{

try

{

wait();

}

catch(InterruptedException e) { }

}

contents = value;

available = true;

notify();

}

}

// Main.java

public class Main

{

public static void main(String[] args)

{

Buffer b = new Buffer();

Producer p = new Producer(b);

Consumer c = new Consumer(b);

p.start();

c.start();

}

}

248 CHAPTER 9. THREADS

9.7 Deadlock

Deadlock is a mutual starvation between at least two threads that cannot satisfy each
other. We cause deadlock between two threads that are both trying to acquire locks
for the same two resources. To avoid this sort of deadlock when locking multiple
resources, all threads should always acquire their locks in the same order. There are
two resource objects (strings) we will try to get locks for. The first thread tries to
lock resource1 then resource2. The second thread tries to lock resource2 and then
resource1.

// MyDeadLock.java

public class MyDeadLock

{

public static void main(String[] args)

{

final String resource1 = "resource1";

final String resource2 = "resource2";

// first thread

Thread t1 = new Thread() {

public void run() {

// Lock resource 1

synchronized(resource1) {

System.out.println("Thread 1: locked resource 1");

// Pause for a bit something.

// We give the other thread a chance to run.

// Threads and deadlock are asynchronous things,

// but we are trying to force deadlock to happen here.

try {

Thread.sleep(50);

} catch(InterruptedException e) { }

// Now wait till we can get a lock on resource 2

synchronized(resource2){

System.out.println("Thread 1: locked resource 2");

}

}

}

};

// second thread

Thread t2 = new Thread() {

public void run() {

// This thread locks resource 2 right away

9.7. DEADLOCK 249

synchronized(resource2) {

System.out.println("Thread 2: locked resource 2");

// Then it pauses, for the same reason as the first

// thread does

try {

Thread.sleep(50);

} catch(InterruptedException e) {}

// Then it tries to lock resource1.

// However Thread 1 locked resource1, and

// will not release it till it gets a lock on resource2.

// This thread holds the lock on resource2, and will not

// release it till it gets resource1.

// Thus neither thread can run, and the program freezes up.

synchronized(resource1) {

System.out.println("Thread 2: locked resource 1");

}

}

}

};

// Start the two threads.

// Deadlock can occur, and the program will never exit.

t1.start();

t2.start();

}

}

Running the program we typically get

Thread 1: locked resource 1

Thread 2: locked resource 2

and then the program freezes up. Using the debugger jdb and run we get

Thread 2: locked resource 2

Thread 2: locked resource 1

Thread 1: locked resource 1

Thread 1: locked resource 2

Chapter 10

Animation

10.1 Introduction

Animation involves changing a picture over and over to simulate movement of some
sort. There are several different types of animation we can perform in a Java ap-
plet. We can display a sequence of images, or we can display a single image while
changing a portion of it. We can change an image by running it through a filter
of by changing the colours in the image. We can also perform animation with the
basic graphics classes.

Animation is a powerful technique for applets. Having a portion of our display that
moves can make our application or our Web page much livelier.

Animation is frequently used in video games. In facet, it is probably one of the most
common factors in computer games. Modern adventure games often use sequences
of real-life images to give the game a modern feel. Arcade games frequently employ
graphical animation, although some have begun to integrate images into the games
as well.

Beyond gaming, animation is an excellent tool for computer-assisted learning. Rather
than describing a technique with plain old text, we can demonstrate it through an-
imation. This type of animation is often done with images but not necessarily. We
may be demonstrating a technique that requires a graphical representation that is
computed while the program is running.

To perform animation, we have to create a thread that repeatedly changes the
animation sequence and repaints the picture. Because the different animation tech-
niques all use this same method, we can use the same mechanism to trigger the next
animation sequence.

250

10.1. INTRODUCTION 251

Like Web browsers, Java is designed to handle graphics files in two formats - GIF
(including animated GIFs) with extension .gif and JPEG (with either a .jpeg or
a .jpg extension).

jpg-file: JPEG bitmaps

gif-file: GIF CompucServe bitmaps

JPEG stands for Joint Photographic Experts Group. Java cannot cope with the
standard Windows formats BMP and PCX. If we want to create our own images,
we need a suitable graphics application, such as Paint ShopPro or CorelDraw. Corel-
Draw allows then to convert the .cdr file into a .gif or .jpg file. We can use this
for drawing new images, or for converting pictures created in Paint ShopPro or
CorelDraw or almost anywhere else - into the GIF and JPEG formats.

GIF files are significantly smaller than JPEG files, and therefore faster to load - an
important consideration, especially where files have to be transferred over the World
Wide Web. The main reason why JPEG files are larger is that they have palettes of

256 · 256 · 256 = 16777216

colours as opposed to the 256-colour palette of GIFs. We use JPEGs only where we
need to show subtle variations of colour over a huge palette - and if the file is going
up onto the Web. Many people will be viewing it on 256, or even 16-colour screens.

An animated GIF is a set of images, which are displayed in sequence, with a de-
fined delay between each. They are used in exactly the same way as still images
- the animation is entirely built into the image file, so all Java has to do is dis-
play it. The files tend to be large, and that the animation speed is defined within
the GIF. There are plenty of ready-made animated GIFs freely available on the Web.

JDK 1.1 provided the capability for applets to play audio files that were in the
SunAudio (.au) format. JDK 1.2 provides a new sound engine that allows audio
files to be played by both applets and applications. The sound engine also provides
support for the Musical Instrument Digital Interface (MIDI), the Microsoft Windows
audio format (WAVE), the Rich Music Format (RMF), and the Audio Interchange
File Format (AIFF).

252 CHAPTER 10. ANIMATION

10.2 Image Class and Animation

Images are stored in Image objects, with the files loaded into them by the getImage()
method. The abstract class

public abstract class Image extends Objects

is the superclass of all classes that represent graphical images. The image must be
obtained in a platform-specific manner. The method

Image getImage(URL url,String name)

in class Applet returns an Image object that can be painted on the screen. Thus
method getImage() takes as its parameter a URL - Uniform Resource Locator - the
standard means of identifying a file anywhere on the Internet or in a computer. The
method

URL getCodeBase()

in class Applet gets the base URL. This is the URL of the applet itself. The easiest
way to handle the URL is with the method getCodeBase(). This works out the URL

of the directory in which the program is stored. If the image file is in the same
directory, then we would simply follow it up with the filename. If the file is in a
sub-directory, we also need to add its name. The method getCodeBase() will give
the right URL when the files are on our system and when they are uploaded to our
Web space on our access provider’s server. The method getDocumentBase() returns
the URL of the Web page in which the applet is embedded.

If the image file is stored in a completely different place from the code, then we have
to define the URL using the java.net.URL class. This throws an exception that we
must catch. For example

import jave.net.*;

try

{

pic = getImage(new URL("http://zeus.rau.ac.za/diploma/globe.gif"));

}

catch(MalformedURLException e)

{ }

...

The address is written in full, then converted to a URL object. The catch block
might get an alternative image from a more secure source.

10.2. IMAGE CLASS AND ANIMATION 253

// Animate.java

//

// The files

// figure1.jpg figure2.jpg figure3.jpg figure4.jpg

// are in the same directory as the file

// Animate.java

import java.awt.*;

import java.applet.*;

public class Animate extends Applet implements Runnable

{

int i;

Thread animator = null;

Image[] pic = new Image[4];

int current = 0;

public void init()

{

pic[0] = getImage(getCodeBase(),"figure1.jpg");

pic[1] = getImage(getCodeBase(),"figure2.jpg");

pic[2] = getImage(getCodeBase(),"figure3.jpg");

pic[3] = getImage(getCodeBase(),"figure4.jpg");

}

public void start()

{

if(animator == null)

{

animator = new Thread(this);

animator.start();

}

}

public void run()

{

while(animator != null)

{

i += 10;

if(i > 400) { i = 0; }

current++;

if(current > 3) current = 0;

repaint(); // repaint() calls paint()

254 CHAPTER 10. ANIMATION

try

{

Thread.sleep(100);

} // end try

catch(InterruptedException e) { }

} // end while

} // end run()

public void paint(Graphics g)

{

g.drawImage(pic[current],i,100,this);

}

}

The html-file is Animate.html is

<HTML>

<APPLET CODE="Animate.class" width=275 height=135>

</APPLET>

</HTML>

We recall that the method

abstract boolean drawImage(Image img,int x,int y,ImageObserver observer)

draws as much of the specified image as is currently available. The ImageObserver is
an asynchronous update interface for receiving notification about Image information
as the Image is constructed.

10.2. IMAGE CLASS AND ANIMATION 255

It is left as an exercise to rewrite the following code using jpg-files to simulate a
flashing traffic light.

// Traffic.java

import java.awt.*;

import java.applet.*;

import java.awt.Graphics;

public class Traffic extends Applet implements Runnable

{

Thread animator = null;

int t = 0;

Color[] col = new Color[3];

public void init()

{

col[0] = Color.red; col[1] = Color.yellow; col[2] = Color.green;

} // end init

public void start()

{

if(animator == null)

{ animator = new Thread(this); animator.start(); }

} // end start

public void run()

{

while(animator != null)

{

try { Thread.sleep(2000); }

catch(Exception e) { }

t++;

if(t > 2) t = 0;

repaint();

}

} // end run

public void paint(Graphics g)

{

g.setColor(col[t]);

g.drawOval(20,20,100,100);

g.fillOval(20,20,100,100);

} // end paint

}

256 CHAPTER 10. ANIMATION

In the following applet we have a background picture (file Image0.jpg) and a moving
picture (file Actor.jpg).

// FigMotion.java

import java.awt.*;

import java.applet.*;

public class FigMotion extends Applet implements Runnable

{

Thread runner;

Image Buffer;

Graphics gBuffer;

Image background, figure2;

int x;

public void init()

{

Buffer=createImage(getSize().width,getSize().height);

gBuffer=Buffer.getGraphics();

background = getImage(getCodeBase(),"Image0.jpg");

figure2 = getImage(getCodeBase(),"Actor.jpg");

}

public void start()

{

if(runner == null) { runner = new Thread(this); runner.start(); }

}

public void run()

{

while(true) {

try { runner.sleep(15); }

catch(Exception e) { }

gBuffer.drawImage(background,0,0,this);

x++;

if(x > getSize().width) x=-125;

gBuffer.drawImage(figure2,x,150,this);

repaint();

}

}

public void update(Graphics g) { paint(g); }

public void paint(Graphics g) { g.drawImage(Buffer,0,0,this); }

}

10.2. IMAGE CLASS AND ANIMATION 257

Another application shows the following program, where a jpg picture is rotated
and scaled.

// Animation.java

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

import java.awt.geom.*;

import java.awt.image.*;

import java.util.*;

import java.net.URL;

public class Animation extends JApplet

{

AnimationCanvas canvas;

JButton start, stop;

URL codeBase;

public void init()

{

Container container = getContentPane();

codeBase = getCodeBase();

canvas = new AnimationCanvas(codeBase);

container.add(canvas);

start = new JButton("Start");

start.addActionListener(new ButtonListener());

stop = new JButton("Stop");

stop.addActionListener(new ButtonListener());

JPanel panel = new JPanel();

panel.add(start);

panel.add(stop);

container.add(BorderLayout.SOUTH,panel);

}

class ButtonListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

JButton temp = (JButton) e.getSource();

if(temp.equals(start)) { canvas.start(); }

else if(temp.equals(stop)) { canvas.stop(); }

}

258 CHAPTER 10. ANIMATION

}

}

class AnimationCanvas extends JPanel implements Runnable

{

Image image;

Thread thread;

BufferedImage bi;

double x, y, xi, yi;

double scale;

int rotate;

int UP = 0, DOWN = 1;

int scaleDirection;

URL eiffelURL;

AnimationCanvas(URL codeBase)

{

setBackground(Color.green);

try {

eiffelURL = new URL(codeBase,"/home/java/Eiffel_Tower.JPG");

}

catch(java.net.MalformedURLException e)

{

System.out.println("bad URL");

}

image = new ImageIcon(eiffelURL).getImage();

MediaTracker mt = new MediaTracker(this);

mt.addImage(image,1);

try { mt.waitForAll(); }

catch(Exception e)

{ System.out.println("Exception while loading image"); }

if(image.getWidth(this)==-1)

{ System.out.println("Make sure the image exists"

+ "(Eiffel_TOWER.JPG) file in the same directory");

System.exit(0);

}

rotate = (int) (Math.random()*360);

scale = Math.random()*0.8;

scaleDirection = DOWN;

xi = 40.0; yi = 40.0;

}

10.2. IMAGE CLASS AND ANIMATION 259

public void steps(int w,int h)

{

x += xi; y += yi;

if(x > w) { x = w-1; xi = Math.random()*(-w/32.0); }

if(x < 0) { x = 2.0; xi = Math.random()*w/32.0; }

if(y > h) { y = h-2.0; yi = Math.random()*(-h/32.0); }

if(y < 0) { y = 2.0; yi = Math.random()*h/32.0; }

if((rotate += 5)==360) { rotate = 0; }

if(scaleDirection==UP)

{

if((scale += 0.5) > 1.5) { scaleDirection = DOWN; }

}

else if(scaleDirection==DOWN)

{

if((scale -= 0.05) < 0.5) { scaleDirection = UP; }

}

}

public void paintComponent(Graphics g)

{

super.paintComponent(g);

Dimension d = getSize();

bi = new BufferedImage(d.width,d.height,BufferedImage.TYPE_INT_ARGB);

Graphics2D big = bi.createGraphics();

steps(d.width,d.height);

AffineTransform at = new AffineTransform();

at.setToIdentity();

at.translate(x,y);

at.rotate(Math.toRadians(rotate));

at.scale(scale,scale);

big.drawImage(image,at,this);

Graphics2D g2D = (Graphics2D) g;

g2D.drawImage(bi,0,0,null);

big.dispose();

}

public void start()

{

thread = new Thread(this);

thread.setPriority(Thread.MAX_PRIORITY);

thread.start();

}

public void stop()

260 CHAPTER 10. ANIMATION

{

if(thread != null) thread.interrupt();

thread = null;

}

public void run()

{

Thread me = Thread.currentThread();

while(thread == me) { repaint(); }

thread = null;

}

}

10.3. AUDIOCLIP CLASS 261

10.3 AudioClip Class

JDK 1.2 provides us with the options to create and play AudioClips from both
applets and applications. The clips can be any of the following audio file formats

AIFF

AU

WAV

MIDI (type 0 and type 1 file)

RMF

The .au audio clip format was developed by Sun. Windows uses the .wav format.
For testing purposes, we can use the .au files in the Audio folders of the JumpingBox
and TicTacToe demos. The

Interface java.applet.AudioClip

public abstract interface AudioClip

interface is a simple abstraction for playing a sound clip.

The sound engine can handle 8- and 16-bit audio data at virtually any sample rate.
In JDK 1.2 audio files are rendered at a sample rate of 22 kHz in 16-bit stereo. If
the hardware doesn’t support 16-bit data or stereo playback, 8-bit or mono audio
is output. The Java Sound engine minimizes the use of a system’s CPU to process
sound files. A full-featured Java Sound API is now available.

There are two ways to play sounds. The simplest uses the play() method, taking
as its parameter the URL of the file

play(getCodeBase(),"ding.au");

This loads and plays the file immediately. The alternative is to set up an AudioClip

object, load the file into there, and then play it later in the program

AudioClip music;

...

music = getAudioClip(getCodeBase(),"beep.au");

This gives us more control as we have access to three AudioClip methods

music.play(); // plays the clip once

music.loop(); // plays the clip repeatedly

music.stop(); // stops both loop or single play

The method

void loop()

262 CHAPTER 10. ANIMATION

starts playing this audio clip in a loop. The method

void play()

starts playing this audio clip. The method

void stop()

stops playing this audio clip.

// Sound1.java

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

public class Sound1 extends Applet

{

AudioClip music;

Button quiet;

public void init()

{

music = getAudioClip(getCodeBase(),"spacemusic.au");

quiet = new Button("Stop that music");

quiet.addActionListener(new B());

add(quiet);

music.loop();

}

class B implements ActionListener

{

public void actionPerformed(ActionEvent e)

{ music.stop(); }

}

static class WL extends WindowAdapter

{

public void windowClosing(WindowEvent e)

{ System.exit(0); }

}

}

10.3. AUDIOCLIP CLASS 263

The classes for the Java Sound demo are contained in the JavaSound.jar file. To
extract the contents of JavaSound.jar we run the command

jar xf JavaSound.jar

from the JavaSound directory. To run the Java Sound demo we enter

java -jar JavaSound.jar

The JavaSound demo consists of a set of demos housed in one GUI framework that
uses JTabbedPane. We can access different groups of demos by clicking the tabs at
the top of the pane. There are demo groups for Juke Box, Capture and Playback,
Midi Synthesizer and Rhythm Groove Box. Using the Juke Box we can play sam-
pled (au, wav, aif) and midi (rmf, midi) sound files. Using Capture and Playback
we can record audio in different formats and then playback the recorded audio. The
captured audio can be saved either as a wav, au or aiff file. We can load an audio
file for streaming playback.

MIDI stands for musical instrument digitial interface. This connectivity standard
enables us to hook together computers, musical instruments, and synthesizers to
make and orchestrate digital sound. The term is used to describe the standard it-
self, the hardware that supports the standard, and the files that store information
that the hardware can use. MIDI files are like digital sheet music. They contain
instructions for musical notes, tempo, and instrumentation. They are widely used
in game soundtracks and recording studios.

AIFF stands for Audio Interchange File Format. This audio file format was developed
by Apple Computer for storing high-quality sampled audio and musical instrument
information.

WAV is the Windows standard for waveform sound files. WAV files predictably have
the extension .wav.

When a Sun Microsystems or other Unix computer make a noise, it does so in AU

file format. Since the Internet is dominated by the Unix boxes, we find a lot of AU
files there. Macintosh and PC browsers such as Netscape Navigator are able to play
AU files, which have the extension .au.

Juke Box: A Juke Box for sampled (au, wav, aif) and midi (rmf, midi) sound files.
Features duration progress, seek slider, pan and volume controls.

Capture and Playback: A Capture/Playback sample. Record audio in different
formats and then playback the recorded audio. The captured audio can be saved
either as a wav, au or aif file. We can also load an audio file for streaming playback.

264 CHAPTER 10. ANIMATION

Midi Synthesizer: Illustrates general MIDI melody instruments and MIDI controllers.
A piano keyboard represents notes on and off. Features capture and playback of
note on and off events.

Rhythm Groove Box: Illustrates how to build a track of short events. Features a
tempo dial to increase or descrease the beats per minute.

In the following program we combine animation and sound.

// AniSoun.java

import java.awt.*;

import java.applet.*;

public class AniSoun extends Applet implements Runnable

{

int i;

Thread animator = null;

Image[] pic = new Image[4];

int current = 0;

AudioClip music;

public void init()

{

pic[0] = getImage(getCodeBase(),"figure1.jpg");

pic[1] = getImage(getCodeBase(),"figure2.jpg");

pic[2] = getImage(getCodeBase(),"figure3.jpg");

pic[3] = getImage(getCodeBase(),"figure4.jpg");

music = getAudioClip(getCodeBase(),"spacemusic.au");

music.loop();

}

public void start()

{

if(animator == null)

{

animator = new Thread(this);

animator.start();

}

}

public void run()

{

while(animator != null)

10.3. AUDIOCLIP CLASS 265

{

i += 10;

if(i > 400) { i = 0; }

current++;

if(current > 3) current = 0;

repaint();

try

{

Thread.sleep(100);

} // end try

catch(InterruptedException e) { }

} // end while

} // end run()

public void paint(Graphics g)

{

g.drawImage(pic[current],i,100,this);

}

}

The HTML file is

<HTML>

<APPLET CODE="AniSoun.class" width=275 height=135>

</APPLET>

</HTML>

Chapter 11

Networking

11.1 Introduction

A network client retrieves data from a server and shows it to a user. Web browsers
are limited. They can only talk to certain kinds of servers (generally Web, FTP, Go-
pher, and perhaps main and news servers). They can only understand and display
certain kinds of data (generally text, HTML, and a couple of standard image for-
mats). A web browser cannot send SQL commands to a database server to perform
interactive queries. Java programms can do this and a lot more. A Java program
embedded in an HTML page (an applet) can give a Java-enabled web browser ca-
pabilities the browser did not have to begin with.

Java programs are flexible because Java is a general programming language. Java
programs see network connections as streams of data which can be interpreted and
responded to in any way that is necessary. Web browsers see only certain kinds
of data streams and can interpret them only in certain ways. If a browser sees a
data stream that it is not familiar with (for example, a binary response to an SQL
query), its behavior is unpredictable.

Thus, a Java program can connect to a network time server to synchronize itself
with an atomic clock. A web browser cannot. A Java program can connect to an
Oracle database to ask for the salespeople for some data. A web browser cannot.
Finally, a Java program can use the full power of a modern graphical user interface
to show this data to the user.

Java includes built-in classes that connect to other Internet hosts, using the TCP
and UDP protocols of the TCP/IP family. We tell Java what IP address and port
we want, and Java handles the low-level details.

266

11.1. INTRODUCTION 267

Once we have connected to a server, it is our responsibility to communicate prop-
erly with the remote server and interpret the data the server sends us. In almost
all cases, packaging data to send to a server and unpacking the data we get back
is harder than simply making the connection. Java includes classes that help us
communicate with certain types of servers, notably web servers. It also includes
classes to process some kinds of data, such as text, GIF images, and JPEG images.
However, not all servers are HTTP servers, and not all data are GIFs. Therefore,
Java lets us write protocol handlers that communicate with different kinds of servers
and content handlers that communicate with different kinds of servers and content
handers that understand and display different kinds of data. When the protocol or
content handler is no longer needed, Java will automatically dispose of it so it does
not waste memory or disk space.

A network is a collection of computers and other devices that can send data to
and receive data from each other, more or less in real time. A network is nor-
mally connected by wires, and the bits of data are turned into electrons that move
through the wires. However, wireless networks that transmit data through infrared
light or microwaves are beginning to appear, and many long-distance transmissions
are now carried over fiber optic cables that send visible light through glass filaments.

Each machine on a network is called a node. Most nodes are computers, but print-
ers, routers, bridges, gateways and dumb terminals. Nodes that are fully functional
computers are also called hosts. We will use the word node to refer to any device
on the network, and host to mean that subset of devices which are general-purpose
computers.

There are several different layer modes, each organized to fit the needs of a par-
ticular kind of network. Separating the network into layers lets us modify or even
replace one layer without affecting the others, as long as the interfaces between the
layers stay the same. Thus, applications talk only to the transport layer. The trans-
port layer talks only to the application layer and the Internet layer. The Internet
layer in turn talks only to the host-to-network layer and the transport layer, never
directly to the application layer. The host-to-network layer moves the data across
the wires, fiber-optic cables or other medium to the host-to-network layer on the
remote system.

The Internet is the world’s largest IP-based network. It is an amorphous group of
computers in many different countries on all seven continents that talk to each other
using the IP protocol. Each computer on the Internet has at least one unique IP
address by which it can be identified. Most of them also have at least one name
that maps to theat IP address. The Internet is not owned by anyone. It is simply
a very large collection of computers that talk to each other in a standard way.

268 CHAPTER 11. NETWORKING

As described above IP addresses can exist in two forms:

1) The familiar DNS (Domain Name Service) form. The domain name of SUN is
sun.com. My domain name is whs.rau.ac.za.

2) We can also use the dotted quad form, which is four numbers separated by dots,
such as 207.25.71.25.

The Internet is not the only IP-based network, but it is the largest one. Other IP
networks are called internets with a little i; for example, a corporate IP network
that is not connected to the Internet. Intranet is a current buzzword that loosely
describes corporate practices of putting lots of data on internal web servers. Since
web browsers use IP, most intranets do too (though some tunnel it through existing
AppleTalk or IPX installations).

To make sure that hosts on different networks on the Internet can communicate with
each other, a few rules that do not apply to purely internal internets need to be fol-
lowed. The most important rules deal with the assignment of addresses to different
organizations, companies, and individuals. If everyone randomly picked the Internet
addresses they wanted, conflicts would arise when different computers showed up on
the Internet with the same address. To avoid this problem, Internet addresses are
assigned to different organizations by the Internet Network Information Center (In-
terNIC), generally acting through intermediaries called Internet Service Providers
(ISPs). When an organization wants to set up an IP-based network, they are as-
signed a block of addresses by the InterNIC. Currently, these blocks are available
in two sizes called Class B and Class C. A Class C address block specifies the first
three bytes of the address, for example, 199.1.32. This allows room for 254 individ-
ual addresses (from 1999.1.32.1 to 199.1.32.254). A Class B address block only
specifies the first two bytes of the addresses an organization may use, for instance,
167.1. Thus a Class B address has room for roughly 65,000 different hosts (in block
167.1, the hosts would have addresses from 167.1.0.1 to 167.1.255.254).

IP Version 4 (IPv4) has three fundamental types of addresses: unicast, broadcast,
and multicast. A unicast address is used to send a packet to a single destination. A
broadcast address is used to send a datagram to an entire subnetwork. A multicast
address is used to send a datagram to a set of hosts that can be on different subnet-
works and that are configured as members of a multicast group. Multicast addresses
are defined to be the IP addresses whose high-order four bits are 1110, giving an
address range from 224.0.0.0 through 239.255.255.255. These addresses also are
referred to as Class D addresses.

11.2. ADDRESSES 269

11.2 Addresses

Every network node has an IP (Internet protocoll) address: a series of bytes that
uniquely identify it. Computers connected on the Internet are called hosts. Each
host is identitfied by at least one unique 32-bit number called an Internet address,
an IP address, or a host address. We write an IP as four unsigned bytes, each
ranging from 0 to 255, with the most significant byte first. Bytes are separated by
periods for human convenience. For example

152.106.50.60

Thus every computer on an IP network is identified by a four-byte number. In future
IPv6 will use 16 byte (128 bit) addresses.

Addresses are assigned differently on different kinds of networks. AppleTalk ad-
dresses are chosen randomly at startup by each host. The host then checks to see
if any other machine on the network is using the address. If another machine is
using that address, the host randomly chooses another, checks to see if that address
is already in use, and so on until it gets one that isn’t being used. Ethernet ad-
dresses are attached to the physical Ethernet hardware. Manufacturers of Ethernet
hardware use preassigned manufacturer codes to make sure there are no conflicts
between the addresses in their hardware and the addresses of other manufacturers’
hardware. Each manufacturer is responsible for making sure it doesn’t ship two
Ethernet cards with the same address. Internet addresses are normally assigned to
a computer by the organization that is responsible for it. However, the addresses
that an organization is allowed to choose for its computers are given out by and
organisation called the InterNIC.

Addressing becomes important when we want to restrict access to our site. For
instance, we may want to prevent a competing company from having access to our
web site. In this case we would find out our competitor’s address block and throw
away all requests that come from there. More commonly, we might want to make
sure that only people within our organization can access our internal web servers.
In this case we would deny access to all requests except those that come from within
our own address block.

There is no available block of addresses with a size between a Class B block and a
Class C block. This has become a problem because there are many organizations
with more than 254 and less than 65,000 computers, connected to the Internet. If
each of these organizations is given a Class B address, a lot of IP addresses are
wasted. This is a problem since the number of addresses is limited to about 4.2 bil-
lion. That sounds like a lot, but it gets crowded quickly when we waste fifty or sixty
thousand addresses at a shot. The temporary solution is to assign multiple Class C
addresses to these organizations, inconvenient though this is for packet filtering and
routing.

270 CHAPTER 11. NETWORKING

Several address blocks and patterns are special. All Internet addresses beginning
with 10. and 192. are deliberately unassigned. They can be used on internal
networks, but no host using addresses in these blocks is allowed onto the global
Internet. These non-routable addresses are useful for building private networks that
can not be see from the rest of the Internet, or for building a large network when
we have only been assigned a class C address block. Addresses beginning with 127
(most commonly 127.0.0.1) always mean the local loopback address. That is, these
addresses always point to the local computer, no matter which computer we are run-
ning on. The hostname for this address is generally localhost. The address 0.0.0.0
always refers to the originating host, but may only be used as a source address, not
a destination. Similarly, any address that begins with 0.0 is assumed to refer to a
host on the same local network.

On some kinds of networks, nodes also have names that help human beings identify
them. A particular name normally refers to exactly one address. The Domain Name
System (DNS) was developed to translate hostnames that humans can remember
such as

issc.rau.ac.za

into numeric Internet addresses

152.106.50.232

However, names are not locked to addresses. Names can change while addresses
stay the same or addresses can change while the names stay the same. It is not un-
common for one address to have several names, and it is possible, though somewhat
less common, for one name to refer to several different addresses.

When data is transmitted across the network, the packet’s header includes the ad-
dress of the machine for which the packet is intended (the destination address),
and the address of the machine that sent the packet (the source address). Routers
along the way choose the best route by which to send the packet by inpecting the
destination address. The source address is included.

To get the IP address of the host machine we enter at the command prompt the
command (Windows)

ipconfig

This provides us with the network configuration for the host machine. For example

Ethernet adapter

IP address 152.106.50.60

Subnet Mask 255.255.255.0

Default Gateway 152.106.50.240

11.2. ADDRESSES 271

Under Linux the command is ifconfig. The Linux and Windows command ping

sends echo request packets to a network host to see if it is accessible on the network.
For example

ping 152.106.50.27

gives the reply

Ping statistics for 152.106.50.27

Reply from 152.106.50.27: bytes = 32 time = 1ms TTL = 128

Reply from 152.106.50.27: bytes = 32 time = 1ms TTL = 128

Reply from 152.106.50.27: bytes = 32 time = 1ms TTL = 128

Reply from 152.106.50.27: bytes = 32 time < 10 ms TTL = 128

Packets: Sent 4, Received 4, Lost 0 (0% loss)

Approximate round trip in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average 0ms

The Linux command finger commmand looks up specified information about a
user on the local system or remote systems. Users are specified by their username
or first or last name and on a remote systems as username@host. With no users
specified for the local system, all users logged in to the current system are listed. If
a host with no username is provided in the form host, then a list of all users logged
into the remote system is displayed. The route command displays or alters the IP
routing table.

When Java programs access the network, they need to process both these numeric
addresses and their corresponding hostnames. There are a series of methods for
doing this in the InetAddress class. This class contains the methods

byte[] getAddress()

static InetAddress getByName(String name)

String getHostAddress()

String getHostName()

A URL (Uniform Resource Locator) consists of an address of a file on the Internet
and a scheme for interpreting that file. The particular scheme of interest for HTML
files is the HyperText Transfer Protocol (HTTP). For example to access the html file
diploma.html on the Web site of the International School for Scientific Computing
we enter at the address

http://zeus.rau.ac.za/diploma.html

We can access HTML files locally by replacing the http: scheme with the file:

scheme and omitting the Internet address.

In the package java.net Java provides a number of classes useful for network pro-
gramming. The classes are

272 CHAPTER 11. NETWORKING

DatagramPacket

DatagramSocket

HttpURLConnection

MulticastSocket

ServerSocket

Socket

URL

The URL class allows a URL instance to act as a reference for a resource available
either locally or via the Web. The URL class has four constructors. The constructor

URL(String protocol,String host,int port,String file)

creates a URL object from the specified protocol, host, port number and file. The
constructor

URL(String protocol,String host,String file)

creates an absolute URL from the specified protocol name, host name and file name.
The constructor

URL(URL context,String spec)

creates a URL by parsing the specification spec within a specified context. The
constructor

URL(String spec)

creates a URL object from the String representation.

Besides HTTP URLs we have File URLs, Gopher URLs, News URLs and others.
Suppose there is a document called mytext.txt and it sits on an anonymous ftp
server called ftp.companyxxx.com in the directory /pub/files. The URL for this
file is then

ftp://ftp.companyxxx.com/pub/files/mytext.txt

Gopher URLs are a little more complicated than file URLs, since Gopher servers
are a little tricker to deal with than FTP servers. To visit a particular gopher server
say the gopher server on gopher.companyxxx.com we use this URL

gopher://gopher.companyxxx.com/

Some gopher servers may reside on unusual network ports on their host machine.
The default gopher port number is 70. To point to a Usenet newsgroup (News
URLs) for example science.physics the URL is simply

news:science.physics

11.3. PORTS 273

11.3 Ports

Thus addresses would be all we needed if each computer did no more than one thing
at a time. However, modern computers do many different things at once. Email
needs to be separated from FTP requests, which need to be separated from web
traffic. This is accomplished through ports. Each computer with an IP address
has 216 − 1 = 65535 ports. These are provided in the computer’s memory, and do
not represent anything physical like a serial or parallel port. Each port is identified
by a number between 1 and 65535. Each port can be allocated to a particular service.

A socket refers to a port on a specific location specified by the IP address. Internet
communication requires an IP address and a port on the computer located at the
specified IP address. There are 64kB ports available on each machine. Some of these
are reserved for standard protocols as shown in Table 1. FTP is used to download
files from the internet. Telnet supports remote login into a machine. SMTP is used
to transport mail and POP to store mail and to deliver it to mail servers. HTTP is
used for hypertext (Web) documents.

For example, the HTTP service, which is used by the Web, runs on port 80 - we
say that a Web server listens on port 80 for incoming connections. SMTP or email
servers run on port 25. When data is sent to a Web server on a particular machine
at a particlar IP address, it is also sent to a particular port (usually port 80) on
that machine. The receiver checks each packet for both the address and the port.
If the address matches, the data is sent to the program interested in data sent to
that port. This is how different types of traffic are sorted out.

Port numbers between 1 and 1023 are reserved for well-known services like finger,
FTP, HTTP, and email. On UNIX systems, we must be “root” to receive data on
one of these ports, but we may still send data to them. On Windows (including
Windows NT) and the Mac, any user may use these ports without special privileges.
Table 1 shows the well known ports for the protocols. These assignments are not
absolutely guaranteed; in particular, Web servers often run on ports other than 80,
either because multiple servers need to run on the same machine, or because the
person who installed the server doesn’t have the root privileges needed to run it on
port 80.

We should of course avoid these common ports for our applications/applets except
when specifically writing applications for these. It is generally recommended that
we use ports in the range between 4000 and 8000 for our non-standard TCP/IP
applications.

On UNIX machines, a fairly complete listing of assigned ports is stored in the file
/etc/services.

274 CHAPTER 11. NETWORKING

Table 1: Port Assignments

Protocol Port Encoding Purpose
echo 7 tcp/udp Echo is a test protocol used to verify that two

machines are able to connect by having one
echo back the other’s input.

discard 9 tcp/udp Discard is a less useful test protocol that
ignores all data received by the server.

daytime 13 tcp/udp Daytime provides an ASCII representation of
the current time on the server.

ftp-data 20 tcp FTP uses two well-known ports. This port is
used to transfer files.

ftp 21 tcp This port is used to send ftp commands like
put and get.

telnet 23 tcp Telnet is a protocol used for interactive,
remote command-line sessions.

smtp 25 tcp The “Simple Mail Transfer Protocol” is used
to send email between machines.

time 37 tcp/udp A time server returns the number of seconds
that have elapsed on the host machine since
midnight, January 1, 19000, as a four-byte
signed, big-endian integer.

whois 43 tcp Whois is a simple directory service for
Internet network administrators.

finger 79 tcp Finger gets information about a user or users.
http 80 tcp HyperText Transfer Protocol is the

underlying protocol of the World Wide Web.
pop3 110 tcp Post Office Protocol Version 3 is a protocol

for the transfer of accumulated email from
the host to sporadically connected clients.

nntp 119 tcp This is the Usenet news transfer,
more formally known as the
“Network News Transfer Protocol”.

RMI Registry 1099 tcp The Remote Method Invocation (RMI)
Registry is a registry service for Java remote
objects.

Jeeves 8080 tcp Jeeves The Java Server API and Servlets,
is a web server from Sun
that runs on port 8080 by default, not
port 80. This non-standard port is used
because Jeeves is still experimental software.

11.4. EXAMPLES 275

11.4 Examples

After we compiled the following program using javac Net1.java we enter at the
command line:

java Net1 whs.rau.ac.za

The output is:

Host name: whs.rau.ac.za

IP address: 152.106.50.60

// Net1.java

import java.io.*;

import java.net.*;

public class Net1

{

public static void main(String[] args)

{

try

{

if(args.length != 1)

{

System.err.println("Usage: Net1 MachineName");

return;

}

InetAddress host = InetAddress.getByName(args[0]);

String hostName = host.getHostName();

byte ipAddress[] = host.getAddress();

System.out.println("Hostname = " + hostName);

System.out.print("IP address: ");

for(int i=0;i<ipAddress.length;++i)

System.out.print((ipAddress[i]+256)%256+".");

System.out.println();

}

catch(UnknownHostException ex)

{

System.out.println("Unkown host");

return;

}

}

}

276 CHAPTER 11. NETWORKING

The following program finds the IP address of the local machine. If I run this
program on my machine I find: My address is: 152.106.50.60

// Net2.java

import java.net.*;

public class Net2

{

public static void main(String args[])

{

try

{

InetAddress thisComputer = InetAddress.getLocalHost();

byte[] address = thisComputer.getAddress();

System.out.println("My address is: ");

for(int i=0; i<address.length; i++)

{

int unsignedByte = address[i] < 0 ? address[i] + 256 : address[i];

System.out.print(unsignedByte + ".");

}

System.out.println();

} // end try block

catch(UnknownHostException e)

{

System.out.println("Sorry. I do not know my own address.");

} // end catch block

} // end main

}

11.4. EXAMPLES 277

In the following program we get the domain name for a given IP address in the
present case 152.106.50.232. If we run this program we find the output

issc.rau.ac.za/152.106.50.232

// Net3.java

// Prints the address of 152.106.50.232

import java.net.*;

public class Net3

{

public static void main(String args[])

{

try

{

InetAddress address = InetAddress.getByName("152.106.50.232");

System.out.println(address);

} // end try block

catch(UnknownHostException e)

{

System.out.println("Could not find 152.106.50.232");

} // end catch block

}

}

278 CHAPTER 11. NETWORKING

In the following program we find the IP address of a given domain name. When we
run this program we find

issc.rau.ac.za/152.106.50.232

// Net4.java

// Prints all addresses of issc.rau.ac.za

import java.net.*;

public class Net4

{

public static void main(String args[])

{

try

{

InetAddress[] addresses =

InetAddress.getAllByName("issc.rau.ac.za");

for(int i=0; i<addresses.length; i++)

{

System.out.println(addresses[i]);

}

} // end try block

catch(UnknownHostException e)

{

System.out.println("Could not find issc.rau.ac.za");

} // end catch block

}

}

11.5. URL CLASS 279

11.5 URL Class

The URL class provides us with the following methods

public String getProtocol()

public String getHost()

public int getPort()

public String getFile()

public String getRef()

The getProtocol() method returns a String containing the protocol portion of the
URL, for example http or file. The getRef() method returns the named anchor of
the URL. If the URL does not have an anchor, the method returns null. The following
program shows how these methods are applied.

// URLmethods.java

import java.net.*;

public class URLmethods

{

public static void main(String args[])

{

int i;

for(i = 0; i < args.length; i++)

{

try

{

URL u = new URL(args[0]);

System.out.println("The URL is " + u);

System.out.println("The protocol part is " + u.getProtocol());

System.out.println("The host part is " + u.getHost());

System.out.println("The port part is " + u.getPort());

System.out.println("The file part is " + u.getFile());

System.out.println("The ref part is " + u.getRef());

} // end try

catch(MalformedURLException e)

{

System.err.println(args[0] + "is not a URL I understand.");

} // end catch

} // end for

} // end main

} // end URLmethods

Running the program with the command

280 CHAPTER 11. NETWORKING

java URLmethods http://issc.rau.ac.za/symbolic/symbolic.html

we get the output

The URL is http://issc.rau.ac.za/symbolic/symbolic.htm

The protocol part is http

The host part is issc.rau.ac.za

The port part is -1

The file part is /symbolic/symbolic.html

The ref part is null

With the following program we can download an HTML file using the URL class.
After compiling Viewsource.java, i.e. we generated the file

Viewsource.class

then at the command line type:

java Viewsource http://www.amd.com/products/lpd/lpd.html

this will download the HTML file lpd.html from AMD (Advanced Micro Devices).
If we want redirect to output to the file mylpd.htm on our hard disc type:

java Viewsource http://www.amd.com/products/lpd/lpd.html > mylpd.htm

// Viewsource.java

import java.net.*;

import java.io.*;

public class Viewsource

{

public static void main(String args[])

{

String thisLine;

URL u; // URL is a Uniform Resource Locator

// A pointer to a resource on the WWW.

if(args.length > 0)

{

try

{

u = new URL(args[0]);

try

{

BufferedReader theHTML =

11.5. URL CLASS 281

new BufferedReader(new InputStreamReader(u.openStream()));

try

{

while((thisLine = theHTML.readLine()) != null)

{

System.out.println(thisLine);

} // while loop ends here

} // end try

catch(Exception e) { System.err.println(e); }

} // end try

catch(Exception e) { System.err.println(e); }

} // end try

catch(MalformedURLException e)

{

System.err.println(args[0] + " is not a parseable URL");

System.err.println(e);

} // end catch

} // end if

} // end main

}

Under Microsoft Internet Explorer we can directly get the HTML file from the
server. After we loaded the HTML file in our Web browser we click at View. Then
we click at Source and we are provided with the HTML file.

282 CHAPTER 11. NETWORKING

11.6 Socket Class

A socket is an endpoint for communication between two machines. Sockets are
an innovation of Berkeley UNIX. The allow the programmer to treat a network
connection as another stream that bytes can be written onto or read from. Java
provides a Socket class. The class implements client sockets. The actual work of
the socket is performed by an instance of the SocketImpl class. The constructor

Socket()

creates an unconnected socket, with the system-default type of SocketImpl. The
constructor

Socket(InetAddress address,int port)

creates a stream socket and connects it to the specified IP address.

The method

int getLocalPort()

returns the local port to which to socket is bound. The method

int getPort()

returns the remote port to which the socket is connected.

If we run the following program with the command

java MySocket issc.rau.ac.za

we obtain the output

The is a server on port 80 of issc.rau.ac.za

The is a server on port 135 of issc.rau.ac.za

The is a server on port 139 of issc.rau.ac.za

The is a server on port 443 of issc.rau.ac.za

11.6. SOCKET CLASS 283

// MySocket.java

import java.net.*;

import java.io.*;

public class MySocket

{

public static void main(String[] args)

{

Socket s;

String host = "localhost";

if(args.length > 0)

{

host = args[0];

}

int i = 0;

while(i < 1024)

{

try

{

s = new Socket(host,i);

System.out.println("There is a server on port " + i + " of " + host);

} // end try

catch(UnknownHostException e)

{

System.err.println(e);

}

catch(IOException e)

{ }

i++;

} // end while

} // end main

}

284 CHAPTER 11. NETWORKING

11.7 Client-Server Application

As described above a socket is an endpoint of communication. A socket in use usually
has an address bound to it. The nature of the address depends on the communica-
tion domain of the socket. There are several socket types, which represent classes of
services. Stream sockets provide reliable, duplex, sequenced data streams. No data
is lost or duplicated in delivery, and there are no record boundaries. This type is sup-
ported in the Internet domain by the TCP protocol. In the Unix domain, pipes are
implemented as a pair of communicating stream sockets. The Unix input/output
(I/O) system follows a paradigm usually referred to as Open-Read-Write-Close.
Before a user process can perform I/O operations, it calls Open to specify and ob-
tain permissions for the file or device to be used. Once an object has been opened,
the user process makes one or more calls to Read or Write data. Read reads data
from the object and transfers it to the user process, while Write transfers data
from the user process to the object. After all transfer operations are complete, the
user process calls Close to inform the operating system that it has finished using
that object. When facilities for InterProcess Communication (IPC) and networking
were added to Unix, the idea was to make the interface to IPC similar to that of
file I/O. In Unix, a process has a set of I/O descriptors that one reads from and
writes to. These descriptors may refer to files, devices, or communication channels
(sockets). The lifetime of a descriptor is made up of three phases: creation (open
socket), reading and writing (receive and send to socket), and destruction (close
socket). The IPC interface in BSD-like versions of Unix is implemented as a layer
over the network TCP and UDP protocols. Message destinations are specified as
socket addresses; each socket address is a communication identifier that consists of
a port number and an Internet address.

The IPC operations are based on socket pairs, one belonging to a communication
process. IPC is done by exchanging some data through transmitting that data in
a message between a socket in one process and another socket in another process.
When messages are sent, the messages are queued at the sending socket until the
underlying network protocol has transmitted them. When they arrive, the messages
are queued at the receiving socket until the receiving process makes the necessary
calls to receive them.

TCP/IP and UDP/IP communications

There are two communication protocols that one can use for socket programming:
datagram communication and stream communication.

The datagram communication protocol, known as UDP (user datagram protocol),
is a connectionless protocol, meaning that each time we send datagrams, we also
need to send the local socket descriptor and the receiving socket’s address. As we
can tell, additional data must be sent each time a communication is made.

11.7. CLIENT-SERVER APPLICATION 285

Stream communication: The stream communication protocol is known as TCP
(transfer control protocol). Unlike UDP, TCP is a connection-oriented protocol.
In order to do communication over the TCP protocol, a connection must first be
established between the pair of sockets. While one of the sockets listens for a con-
nection request (server), the other asks for a connection (client). Once two sockets
have been connected, they can be used to transmit data in both (or either one of
the) directions.

What protocol we should use depends on the client/server application we are writing.

In UDP every time we send a datagram, we have to send the local descriptor and
the socket address of the receiving socket along with it. Since TCP is a connection-
oriented protocol, on the other hand, a connection must be established before com-
munications between the pair of sockets start. So there is a connection setup time
in TCP. In UDP, there is a size limit of 64 kilobytes on datagrams we can send to a
specified location, while in TCP there is no limit. Once a connection is established,
the pair of sockets behaves like streams: All available data are read immediately in
the same order in which they are received. UDP is an unreliable protocol – there is
no guarantee that the datagrams we have sent will be received in the same order by
the receiving socket. On the other hand, TCP is a reliable protocol; it is guaran-
teed that the packets we send will be received in the order in which they were sent.
In short, TCP is useful for implementing network services – such as remote login
(rlogin, telnet) and file transfer (FTP) – which require data of indefinite length to
be transferred. UDP is less complex and incurs fewer overheads. It is often used in
implementing client/server applications in distributed systems built over local area
networks.

Programming Sockets in Java

We give an examples of how to write client and server applications. We consider
the TCP/IP protocol only since it is more widely used than UDP/IP. All the classes
related to sockets are in the java.net package, so make sure to import that package.

If we are programming a client, then we would open a socket like this:

Socket MyClient;

MyClient = new Socket("Machine name",PortNumber);

Where Machine name is the machine we are trying to open a connection to, and
PortNumber is the port (a number) on which the server we are trying to connect to is
running. When selecting a port number, we should note that port numbers between
0 and 1023 are reserved for privileged users (that is, super user or root). These
port numbers are reserved for standard services, such as email, FTP, and HTTP.
When selecting a port number for our server, select one that is greater than 1023.
Obviously we should also include exception handling. The above can be written as:

286 CHAPTER 11. NETWORKING

Socket MyClient;

try {

MyClient = new Socket("Machine name",PortNumber);

}

catch(IOException e) {

System.out.println(e);

}

If we are programming a server, then this is how we open a socket:

ServerSocket MyService;

try {

MyServerice = new ServerSocket(PortNumber);

}

catch(IOException e) {

System.out.println(e);

}

When implementing a server we need to create a socket object from the ServerSocket
in order to listen for and accept connections from clients.

Socket clientSocket = null;

try {

serviceSocket = MyService.accept();

}

catch(IOException e) {

System.out.println(e);

}

On the client side, we can use the DataInputStream class to create an input stream
to receive response from the server

DataInputStream input;

try {

input = new DataInputStream(MyClient.getInputStream());

}

catch(IOException e) {

System.out.println(e);

}

The class DataInputStream allows us to read lines of text and Java primitive data
types in a portable way. It has methods such as

read, readChar, readInt, readDouble, readLine

11.7. CLIENT-SERVER APPLICATION 287

Use whichever function we think suits our needs depending on the type of data that
we receive from the server. On the server side, we can use DataInputStream to
receive input from the client

DataInputStream input;

try {

input = new DataInputStream(serviceSocket.getInputStream());

}

catch(IOException e) {

System.out.println(e);

}

On the client side, we can create an output stream to send information to the server
socket using the class PrintStream or DataOutputStream of java.io

PrintStream output;

try {

output = new PrintStream(MyClient.getOutputStream());

}

catch(IOException e) {

System.out.println(e);

}

The class PrintStream has methods for displaying textual representation of Java
primitive data types. Its write() and println() methods are important here.
Also, we may want to use the DataOutputStream

DataOutputStream output;

try {

output = new DataOutputStream(MyClient.getOutputStream());

}

catch(IOException e) {

System.out.println(e);

}

The class DataOutputStream allows us to write Java primitive data types; many of
its methods write a single Java primitive type to the output stream. The method
writeBytes is a useful one. On the server side, we can use the class PrintStream

to send information to the client.

PrintStream output;

try {

output = new PrintStream(serviceSocket.getOutputStream());

}

catch(IOException e) {

System.out.println(e);

}

288 CHAPTER 11. NETWORKING

We should always close the output and input stream before we close the socket. On
the client side

try {

output.close();

input.close();

MyClient.close();

}

catch(IOException e) {

System.out.println(e);

}

On the server side

try {

output.close();

input.close();

serviceSocket.close();

MyService.close();

}

catch(IOException e) {

System.out.println(e);

}

The following two programs show an application. We first compile the two programs

javac MyClient.java

javac MyServer.java

Then we start the server with java MyServer. Under Unix (Linux) we start the
server as background process

java MyServer &

Then we start the client with

java MyClient

In the following example we run the two programs on the same machine. Under
Windows we open first a window for the server process and start it at the prompt
with java MyServer. Then we open another window and start at the prompt the
client java MyClient.

11.7. CLIENT-SERVER APPLICATION 289

For the client we have

// MyClient.java

import java.io.*;

import java.net.*;

public class MyClient

{

public static void main(String[] args) throws IOException

{

int c;

Socket connection;

InputStream fromServer;

// can also be written as

// connection = new Socket("127.0.0.1",5321);

connection = new Socket("localhost",5321);

fromServer = connection.getInputStream();

while((c = fromServer.read()) != -1)

{

System.out.print((char) c);

}

fromServer.close();

connection.close();

}

}

290 CHAPTER 11. NETWORKING

For the server we have

// MyServer.java

import java.io.*;

import java.net.*;

public class MyServer

{

public static void main(String[] args) throws IOException

{

Socket connection;

ServerSocket servSocket = (ServerSocket) null;

String sendString = "Good Morning Egoli\n";

int sLength;

OutputStream toClient;

try

{

servSocket = new ServerSocket(5321);

} catch(IOException e) { }

while(true)

{

try

{

connection = servSocket.accept();

toClient = connection.getOutputStream();

sLength = sendString.length();

for(int i=0;i<sLength;i++)

{

toClient.write((int) sendString.charAt(i));

}

toClient.close();

connection.close();

} catch(IOException e) { }

} // end while

} // end main

} // end class

11.7. CLIENT-SERVER APPLICATION 291

The following programs show an application of UDP (User Datagram Protocol). On
the receiver side (with the IP address 152.106.50.69) we compile and run udp_r.java.
Then on the sender side we compile udp_s.java and run it with, for example,

java udp_s 152.106.50.69 "Good Morning Egoli"

// upd_s.java

import java.net.*;

import java.io.*;

public class udp_s {

static final int pNumber = 1234;

public static void main(String args[]) throws Exception

{

InetAddress addr = InetAddress.getByName(args[0]);

DatagramSocket s = new DatagramSocket();

System.out.println("Destination is: " + addr.getHostName() +

" (port " + pNumber + ")");

System.out.println("Message is: \"" + args[1]);

DatagramPacket packet =

new DatagramPacket(args[1].getBytes(),args[1].length(),addr,pNumber);

s.send(packet);

System.out.println("Datagram sent.");

}

}

// udp_r.java

import java.net.*;

import java.io.*;

public class udp_r {

static final int pNumber = 1234;

static DatagramSocket socket;

public static void main(String args[]) throws Exception

{

socket = new DatagramSocket(pNumber);

while(true) {

byte buffer[] = new byte[65535];

DatagramPacket packet = new DatagramPacket(buffer,buffer.length);

socket.receive(packet);

String s = new String(packet.getData());

s = s.substring(0,packet.getLength());

System.out.println("Datagram received: \"" + s + "\"");

}

}

}

292 CHAPTER 11. NETWORKING

11.8 Remote Method Invocation

Java Remote Method Invocation (RMI) allows a client application to call methods
on an object residing on a remote server as if it were a local object. An application
becomes server by implementing a remote interface and extending a server reference
class. The remote interface declares the methods that are available on that object
to clients possesing a reference to that object. Each machine with an RMI server
has a Registry residing on that maps the name of an object to an object reference.
When a client desires to connect to a server it queries the Registry on the correct
machine for an object with a certain name and uses the returned reference to make
method calls on the remote object. Stubs generated by the rmic (Remote Method
Invokation Compiler) serve as a client proxy to the remote object. Marshaling
means converting a method argument from its native binary representation into
some language-independent format, and then converting this generic representation
into a binary format that is appropiate to the called method.

The source files are

• AppRMI.java, on the client site and the server site, describes the interface used
by the server and client to cooperate. The precise interaction is described by
the methods of the AppRMI interface.

• AppRMIClient.java on the client site is the source for the client program.

• AppRMIServer.java on the server site is the source for the server program.

• AppRMIImpl.java on the server site implements the methods which a client
program can execute. In other words it implements the AppRMI interface.

• java.policy on the server and client sites, describes the security restrictions
placed on the JAVA programs.

The conventions we use are

• CLIENT the directory on the client site local filesystem where compiled classes
will be placed. For example under Windows it could be c:\client\rmi and
under Linux ~/client/rmi.

• SERVER the directory on the server site local filesystem where compiled classes
will be placed. For example under Windows it could be c:\serverrmi and
under Linux ~/serverrmi.

• WEBDIR the directory on the server site local filesystem where compiled classes,
which need to be accessed via http, will be placed. For example under Win-
dows it could be c:\webdocs\rmi and under Linux ~/public_html/.

• HOST the server hostname, for example

11.8. REMOTE METHOD INVOCATION 293

issc.rau.ac.za

• CODEBASE the http URL specifying where the necessary server classes can be
obtained by the client, for example

http://issc.rau.ac.za/rmi/

The trailing / is required.

For javac and rmic compilers the command line option

-d directory

places generated .class files in the specified directory. For example

javac -d directory someclass.java

creates the file

directory\someclass.class

in Windows and

directory/someclass.class

in UNIX and Linux.

For javac and java the -classpath path option specifies where to find .class files.
The option overrides the CLASSPATH environment variable. To run the above exam-
ple program with the classpath specified by the environment variable CLASSPATH we
would enter on the command line

java -classpath directory;%CLASSPATH% someclass

in Windows and

java -classpath directory:$CLASSPATH someclass

in UNIX and Linux.

The program rmiregistry (rmiregistry.exe), provided with the JDK (and lo-
cated in the jdk1.4/bin directory), is used to provide an interface between clients
and servers. Using the RMI registry a server can register services (make them avail-
able to clients) in the form of implementations of interfaces. The client can use the
registry to determine if a service is available, and obtain a reference to an Object

which can be cast into the appropriate interface, which allows the service to be used.

The program rmic (rmic.exe) or RMI compiler program (located in the jdk1.4/bin
directory) is used to generate the stub classes used by the rmiregistry program.
The stub classes facilitate the intercation between client and server programs. For
rmic the option -v1.2 is used to generate only JAVA 1.2 compatible stub class files.
For example

294 CHAPTER 11. NETWORKING

rmic -d directory someclass

creates the files

directory\someclass_Skel.class

directory\someclass_Stub.class

in Windows and

directory/someclass_Skel.class

directory/someclass_Stub.class

in UNIX and Linux. The command

rmic -v1.2 -d directory someclass

creates the file

directory\someclass_Stub.class

in Windows and

directory/someclass_Stub.class

in UNIX and Linux.

For java (execute file) the option -Dproperty=value sets the system property
property to value. The system properties we use are

• java.rmi.server.codebase which is the URL specifying where classes can
be obtained by clients.

• java.rmi.server.hostname which is the hostname identifying the server ma-
chine.

• java.security.policy which is a filename in the local filesystem which pro-
vides restrictions to certain JAVA functionality.

For example the command (one line)

java -Djava.rmi.server.codebase=http://issc.rau.ac.za/rmi/

-Djava.rmi.server.hostname=issc.rau.ac.za

-Djava.security.policy=java.policy

someclass

runs the program someclass with the security policy specified by java.policy in
the current directory, the RMI server codebase at

http://issc.rau.ac.za/rmi/

and the RMI server hostname

11.8. REMOTE METHOD INVOCATION 295

issc.rau.ac.za

Compiling the Programs

Next we have to compile the programs. On the server site we do the following.
We use the following sequence of commands on the command line

javac -d SERVER AppRMI.java

javac -d WEBDIR AppRMI.java

javac -classpath SERVER -d SERVER AppRMIImpl.java

javac -classpath SERVER -d SERVER AppRMIServer.java

rmic -v1.2 -d WEBDIR AppRMIImpl

where WEBDIR is (in our case) for Windows c:\webdocs\rmi. In Linux we could
use ~/public_html/rmi. The first line makes the interface AppRMI available to
the server program and implementation class. The second line makes the interface
AppRMI available to client programs and the rmiregistry program. The third and
fourth lines compile the server program and implementation class. The fifth line
uses the rmic compiler to generate a stub class for remote access to the AppRMIImpl
class. The stub class is used by the rmiregistry program and the client program.

On the client site we do the following. We use the following sequence of commands
on the command line

javac -d CLIENT AppRMI.java

javac -classpath CLIENT -d CLIENT AppRMIClient.java

The first line makes the interface AppRMI available to the client program. The sec-
ond line compiles the client program.

Running the Programs

Next we run the programs. To start the server we do the following. First we must
start the rmiregistry program (rmiregistry.exe). This must be done without a
classpath, and in a directory where none of the server .class files exist. To unset
the classpath we can use

set CLASSPATH=

in Windows and

unsetenv CLASSPATH

296 CHAPTER 11. NETWORKING

in the sh and csh shells and

export -n CLASSPATH

in the bash shell.

We start the rmiregistry program by entering

start rmiregistry

in Windows and

rmiregistry &

in UNIX and Linux. The ampersand (&) in Unix and Linux indicates that the
program is to be run in the background, i.e. the current shell continues to run
immediately after the command and more commands can be issued.

Now we can set the CLASSPATH again if necessary. Lastly we start the server program
with the command (single line)

java -classpath SERVER;WEBDIR

-Djava.rmi.server.codebase=CODEBASE

-Djava.rmi.server.hostname=HOST

-Djava.security.policy=java.policy

AppRMIServer

where in our case CODEBASE would be http://issc.rau.ac.za, HOST would be
issc.rau.ac.za, WEDDIR is c:\webdocs\rmi and SERVER is the directory on the
server site local file system.

The option

-classpath SERVER;WEBDIR

is in the Windows path format, for UNIX and Linux we would use

-classpath SERVER:WEBDIR

instead. Next we have to start the client. We start the client program using (single
line)

java -classpath CLIENT -Djava.security.policy=java.policy

AppRMIClient HOST

11.8. REMOTE METHOD INVOCATION 297

where HOST would be issc.rau.ac.za.

Example

Let us give an example. We use all the previous instructions for building and running
the programs. In this case the filenames begin with Lotto instead of App since we
created a Lottery number generating system. The java.policy file used is given
below

grant {

permission java.net.SocketPermission "*:1024-65535", "connect,accept";

permission java.net.SocketPermission "*:80", "connect";

};

which provides enough network access to retrieve the necessary .class files via http

(port 80), and to use the RMI registry (usually on port 1099).

The interface LottoRMI.java specifies that the only method we can use to commu-
nicate with the server is the findnumbers() method. The file LottoRMI.java is on
the server and client site.

// LottoRMI.java

public interface LottoRMI extends java.rmi.Remote

{

int[] findnumbers() throws java.rmi.RemoteException;

}

The client program must create a SecurityManager to allow access to the server
codebase via http. This is achieved by creating a RMISecurityManager() which im-
plements the security restrictions defined in the file specified by java.security.policy.
The method Naming.lookup(String) is used to refer to a class on a RMI server.
The string argument is an URL of the form

rmi://host:port/name

where host is the name of the RMI server machine, port is a port number and
name specifies the class the client wishes to refer to. The rmi: part of the URL is
not required, if the :port part of the URL not given, the port is assumed to be
1099. The method Naming.lookup() return type is Remote, which must be cast
into the appropriate interface (LottoRMI in this case). This service is provided by
the rmiregistry program. The file LottoRMIClient.java is on the client site.

// LottoRMIClient.java

import java.rmi.*;

298 CHAPTER 11. NETWORKING

import java.rmi.registry.*;

import java.rmi.server.*;

public class LottoRMIClient

{

public static void main(String args[])

{

System.setSecurityManager(new RMISecurityManager());

try

{

LottoRMI lotto=(LottoRMI)Naming.lookup("//"+args[0]+"/lottormi");

int[] numbers=lotto.findnumbers();

System.out.println("Your lucky numbers are: ");

for(int i=0;i<numbers.length;i++)

{

System.out.println(numbers[i]);

}

}

catch(Exception e)

{

System.err.println("System Exception"+e);

e.printStackTrace();

}

System.exit(0);

}

}

The server program must create a SecurityManager in the same way as the client.
The server only makes the implementation class LottoRMIImpl available to client
programs. The file LottoRMIServer.java is on the server site.

// LottoRMIServer.java

import java.rmi.*;

import java.rmi.server.*;

public class LottoRMIServer

{

public static void main(String args[])

{

System.setSecurityManager(new RMISecurityManager());

try

{

LottoRMIImpl test=new LottoRMIImpl("lottormi");

11.8. REMOTE METHOD INVOCATION 299

System.out.println("LottoRMI Server ready.");

}

catch(Exception e)

{

System.out.println("Expception: "+e.getMessage());

e.printStackTrace();

}

}

}

The class LottoRMIImpl provides the implemetations of the methods which can
be remotely invoked by the client program. The method Naming.rebind(String)

associates a String with the implementation class. The String parameter is the
name part of the URL specified by the client program. This service is provided by
the rmiregistry program. The file LottoRMIImpl.java is on the server site.

// LottoRMIImpl.java

import java.rmi.*;

import java.rmi.server.UnicastRemoteObject;

public class LottoRMIImpl extends UnicastRemoteObject

implements LottoRMI

{

private int numbers=6;

private int maximum=50;

public LottoRMIImpl(String name) throws RemoteException

{

super();

try

{

Naming.rebind(name,this);

}

catch(Exception e)

{

System.out.println("Exception: "+e.getMessage());

e.printStackTrace();

}

}

public int[] findnumbers() throws RemoteException

{

int[] array = new int[numbers];

300 CHAPTER 11. NETWORKING

for(int i=0;i<numbers;i++)

{

array[i]=(int)(maximum*Math.random());

for(int j=0;j<i;j++)

{ if(array[i]==array[j]) { j=i; i--; } }

}

return array;

}

}

11.9. SOCKETCHANNEL AND SERVERSOCKETCHANNEL 301

11.9 SocketChannel and ServerSocketChannel

Instead of using RMI for a network task in many cases the same task can be accom-
plished more simply and with less overhead using the

SocketChannel ServerSocketChannel

classes in the java.nio package. In our example we send an array of 4 double and
the length of the array to the Server. The Server calculates the arithmetic, geometric
and harmonic mean of the 4 numbers. Then it returns these three numbers and the
length of the original array. Enough memory must be allocated for the ByteBuffer.
We recall that the size of int is 4 bytes and the size of double is 8 bytes.

The class Buffer is a container of a specific primitive data type (excluding boolean).
A buffer is a linear, finite sequence of elements it contains. The capacity of a buffer
is never negative and never changes. The method

Buffer flip()

flips this buffer. The limit is set to the current position and then the position is set
to zero. The method

DoubleBuffer put(int index,double d)

in class DoubleBuffer writes the given double into this buffer at the given index.
The method

double get(int index)

in class DoubleBuffer reads the double at the given index.

// MeanClient.java

import java.nio.channels.SocketChannel;

import java.nio.ByteBuffer;

import java.nio.DoubleBuffer;

import java.nio.IntBuffer;

import java.io.IOException;

import java.net.InetSocketAddress;

public class MeanClient

{

static int nlength = 4;

static double[] narray = new double[nlength];

private SocketChannel channel;

private ByteBuffer buffer =

302 CHAPTER 11. NETWORKING

ByteBuffer.allocate(48);

private DoubleBuffer doubleBuffer =

buffer.asDoubleBuffer();

private IntBuffer intBuffer = buffer.asIntBuffer();

public void getMean(int nlength,double narray[])

{

try

{

channel = connect();

sendMeanRequest(nlength,narray);

receiveResponse();

}

catch(IOException e)

{

e.printStackTrace();

}

finally

{

if(channel != null)

{

try

{

channel.close();

}

catch(IOException e)

{

e.printStackTrace();

}

}

}

}

private SocketChannel connect() throws IOException

{

InetSocketAddress socketAddress =

// new InetSocketAddress("issc.rau.ac.za",9099);

new InetSocketAddress("localhost",9099);

return SocketChannel.open(socketAddress);

}

private void sendMeanRequest(int nlength,double[] narray)

throws IOException

{

buffer.clear();

11.9. SOCKETCHANNEL AND SERVERSOCKETCHANNEL 303

intBuffer.put(0,nlength);

for(int i=1; i<=nlength; i++)

{

doubleBuffer.put(i,narray[i-1]);

}

channel.write(buffer);

}

private void receiveResponse() throws IOException

{

buffer.clear();

channel.read(buffer);

int nlength = intBuffer.get(0);

double arithmean = doubleBuffer.get(1);

double harmmean = doubleBuffer.get(2);

double geommean = doubleBuffer.get(3);

System.out.println("size of array = " + nlength);

System.out.println("arithmetic mean = " + arithmean);

System.out.println("harmonic mean = " + harmmean);

System.out.println("geometric mean = " + geommean);

}

public static void main(String[] args)

{

narray[0] = 3.4; narray[1] = 7.6;

narray[2] = 17.1; narray[3] = 20.4;

new MeanClient().getMean(nlength,narray);

}

}

// MeanServer.java

import java.nio.channels.SocketChannel;

import java.nio.channels.ServerSocketChannel;

import java.nio.ByteBuffer;

import java.nio.IntBuffer;

import java.nio.DoubleBuffer;

import java.io.IOException;

import java.net.InetSocketAddress;

public class MeanServer

{

ByteBuffer buffer = ByteBuffer.allocate(48);

DoubleBuffer doubleBuffer = buffer.asDoubleBuffer();

304 CHAPTER 11. NETWORKING

IntBuffer intBuffer = buffer.asIntBuffer();

ServerSocketChannel channel = null;

SocketChannel sc = null;

public void start()

{

try

{

openChannel();

waitForConnection();

}

catch(IOException e)

{

e.printStackTrace();

}

}

private void openChannel() throws IOException

{

channel = ServerSocketChannel.open();

channel.socket().bind(new InetSocketAddress(9099));

while(!channel.isOpen())

{ }

System.out.println("Channel is open...");

}

private void waitForConnection() throws IOException

{

while(true)

{

sc = channel.accept();

if(sc != null)

{

System.out.println("A connection is added...");

processRequest();

sc.close();

}

}

}

private void processRequest() throws IOException

{

buffer.clear();

sc.read(buffer);

int nlength = intBuffer.get(0);

11.9. SOCKETCHANNEL AND SERVERSOCKETCHANNEL 305

System.out.println("nlength = " + nlength);

double doublearray[] = new double[nlength];

for(int i=1; i <= nlength; i++)

{

doublearray[i-1] = doubleBuffer.get(i);

}

// arithmetic mean

double arithmean = 0.0;

for(int i=0; i < nlength; i++)

{

arithmean += doublearray[i];

}

arithmean = arithmean/nlength;

// harmonic mean

double harmmean = 0.0;

double temp = 0.0;

for(int i=0; i < nlength; i++)

{

temp += 1.0/doublearray[i];

}

harmmean = nlength/temp;

// geometric mean

double geommean = 1.0;

for(int i=0; i < nlength; i++)

{

geommean *= doublearray[i];

}

geommean = Math.exp(Math.log(geommean)/nlength);

buffer.flip();

buffer.clear();

intBuffer.put(0,nlength);

doubleBuffer.put(1,arithmean);

doubleBuffer.put(2,harmmean);

doubleBuffer.put(3,geommean);

sc.write(buffer);

}

public static void main(String[] args)

{

new MeanServer().start();

}

}

Chapter 12

Java 2 Collection Frame Work

12.1 Introduction

The Collections API is a set of classes and interfaces that provide an implementation-
independent framework for working with collections of objects. This API consists
of 13 new classes and 10 new interfaces that have been added to the java.util

package. These classes and interfaces provide support for generic collections, sets,
bags, maps, lists and linked lists. These classes and interfaces can be easily extended
to provide support for custom object collections. Some classes and interfaces from
Java version 1.0 have been replaced by improved interfaces and classes in version
1.2. For example, the interface Iterator replaces the interface Enumeration and
the class Map replaces the Dictionary class. The Vector class introduced in chapter
3 can be replaced by class ArrayList.

Java 2 Collection Frame Work provides

Containers, Iterators, Algorithms.

The new collections interfaces introduced with JDK 1.2 are as follows:

Collection defines methods that implement the concept of a group

of objects, referred to as elements

List extends the Collection interface to implement an ordered

collection of objects

Set extends the Collection interface to implement a finite

mathematical set. Sets differ from lists in that they

do not allow duplicate elements

SortedSet a Set whose elements are sorted in ascending order

306

12.1. INTRODUCTION 307

Comparator provides the compare() method for comparing the

elements of a collection

Iterator provides methods for iterating through the elements

of a collection. The Iterator interface replaces

the Enumeration interface

ListIterator extends the Iterator interface to support bidirectional

iteration of lists

Map replaces the Dictionary class as a means to associate

keys with values

SortedMap a Map whose elements are sorted in ascending order

Map.Entry an inner interface of the Map interface that defines

methods for working with a single key-value pair

The new collections classes introduced with JDK 1.2 are as follows:

AbstractCollection The AbstractCollection class provides a basic

implementation of the Collection interface.

It is extended by other classes that tailor

AbstractCollection to more specific

implementations

AbstractList The AbstractList class extends the AbstractCollection

class to povide a basic implementation of the List

interface

AbstractSequentialList The AbstractSequentialList class extends

the AbstractList class to provide a list

that is tailored to sequential access,

as opposed to random access

LinkedList The LinkedList class extends the AbstractSequentialList

class to provide an implementation of a doubly linked

list. A doubly linked list is a list in which each

element references both the previous and next elements

in the list

ArrayList The ArrayList class extends AbstractList to implement

a resizeable array

308 CHAPTER 12. JAVA 2 COLLECTION FRAME WORK

AbstractSet The AbstractSet class extends the AbstractCollection

class to provide a basic implementation of the Set

interface

HashSet The HashSet class extends AbstractSet to implement a set

of key-value pairs. It does not allow the use of the null

element

TreeSet The TreeSet class extends AbstractSet to implement the Set

interface using a TreeMap

AbstractMap The AbstractMap class provides a basic implementation

of the Map interface

HashMap The HashMap class extends AbstractMap to implement a hash

table that supports the Map interface

WeakHashMap The WeakHashMap class extends AbstractMap to implement

a hash table that supports the Map interface and allows

its keys to be garbage collected when no longer in

ordinary use

TreeMap The TreeMap class extends AbstractMap to implement a sorted

binary tree that supports the Map interface

Arrays The Arrays class provides static methods for searching

and sorting arrays and converting them to lists

Collections The Collections class provides static methods for

searching, sorting and performing other operations

on objects that implement the Collection interface.

12.2. COLLECTION AND COLLECTIONS 309

12.2 Collection and Collections

The

public abstract interface Collection

is the root interface in the collection hierarchy. The

public abstract List extends Collection

is an ordered collection (also known as sequence). The user of this interface has
precise control over where in the List each element is inserted. The user can access
elements in the list by their integer index (position) and search for elements in the
list. Unlike sets, lists can have duplicate elements. The

public class ArrayList

is a resizeable array implementation of the List interface. The constructor

ArrayList()

constructs an empty ArrayList. It implements all optional List operations, and
permits all elements, including null. The method

boolean add(Object o)

in class ArrayList appends the specified element to the end of this ArrayList. The
method

void add(int index,Object elem)

inserts the specified element at the specified position. To find out whether an element
is the ArrayList we apply method

boolean contains(Object elem)

It returns true if this ArrayList contains the specified element. The method

Object get(int index)

returns the element at the specified position at this ArrayList. To remove all
elements in ArrayList we use the method void clear().

310 CHAPTER 12. JAVA 2 COLLECTION FRAME WORK

The class

public class Collections extends Objects

consists of static methods that operates on or return Collections. It contains
polymorphic algorithms that operate on collections. The method

static void sort(List list)

sorts the specified List into ascending order, according to the natural ordering of
its elements. The method

static int binarySearch(List list,Object key)

searches the specified List for the specified Object using the binarySearch algo-
rithm. The method

static void copy(List dest,List src)

copies all the elements from one List into another. The method

static void fill(List list,Object o)

replaces all the elements of the specified List with the specified elements.

Iterator takes the place of Enumeration in the Java Collections framework. It-
erators differ from Enumerations in two ways. Iterators allow the caller to remove
elements from the underlying collection during the iteration with well-defined se-
mantics. Method names have been improved. The method

boolean hasNext()

in class Iterator returns true if the iteration has more elements. In other words it
returns true if next() would return an element rather than throwing an exception.
The method

Object next()

returns the next element in the iteration or throws an NoSuchElementException

(iteration has no more elements). The method

void remove()

removes from the underlying Collection the last element returned by the Iterator
(optional operation). This method can be called only once per call to next().

12.3. EXAMPLES 311

12.3 Examples

The following two examples show how Collection, ArrayList, and Iterator is
applied.

// MyColl1.java

import java.util.*;

public class MyColl1

{

public static void main(String[] args)

{

Collection coll = new ArrayList();

int i;

for(i=65; i < 91; i++)

{

char c = (char) i;

Character Ch = new Character(c);

coll.add(Ch.toString());

}

Iterator it = coll.iterator();

while(it.hasNext())

{

System.out.print(it.next()); // => ABC...YZ

}

System.out.println(" ");

Collection doll = new ArrayList();

Double D = new Double(3.14);

Integer I = new Integer(45);

Boolean B = new Boolean(true);

doll.add((Double) D); // type conversion necessary

doll.add((Integer) I);

doll.add((Boolean) B);

Boolean B1 = (Boolean) ((List) doll).get(2);

System.out.println("B1 = " + B1);

} // end main

}

312 CHAPTER 12. JAVA 2 COLLECTION FRAME WORK

// MyColl2.java

import java.util.*;

public class MyColl2

{

public static void main(String[] args)

{

Collection coll = new ArrayList();

String s1 = new String("dulli");

coll.add(s1);

String s2 = new String("alli");

coll.add(s2);

String s3 = new String("bullo");

coll.add(s3);

String s4 = new String("xulli");

coll.add(s4);

int size = coll.size();

System.out.println("size = " + size);

Collections.sort((List) coll);

Iterator itnew = coll.iterator();

while(itnew.hasNext())

{

System.out.println(itnew.next()); // sorted list

}

int result = Collections.binarySearch((List) coll,"bullo");

System.out.println("result = " + result); // result = 1

} // end main

}

12.4. ARRAYS CLASS 313

12.4 Arrays Class

The

public class Arrays extends Objects

contains various methods for manipulating arrays such as sorting and searching.
The methods work for basic data types and abstract data types. We apply the
methods

sort(), binarySearch(), equals(), fill()

to arrays of basic data types and arrays of abstract data types. Before we call the
method binarySearch() we have to sort the array using the sort() method. We
also show how the method clone() is used.

// MyArray.java

import java.util.*;

import java.math.*;

public class MyArray

{

public static void main(String[] s)

{

int i;

int[] a = { 4, 5, -2, 3, 7, 9, 13, -1 };

int[] b = { 3, 1, -8, 9, 11, 6, -6, 9 };

Arrays.sort(a);

for(i=0; i < a.length; i++)

System.out.println("a[" + i + "] = " + a[i]);

int r1 = Arrays.binarySearch(a,-1);

System.out.println("r1 = " + r1); // => 1

boolean b1 = Arrays.equals(a,b);

System.out.println("b1 = " + b1); // => false

double[] x = new double[5];

Arrays.fill(x,3.14159);

for(i=0; i < x.length; i++)

System.out.println("x[" + i + "] = " + x[i]);

boolean[] b2 = new boolean[6];

314 CHAPTER 12. JAVA 2 COLLECTION FRAME WORK

Arrays.fill(b2,2,4,true);

for(i=0; i < b2.length; i++)

System.out.println("b2[" + i + "] = " + b2[i]);

BigInteger[] big = new BigInteger[3];

big[0] = new BigInteger("234567");

big[1] = new BigInteger("6712345678");

big[2] = new BigInteger("981");

Arrays.sort(big);

BigInteger f = new BigInteger("6712345678");

int pos = Arrays.binarySearch(big,f);

System.out.println("pos = " + pos); // => 2

for(i=0; i < big.length; i++)

System.out.println("big[" + i + "] = " + big[i]);

BigDecimal[] bigdec = new BigDecimal[4];

bigdec[0] = new BigDecimal("4.567");

bigdec[1] = new BigDecimal("-345.23456");

bigdec[2] = new BigDecimal("9876.234567");

bigdec[3] = new BigDecimal("1.23456789");

Arrays.sort(bigdec);

for(i=0; i < bigdec.length; i++)

System.out.println("bigdec[" + i + "] = " + bigdec[i]);

// use of clone()

int[] vec = new int[3];

vec[0] = 1; vec[1] = 4; vec[2] = 5;

int[] vecClone = (int[]) vec.clone();

for(i=0; i < vecClone.length; i++)

System.out.println(vecClone[i]);

}

}

12.4. ARRAYS CLASS 315

The following program shows how an array of strings can be sorted.

// Sort.java

import java.util.*;

public class Sort

{

public static void main(String[] args)

{

String[] strings =

{ "Willi", "Hans", "Sue", "Helen", "Nela" };

Arrays.sort(strings);

List list = Arrays.asList(strings);

displayList(list);

} // end main

static void displayList(List list)

{

System.out.println("The size of the list is: " + list.size());

ListIterator i = list.listIterator(0);

while(i.hasNext())

{

Object o = i.next();

if(o == null) System.out.println("null");

else

System.out.println(o.toString());

} // end while

} // end method display

}

The following program shows an application of the methods shuffle, reverse,
swap, fill, frequency and disjoint in Collections.

// Sorting.java

import java.util.*;

import java.math.*;

public class Sorting

{

public static void main(String[] args)

{

316 CHAPTER 12. JAVA 2 COLLECTION FRAME WORK

List<String> listS = Arrays.asList(args);

Collections.sort(listS);

System.out.println(listS);

List<Integer> listI = new ArrayList<Integer>();

listI.add(new Integer(11));

listI.add(new Integer(14));

listI.add(new Integer(3));

Collections.sort(listI);

System.out.println(listI);

List<Object> listO = new ArrayList<Object>();

listO.add(new Double(3.14));

listO.add(new Character(’x’));

listO.add(new BigInteger("34567890"));

System.out.println(listO);

Collections.shuffle(listO);

System.out.println(listO);

Collections.reverse(listO);

System.out.println(listO);

Collections.swap(listO,2,0);

System.out.println(listO);

Collections.fill(listI,5);

System.out.println(listI);

int f = Collections.frequency(listI,5);

System.out.println(f);

List<Character> listC1 = new ArrayList<Character>();

listC1.add(new Character(’y’));

listC1.add(new Character(’x’));

List<Character> listC2 = new ArrayList<Character>();

listC2.add(new Character(’a’));

listC2.add(new Character(’y’));

boolean b = Collections.disjoint(listC1,listC2);

System.out.println(b);

int pos = Collections.binarySearch(listI,new Integer(5));

System.out.println(pos);

}

}

12.5. CLASS TREESET 317

12.5 Class TreeSet

The class

public class TreeSet extends AbstractSet

implements SortedSet, Cloneable, Serializable

implements the TreeSet interface backed by TreeMap. The set will be in ascending
order sorted according to the natural order of the elements.

The following program shows an application of the class TreeSet. The default
constructor

TreeSet()

constructs a new empty TreeSet sorted according to the elements natural order.
The method

boolean add(Object o)

adds the specified element to this Set if it is not already present.

The method

void clear()

removes all of the elements from the set.

The method

boolean contains(Object o)

returns true if this TreeSet contains the specified element.

The method

Object first()

returns the first (lowest) element currently in the TreeSet.

The method

Object last()

returns the last (highest) element currently in the TreeSet.

318 CHAPTER 12. JAVA 2 COLLECTION FRAME WORK

// MySet.java

import java.util.*;

public class MySet

{

public static void main(String [] args)

{

String s1 = new String("xxyy");

String s2 = new String("123");

TreeSet tset = new TreeSet();

tset.add(s1);

tset.add(s2);

System.out.println("The size of the set is: " + tset.size());

Iterator it = tset.iterator();

while(it.hasNext())

{

Object o = it.next();

if(o == null) System.out.println("null");

else

System.out.println(o.toString());

}

String s3 = new String("a$$a");

String s4 = new String("123");

tset.add(s3);

tset.add(s4);

Iterator it1 = tset.iterator();

while(it1.hasNext())

{

Object o = it1.next();

if(o == null) System.out.println("null");

else

System.out.println(o.toString());

}

} // end main

}

12.5. CLASS TREESET 319

In Java the interface Set is a Collection that cannot contain duplicates elements.
The interface Set models the mathematical set abstraction. The Set interface
extends Collection and contains no methods other than those inherited from
Collection. It adds the restriction that duplicate elements are prohibited. The
JDK contains two general-purpose Set implementations. The class HashSet stores
its elements in a hash table. The class TreeSet stores its elements in a red-black
tree. This guarantees the order of iteration.

The following program shows an application of the TreeSet class.

// SetOper.java

import java.util.*;

public class SetOper

{

public static void main(String[] args)

{

String[] A = { "Steeb", "C++", "80.00" };

String[] B = { "Solms", "Java", "80.00" };

TreeSet S1 = new TreeSet();

for(int i=0; i < A.length; i++)

S1.add(A[i]);

System.out.println("S1 = " + S1);

TreeSet S2 = new TreeSet();

for(int i=0;i < B.length;i++)

S2.add(B[i]);

System.out.println("S2 = " + S2);

// union

TreeSet S3 = new TreeSet(S1);

boolean b1 = S3.addAll(S2);

System.out.println("S3 = " + S3);

System.out.println("S1 = " + S1);

// intersection

TreeSet S4 = new TreeSet(S1);

boolean b2 = S4.retainAll(S2);

System.out.println("S4 = " + S4);

System.out.println("S2 = " + S2);

// (asymmetric) set difference

320 CHAPTER 12. JAVA 2 COLLECTION FRAME WORK

TreeSet S5 = new TreeSet(S1);

boolean b3 = S5.removeAll(S2);

System.out.println("S5 = " + S5);

// test for subset

TreeSet S6 = new TreeSet(S1);

boolean b4 = S6.containsAll(S2);

System.out.println("b4 = " + b4);

// is element of set (contains)

boolean b = S1.contains("80.00");

System.out.println("b = " + b);

b = S2.contains("Steeb");

System.out.println("b = " + b);

}

}

The output is

S1 = [80.00, C++, Steeb]

S2 = [80.00, Java, Solms]

S3 = [80.00, C++, Java, Solms, Steeb]

S1 = [80.00, C++, Steeb]

S4 = [80.00]

S2 = [80.00, Java, Solms]

S5 = [C++, Steeb]

b4 = false

b = true

b = true

12.6. CLASS TREEMAP 321

12.6 Class TreeMap

The TreeMap class extends AbstractMap to implement a sorted binary tree that
supports the Map interface. This impementation is not synchronized. If multiple
threads access a TreeMap concurrently and at least one of the threads modifies the
TreeMap structurally it must be synchronized externally.

The next program shows an application of the class TreeMap. The default construc-
tor TreeMap() constructs a new, empty TreeMap sorted according to the keys in
natural order. The constructor TreeMap(Map m) constructs a new TreeMap contain-
ing the same mappings as the given Map, sorted according to the key’s natural order.

The method

Object put(Object key,Object value)

associates the specified value with the specified key in this TreeMap. The method

public Set entrySet()

in class TreeMap returns a Set view of the mapping contained in this map. The
Set’s Iterator will return the mappings in ascending Key order. Each element in
the returned set is a Map.Entry. The method

boolean containsKey(Object key)

returns true if this TreeMap contains a mapping for the specified key. The method

boolean containsValue(Object value)

returns true if this Map maps one or more keys to the specified value. The method

Object get(Object key)

returns the value to which this TreeMap maps the specified key. The method

Object remove(Object key)

removes the mapping for this key from this TreeMap if present.

322 CHAPTER 12. JAVA 2 COLLECTION FRAME WORK

// MyMap.java

import java.util.*;

public class MyMap

{

public static void main(String[] args)

{

String[] sc = new String[3];

sc[0] = new String("A");

sc[1] = new String("B");

sc[2] = new String("C");

String[] sn = new String[3];

sn[0] = new String("65");

sn[1] = new String("66");

sn[2] = new String("67");

TreeMap map = new TreeMap();

int i;

for(i=0; i < sc.length; i++)

{

map.put(sc[i],sn[i]);

}

displayMap(map);

} // end main

static void displayMap(TreeMap map)

{

System.out.println("The size of the map is: " + map.size());

Collection c = map.entrySet();

Iterator it = c.iterator();

while(it.hasNext())

{

Object o = it.next();

if(o == null)

System.out.println("null");

else

System.out.println(o.toString());

}

} // end method displayMap

}

Chapter 13

The Swing Components

13.1 Introduction

The Swing components form a sophisticated library of GUI components including
borders, buttons, checkboxes, combo boxes, icons, labels, lists, list boxes, menus,
menubars, menu items, popup menus, radio buttons, progress bars, scrool panes
and viewports, scrollbars, tabbed panes, tables, text areas, text components, text
fields, trees and HTML viewers. All the components are Java Beans written in
pure Java and all components can be navigated with the mouse as well with the
keyboard. The Swing components extend the AWT (Abstract Windowing Toolkit)
components. Swing components are used to create graphical user interfaces for Java
programs. It includes not only the equivalent of AWT components, but also new
ones such as table and treewidgets. Swing is a standard part of Java 2 and higher.

Swing offers a number of advantages over the AWT components. Just as AWT
provides a Window class hierarchy, so does Swing. Swing’s window classes are
extensions of the AWT Window class hierarchy. The JWindow class extends the
AWT Window class. The JFrame class extends the AWT Frame class and JDialog

class extends the AWT Dialog class. The JWindow, JFrame, and JDialog classes
differ from their AWT counterparts in that they use a separate content pane for
adding and laying out GUI components. This content pane is a Container object
that is accessed using the getContentPane(). The method

Container getContentPane()

is in class JFrame and returns the content pane object for this frame. The content
pane is part of a JRootPane object that contains other panes for overlaying compo-
nents and intercepting mouse and keyboard events. Thus the JFrame class is slightly
incompatible with java.awt.Frame. The class JFrame contains a JRootPane as its
only child. The contentPane should be the parent of any child of the JFrame. This
is different from java.awt.Frame, e.g. to add a child to an AWT Frame we have

frame.add(child);

323

324 CHAPTER 13. THE SWING COMPONENTS

Using the class JFrame we have to add the child to the JFrames contentPane instead

frame.getContentPane().add(child);

The same is true for setting LayoutManagers, removing components, listing children,
etc. All these methods should normally be sent to the contentPane() instead of
the JFrame itself. Thus in Swing, top-level windows (such as JFrame or JDialog)
do not have components added directly to the window. Instead we add them to the
content pane like this

myWindow.getContentPane().add(component)

Swing menus, like Swing windows, are analogous to their AWT counterparts. The
classes

JMenuBar, JMenu, JMenuItem, JCheckBoxMenuItem, JRadioButtonMenuItem

are used in the same manner as the AWT classes

MenuBar, Menu, MenuItem, CheckBoxMenuItem

but with one difference. The Swing menu classes are all subclasses of the JComponent
class, and therefore, of the Component class. This means that Swing menus, unlike
their AWT counterparts, are first-class components and can be used with any Con-
tainer classes. The JPopupMenu class is analogous to the AWT PopupMenu class.
The class JPopupMenu is an implementation of a Popup Menu – a small window
which pops up and displays a series of choices.

The JTextComponent, JTextField, and JTextArea classes are the Swing analogs
of the AWT TextComponent, TextField, and TextArea classes. In addition, Swing
provides the JTextPane class for working with text documents that can be marked
up with different text styles. The class JTextPane extends JEditorPane provides a
text component that can be marked with attributes that are represented graphically.
Components and images may be embedded in the flow of text.

The command in AWT

setLayout(new FlowLayout());

is replaced by

getContentPane().setLayout(new FlowLayout());

in swing.

13.1. INTRODUCTION 325

The following three programs show an application of the classes JButton, JTextField,
JFrame. We also show how the UIManager is used.

The method

String getText()

is in class AbstractButton and the class JButton inherts this method. The method

void setText(String)

is in class JTextComponent and the class JTextField inherts this method

If we want to change the look and feel of our application from the default, we can
use the UIManager class which allows us to find out the current look and feel of the
application, and to change it. The class UIManager keeps track of the current look
and feel and its defaults. We can select from a variety of looks and feels for our user
interface. The method

static void setLookAndFeel(LookAndFeel newLookAndFeel)

in class UIManager is passed a LookAndFeel object. The method

static void setLookAndFeel(String className)

in class UIManager is passed the name of the class as a String which represents
the required look and feel. The most common way of using these methods is when
we want to change from the cross-platform (metal) look and feel to the system look
and feel.

326 CHAPTER 13. THE SWING COMPONENTS

13.2 Examples

In the next program we have rewritten the program GUI.java from chapter 5 now
using Java 1.2. The class WindowAdapter is an abstract adapter class for receiving
window events. The methods in this class are empty. This class exists as convenience
for creating listener objects. We extend this class to create a WindowEvent Listener
and override the methods for the events of interest. We create two buttons and
add them to the container. We also add two checkboxes and three labels to the
container. Finally a textfield is added.

// JGUI1.java

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class JGUI1 extends JFrame

{

public JGUI1()

{

setSize(200,200);

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); }});

setTitle("JGUI and its component");

getContentPane().setLayout(new FlowLayout());

JButton b1 = new JButton("Button 1");

JButton b2 = new JButton("Button 2");

getContentPane().add(b1);

getContentPane().add(b2);

JCheckBox ch1 = new JCheckBox("one",null,true);

JCheckBox ch2 = new JCheckBox("two");

JCheckBox ch3 = new JCheckBox("three");

getContentPane().add(ch1);

getContentPane().add(ch2);

getContentPane().add(ch3);

JLabel l1 = new JLabel("Hello Egoli");

JLabel l2 = new JLabel("Good Night");

getContentPane().add(l1);

getContentPane().add(l2);

13.2. EXAMPLES 327

JTextField t = new JTextField(20);

getContentPane().add(t);

} // end constructor JGUI1

public static void main(String []args)

{ new JGUI1().setVisible(true); }

}

The program MyJList.java creates a simple list box example using the Swing API.
This example generates a static list from which the user can make a selection.

// MyJList.java

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class MyJList extends JFrame

{

private JPanel topPanel;

private JList listbox;

public MyJList()

{

setTitle("Simple ListBox Application");

setSize(300,100);

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); }});

setBackground(Color.gray);

topPanel = new JPanel();

topPanel.setLayout(new BorderLayout());

getContentPane().add(topPanel);

// create some items to add to the list

String listData[] = { "Item 1","Item 2","Item 3","Item 4" };

listbox = new JList(listData);

topPanel.add(listbox,BorderLayout.CENTER);

}

public static void main(String args[])

{

MyJList mainFrame = new MyJList();

mainFrame.setVisible(true);

}

}

328 CHAPTER 13. THE SWING COMPONENTS

13.3 Adding Actions to Containers

All Java events generated are subclasses of java.awt.event, and contain informa-
tion such as the position where the event was caused and the source (the class
where the event is generated). Different events classes can be used, for example a
MouseEvent is generated when the mouse is used. If a programmer is only interested
in the mouse when it is used to pressa button (and not in whether it is the left or right
mouse button that has been pressed), they can simply use an ActionEvent. A piece
of code that needs to know if an event happens should implement an EventListener

and register it with components that may generate an event. If an event is generated
the listener is called with the event as a parameter.

In the next two programs we include the interface ActionListener and the class
ActionEvent. The method

Object getSource()

in class ActionEvent is inherited from class EventObject. The method

String getText()

returns the button’s text. The class JTextField inherits the method

void setText(String t)

from class JTextComponent.

In the following program we define an ActionListener and register it on two but-
tons. When the mouse is used to press a button on the screen the buttons listen for
mouse events and forward ActionEvents to the listener. We can run the program
either as a Java application or as an Applet.

// Swing1.java

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import javax.swing.*;

13.3. ADDING ACTIONS TO CONTAINERS 329

public class Swing1 extends Applet

{

JButton b1 = new JButton("JButton 1");

JButton b2 = new JButton("JButton 2");

JTextField t = new JTextField(20);

public void init()

{

ActionListener al = new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

String name = ((JButton) e.getSource()).getText();

t.setText(name + " Pressed");

}

};

b1.addActionListener(al);

add(b1);

b2.addActionListener(al);

add(b2);

add(t);

} // end init()

public static void main(String args [])

{

Swing1 applet = new Swing1();

JFrame frame = new JFrame("TextAreaNew");

frame.addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e)

{ System.exit(0); }});

frame.getContentPane().add(applet,BorderLayout.CENTER);

frame.setSize(300,100);

applet.init();

applet.start();

frame.setVisible(true);

} // end main

}

The validate() method is used to cause a container to lay out its subcomponents
again. It should be invoked when this container’s subcompoents are modified (added
or removed from the container, or layout-related information changed) after the
container has been displayed. An example is given below.

330 CHAPTER 13. THE SWING COMPONENTS

// Swing2.java

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import javax.swing.*;

public class Swing2 extends Applet

{

JButton b1 = new JButton("JButton 1");

JButton b2 = new JButton("JButton 2");

JTextField t = new JTextField(20);

public void init()

{

ActionListener al = new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

if(e.getSource() == b1)

{

JTextField t1 = new JTextField(5);

add(t1);

validate();

}

}

};

b1.addActionListener(al);

add(b1);

b2.addActionListener(al);

add(b2);

add(t);

} // end init()

public static void main(String args [])

{

Swing2 applet = new Swing2();

JFrame frame = new JFrame("TextAreaNew");

frame.addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e)

{ System.exit(0); }});

frame.getContentPane().add(applet,BorderLayout.CENTER);

13.3. ADDING ACTIONS TO CONTAINERS 331

frame.setSize(300,100);

applet.init();

applet.start();

frame.setVisible(true);

} // end main

}

In the following program we open a window with a button which includes the text
"Press me". After clicking the button it is replaced by a button with the text
"1: I like this: Press me again". Clicking again overides the text in the but-
ton with the text 2: I like this: Press me again" etc up to 10. Every time
the colour of the text changes in a random fashion.

// ButtonPress.java

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ButtonPress extends JFrame implements ActionListener

{

private int red = 0, green = 0, blue = 0;

private JButton button = new JButton("Press me!");

private java.util.Random randomNumberGenerator =

new java.util.Random();

public ButtonPress(ButtonPressHandler buttonHandler)

{

setTitle("ButtonPress");

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); } });

getContentPane().setBackground(Color.white);

getContentPane().setLayout(new FlowLayout());

getContentPane().add(button);

button.addActionListener(buttonHandler);

button.addActionListener(this);

setSize(400,150);

setVisible(true);

} // end constructor ButtonPress

public void actionPerformed(ActionEvent event)

{

332 CHAPTER 13. THE SWING COMPONENTS

red = randomNumberGenerator.nextInt(256);

green = randomNumberGenerator.nextInt(256);

blue = randomNumberGenerator.nextInt(256);

button.setForeground(new Color(red,green,blue));

} // end method actionPerformed

public static void main(String[] args) throws Exception

{

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

new ButtonPress(new ButtonPressHandler());

} // end main

} // end class ButtonPress

class ButtonPressHandler implements ActionListener

{

private int numPresses = 0;

public void actionPerformed(ActionEvent event)

{

++numPresses;

((JButton) event.getSource()).setText

(numPresses + ": I like this. Press me again.");

if(numPresses == 10)

((JButton) event.getSource()).removeActionListener(this);

}

} // end class ButtonHandler

13.4. BUTTON GAME 333

13.4 Button Game

The next program rewrites the program ButtonGame from chapter 5 using Swing
components. We use the method getContentPane(). We replace the methods
setLabel() and getLabel() from the class Button by the methods setText() and
getText() from the class java.swing.AbstractButton.

// JButtonGame.java

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class JButtonGame extends JFrame implements ActionListener

{

private int nRows, nCols, nButtons;

private int blankCol, blankRow, clickedRow, clickedCol;

private JButton[][] buttons;

private JTextField textField;

public JButtonGame()

{

setSize(200,200);

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0);}});

nRows = 4; nCols = 4; nButtons = nRows*nCols;

JPanel panel = new JPanel();

panel.setLayout(new GridLayout(nRows,nCols));

buttons = new JButton[nRows][nCols];

for(int nRow=0;nRow<nRows;nRow++)

{

for(int nCol=0;nCol<nCols;nCol++)

{

buttons[nRow][nCol] = new JButton ("");

buttons[nRow][nCol].addActionListener(this);

panel.add(buttons[nRow][nCol]);

}

}

getContentPane().add("Center",panel);

textField = new JTextField("",80);

334 CHAPTER 13. THE SWING COMPONENTS

textField.setEditable(false);

getContentPane().add("South",textField);

int labelsUsed[] = new int[nButtons];

for(int i=0; i<nButtons;i++)

{

boolean labelUsed;

int label;

do

{

label = random(nButtons) + 1;

labelUsed = false;

for(int j=0;j<i;j++)

labelUsed = ((labelUsed) || (label == labelsUsed[j]));

} while(labelUsed);

labelsUsed[i] = label;

int nRow = i/nCols;

int nCol = i - nRow*nCols;

buttons[nRow][nCol].setText((new Integer (label)).toString());

}

getButtonPosition((new Integer (nButtons)).toString());

blankRow = clickedRow;

blankCol = clickedCol;

JButton blank = buttons[clickedRow][clickedCol];

blank.setText("");

blank.setBackground(Color.green);

} // end constructor JButtonGame()

private int random(int k)

{

return (int) (k*Math.random() - 0.1);

} // end method random(int)

private void getButtonPosition(String label)

{

for(int nr=0;nr<nRows;nr++)

{

for(int nc=0;nc<nCols;nc++)

{

if(buttons[nr][nc].getText().equals(label))

{

clickedRow = nr;

clickedCol = nc;

textField.setText("[" + nr + ’,’ + nc + "]" + label);

13.4. BUTTON GAME 335

}

}

}

} // end method getButtonPosition(String)

public void actionPerformed(ActionEvent e)

{

getButtonPosition(e.getActionCommand());

textField.setText("[" + blankRow + "," + blankCol

+ "] = > [" + clickedRow + "," + clickedCol + "]");

if(clickedRow == blankRow)

{

if(Math.abs(clickedCol - blankCol) == 1)

moveBlank(blankRow,blankCol,clickedRow,clickedCol);

}

else

if(clickedCol == blankCol)

{

if(Math.abs(clickedRow - blankRow) == 1)

moveBlank(blankRow,blankCol,clickedRow,clickedCol);

}

} // end method actionPerformed

public void moveBlank(int oldRow,int oldCol,int newRow,int newCol)

{

JButton oldBlank = buttons[oldRow][oldCol];

JButton newBlank = buttons[newRow][newCol];

String label = newBlank.getText();

newBlank.setText("");

newBlank.setBackground(Color.green);

oldBlank.setText(label);

oldBlank.setBackground(Color.lightGray);

blankRow = newRow;

blankCol = newCol;

} // end method moveBlank

public static void main(String[] args)

{

new JButtonGame().setVisible(true);

} // end method main

}

336 CHAPTER 13. THE SWING COMPONENTS

13.5 Editable Textfields

The following program shows how we implement editable textfields. The two textfields
for the numerator and denominator are editable, whereas the textfield for the deci-
mal approximation is non-editable. In the program we also implement tool tips, i.e.
the extra hint popping up when the mouse hovers undecidedly over a component.
All swing components inhert the ability of having tool tips associated to them from
the mother of all swing components JComponent.

// TextFields.java

import java.awt.event.*;

import javax.swing.*;

import java.awt.*;

import java.text.DecimalFormat;

public class TextFields extends JFrame

implements ActionListener, FocusListener

{

private JTextField numField = new JTextField("1",20);

private JTextField denField = new JTextField("1",20);

private JTextField resultField = new JTextField("1",20);

private DecimalFormat decimalFormat =

new DecimalFormat("0.######E0");

public TextFields()

{

addWindowListener(new WindowAdapter()

{ public void windowClosing(WindowEvent event)

{ System.exit(0); }

});

setTitle("Text Fields");

getContentPane().setLayout(new GridLayout(3,2));

getContentPane().add(new JLabel("Numerator: "));

getContentPane().add(numField);

getContentPane().add(new JLabel("Denominator: "));

getContentPane().add(denField);

getContentPane().add(new JLabel("Result of Division: "));

getContentPane().add(resultField);

numField.addActionListener(this);

numField.addFocusListener(this);

numField.setToolTipText("The Numerator Textfield");

13.5. EDITABLE TEXTFIELDS 337

denField.addActionListener(this);

denField.addFocusListener(this);

denField.setToolTipText("The Denominator Textfield");

resultField.setEditable(false);

resultField.setToolTipText("The result of the divison.");

pack();

setVisible(true);

} // end constructor TextFields()

private void calculate()

{

double num = new Double(numField.getText()).doubleValue();

double den = new Double(denField.getText()).doubleValue();

double result = num/den;

resultField.setText(decimalFormat.format(result));

} // end calculate()

public void actionPerformed(ActionEvent event) { calculate(); }

public void focusLost(FocusEvent event) { calculate(); }

public void focusGained(FocusEvent event) { }

public static void main(String[] args)

{

new TextFields();

}

}

338 CHAPTER 13. THE SWING COMPONENTS

13.6 Document and JTextPane Classes

In the next program (JDK Developer) we show how to apply the classes Document
and JTextPane. We sets up a text window together with Set Position and Go To
Position buttons. Then type some text into the text window. Next we move the text
caret somewhere in that text. Then we click the button Set Position. This records
this location in the text. Next we edit the text by adding and deleting characters
before and after the position which was selected above. If we now click the Go To
Position button the caret will move back to the location selected above. Thus the
action of the Go To Position button takes into account the changed offset of the
location based on edits we have done. The

public abstract interface Document

container for text supports editing and provides notification of changes. The class
JEditorPane is sort of a fancy text area that can display text derived from different
file formats. The built-in version supports HTML and RTF (Rich Text Format) only,
but we can build editor kits to handle special purpose applications. JEditorPane
is most often use to display HTML. We choose the type of document we want to
display by calling the method setContentType and specify a custom editor kit via
the method setEditorKit. The class

JTextPane extends JEditorPane

is a text component that can be marked up with attributes that are represented
graphically. The class JTextPane inherits the method getCaret() from the class
JTextComponent. The method Caret getCaret() fetches the caret that allows
text-oriented navigation over the view. The

public abstract interface Caret

is a place within a document view that represents where things can be inserted into
the document model. The method Document getDocument() in class JTextPane

fetches the model associated with the editor. The

class Position

represents a location within a document. The method int getDot() in class Caret
fetches the current position of the caret.

// PosDemo.java

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.text.*;

13.6. DOCUMENT AND JTEXTPANE CLASSES 339

public class PosDemo

{

static Position lastpos;

public static void main(String args[])

{

JFrame frame = new JFrame("Position demo");

frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}); // end argument frame.addWindowListener

final JTextPane pane = new JTextPane();

pane.setPreferredSize(new Dimension(600,400));

JButton setbutton = new JButton("Set Position");

JButton gobutton = new JButton("Go To Position");

setbutton.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

try

{ // try block

int dot = pane.getCaret().getDot();

Document doc = pane.getDocument();

lastpos = doc.createPosition(dot);

pane.requestFocus();

} // end try block

catch(BadLocationException exc)

{ System.err.println(exc); }

}

}); // end argument setbutton.addActionListener

gobutton.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

if(lastpos == null)

{

Toolkit.getDefaultToolkit().beep();

}

else

{

340 CHAPTER 13. THE SWING COMPONENTS

int pos = lastpos.getOffset();

pane.getCaret().setDot(pos);

pane.requestFocus();

}

}

}); // end argument gobutton.addActionListener

JPanel buttonpanel = new JPanel();

buttonpanel.add(setbutton);

buttonpanel.add(gobutton);

JPanel panel = new JPanel();

panel.setLayout(new BorderLayout());

panel.add("North", buttonpanel);

panel.add("Center", pane);

frame.getContentPane().add(panel);

frame.pack();

frame.setVisible(true);

} // end main

}

13.7. MODEL-VIEW-CONTROLLER 341

13.7 Model-View-Controller

Swing’s Model-UI architecture is a variation of the Model-View-Controller (MVC)
pattern. MVC addresses the problem of how to build software for user interfaces.
The MVC pattern, first introduced in Smalltalk-80, was designed to reduce the pro-
gramming effort required to build systems that made use of multiple, synchronized
presentations of the same data. The MVC consists of three distinct parts:

1) The Model holds the data that is being represented.

2) The View renders the data of the model. The view observes changes in the model
and then renders the updated model data. Since there is only a single central model,
all views will remain coherent.

3) The Controller listens to user events and controls the view on the data. The
View and Controller know about the Model, but the model is almost unaware of
their existence: it merely knows that if it changes, it has to send a message to any
registered listener warning it that there have been changes.

The MVC pattern prompts the following software qualities, which make it such a
novel idea:

1) Extensibility: It is common that the GUI of an application evolves much faster
than its logic (the model). Using MVC, we may change the GUI without changing
the model.

2) Loose coupling: The model publishes only an interface for notification. Each
view implements this interface, but the model does not know, nor, care about the
view beyond this interface.

3) Pluggabilty: We can add new views easily, without changing the model.

The MVC design pattern is typically used for constructing interfaces that may
present multiple views of the same data. The design pattern is important, because
it completely de-couples data display from data representation. This means that
the user interface of an application can be completely changed - even dynamically,
under direction of the user - without need for any change to the underlying data
subsystem of the application. All Swing data-representation components are imple-
mented with this design pattern in mind, so all Swing applications will inherently
benefit from this immense design flexibility.

The easiest place to see this approch is the class JTable. We can define a TableModel
object (the model) and tell a JTable (combined View-Controller) to observe that
model. When the data changes, the JTable is notified, and it updates its display.
Several Views could monitor a single table. The model notifies them of changes,

342 CHAPTER 13. THE SWING COMPONENTS

and lets the View figure out how to update the display. A common mistake is to
write code to update the TableModel but not send any notifications.

// MyTable.java

import javax.swing.JTable;

import javax.swing.table.AbstractTableModel;

import javax.swing.JScrollPane;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

import javax.swing.JOptionPane;

import java.awt.*;

import java.awt.event.*;

public class MyTable extends JFrame

{

private boolean DEBUG = true;

public MyTable()

{

super("MyTable");

MyTableModel myModel = new MyTableModel();

JTable table = new JTable(myModel);

table.setPreferredScrollableViewportSize(new Dimension(400,70));

JScrollPane scrollPane = new JScrollPane(table);

getContentPane().add(scrollPane,BorderLayout.CENTER);

addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e)

{

System.exit(0);

}

});

} // end MyTable

class MyTableModel extends AbstractTableModel

{

final String[] columnNames =

{ "First Name", "Last Name", "Sport", "# of Years", "Vegetarian" };

final Object[][] data =

{

13.7. MODEL-VIEW-CONTROLLER 343

{ "Mary", "Campione", "Snowboarding", new Integer(5),

new Boolean(false) },

{ "Alison", "Huml", "Rowing", new Integer(3), new Boolean(true) },

{ "Kathy", "Walrath", "Tennis", new Integer(2), new Boolean(false) },

{ "Mark", "Andrews", "Boxing", new Integer(10), new Boolean(false) },

{ "Angela", "Lih", "Running", new Integer(5), new Boolean(true) }

};

public int getColumnCount() { return columnNames.length; }

public int getRowCount() { return data.length; }

public String getColumnName(int col) { return columnNames[col]; }

public Object getValueAt(int row,int col) { return data[row][col]; }

public Class getColumnClass(int c)

{ return getValueAt(0,c).getClass(); }

public boolean isCellEditable(int row,int col)

{

if(col < 2) { return false; }

else { return true; }

}

public void setValueAt(Object value,int row,int col)

{

if(DEBUG)

{

System.out.println("Setting value at " + row + "," + col

+ " to " + value

+ " (an instance of "

+ value.getClass() + ")");

}

if(data[0][col] instanceof Integer)

{

try

{

data[row][col] = new Integer((String) value);

fireTableCellUpdated(row,col);

}

catch(NumberFormatException e)

{

JOptionPane.showMessageDialog(MyTable.this,

344 CHAPTER 13. THE SWING COMPONENTS

"The \"" + getColumnName(col)

+ "\" column accepts only integer values.");

}

}

else

{

data[row][col] = value;

fireTableCellUpdated(row,col);

}

if(DEBUG)

{

System.out.println("New value of data:");

printDebugData();

}

}

private void printDebugData()

{

int numRows = getRowCount();

int numCols = getColumnCount();

for(int i=0;i<numRows;i++)

{

System.out.print(" row " + i + ".");

for(int j=0;j<numCols;j++)

{

System.out.print(" " + data[i][j]);

}

System.out.println();

}

System.out.println("--------------------------------");

}

}

public static void main(String[] args)

{

MyTable frame = new MyTable();

frame.pack();

frame.setVisible(true);

}

}

13.8. JTREE CLASS 345

13.8 JTree Class

Trees allow us to represent hierarchies of data in a convenient, accessible form.
Swing’s JTree component enables developers to easily capture (represent in a data
structure) and display hierarchies. The class JTree implements a tree structure that
can be used to display hierarchical data structures. The TreeNode interface defines
methods that are to be implemented by the node of a JTree object. The

public class DefaultMutableTreeNode extends Object

implements Cloneable, MutableTreeNode, Serializable

provides a default implementation of the TreeNode interface. Trees are created by
creating objects of the TreeNode interface and then adding them together using the
add() method. When all of the TreeNode objects have been added together, the
resulting TreeNode object is passed to the JTree constructor. A

DefaultMutableTreeNode

is a general purpose node in a tree data structure. A tree node may have at most
one parent and 0 or more children. DefaultMutableTreeNode provides operations
for examining and modifying node’s parent and children and also operations for
examining the tree that the node is part of. The constructor

DefaultMutableTreeNode(Object userObject)

creates a tree node with no parent, no children, but which allows children and
initializes it with the specified user object. The method

void add(MutableTreeNode newChild)

removes newChild from its parent and makes it a child of this node by adding it to
the end of this node’s child array.

A single tree selection is represented by a TreePath object, which defines a path
from a root node to the selected node. The method

Object getPathComponent(int element)

returns the path component at the specified index. The method

int getPathCount()

returns the number of elements in the path.

The class JScrollPane is a specialized container that manages a viewport, optional
vertical and horizontal scrollbars, and optional row and column heading viewports.

346 CHAPTER 13. THE SWING COMPONENTS

The next program shows an application of the JTree class.

// JTreeClass.java

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import javax.swing.*;

import javax.swing.event.*;

import javax.swing.tree.*;

public class JTreeClass extends JFrame

{

public static int WIDTH = 400;

public static int HEIGHT = 400;

public static String TITLE = new String("JTree Application");

Container frameContainer;

JTextField textField = new JTextField();

JScrollPane scrollPane = new JScrollPane();

JTree tree;

Renderer renderer = new Renderer();

DefaultMutableTreeNode root = new DefaultMutableTreeNode("Willi");

DefaultMutableTreeNode son1_willi =

new DefaultMutableTreeNode("Lars");

DefaultMutableTreeNode son2_willi =

new DefaultMutableTreeNode("Gunnar");

DefaultMutableTreeNode son3_willi =

new DefaultMutableTreeNode("Jan");

DefaultMutableTreeNode son4_willi =

new DefaultMutableTreeNode("Olli");

DefaultMutableTreeNode son1_Lars =

new DefaultMutableTreeNode("Friederich");

DefaultMutableTreeNode son1_Gunnar =

new DefaultMutableTreeNode("Eugen");

DefaultMutableTreeNode son2_Gunnar =

new DefaultMutableTreeNode("Karl");

DefaultMutableTreeNode son1_Jan =

new DefaultMutableTreeNode("Albert");

DefaultMutableTreeNode son1_Olli =

new DefaultMutableTreeNode("Ollix");

DefaultMutableTreeNode son1_Eugen =

13.8. JTREE CLASS 347

new DefaultMutableTreeNode("Otto");

JMenuBar menuBar = new JMenuBar();

JMenu fileMenu = new JMenu("File");

JMenuItem fileExit = new JMenuItem("Exit");

public JTreeClass()

{

super(TITLE);

buildGUI();

setupEventHandlers();

setSize(WIDTH,HEIGHT);

show();

}

void buildGUI()

{

setupMenuBar();

setupTree();

layoutComponents();

}

void setupMenuBar()

{

fileMenu.add(fileExit);

menuBar.add(fileMenu);

setJMenuBar(menuBar);

}

void setupTree()

{

root.add(son1_willi);

root.add(son2_willi);

root.add(son3_willi);

root.add(son4_willi);

son1_willi.add(son1_Lars);

son2_willi.add(son1_Gunnar);

son2_willi.add(son2_Gunnar);

son3_willi.add(son1_Jan);

son4_willi.add(son1_Olli);

son1_Gunnar.add(son1_Eugen);

tree = new JTree(root);

}

348 CHAPTER 13. THE SWING COMPONENTS

public void layoutComponents()

{

frameContainer = getContentPane();

frameContainer.setLayout(new BorderLayout());

tree.setCellRenderer(renderer);

tree.addTreeSelectionListener(new TreeHandler());

scrollPane.getViewport().add(tree);

frameContainer.add("Center",scrollPane);

frameContainer.add("South",textField);

}

void setupEventHandlers()

{

addWindowListener(new WindowHandler());

fileExit.addActionListener(new MenuItemHandler());

}

public static void main(String[] args)

{

JTreeClass app = new JTreeClass();

}

public class WindowHandler extends WindowAdapter

{

public void windowClosing(WindowEvent e) { System.exit(0); }

} // end class WindowHandler

public class MenuItemHandler implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

String cmd = e.getActionCommand();

if(cmd.equals("Exit")) System.exit(0);

}

} // end class MenuItemHandler

public class TreeHandler implements TreeSelectionListener

{

public void valueChanged(TreeSelectionEvent e)

{

TreePath path = e.getPath();

String text =

path.getPathComponent(path.getPathCount()-1).toString();

textField.setText(text);

13.8. JTREE CLASS 349

}

}

class Renderer extends JLabel implements TreeCellRenderer

{

public Component

getTreeCellRendererComponent(JTree tree,Object value,

boolean selected,boolean expanded,boolean leaf,int row,

boolean hasFocus)

{

setText(value.toString()+" ");

return this;

}

}

}

350 CHAPTER 13. THE SWING COMPONENTS

13.9 Class JEditorPane

JEditorPane is a sort of text area that can display text derived from different file
formats. The built-in version supports HTML and RTF (Rich Text Format) only,
but we can build editor kits to handle special purpose applications. If we have
plane text we could also use JTextField instead of JEditorPane. The following
program shows an application of the class JEditorPane. A simple web browser is
implemented.

// Browser.java

import javax.swing.*;

import javax.swing.event.*;

import java.awt.*;

import java.awt.event.*;

import java.net.*;

import java.io.*;

public class Browser extends JFrame

implements HyperlinkListener, ActionListener

{

private JIconButton homeButton;

private JTextField urlField;

private JEditorPane htmlPane;

private String initialURL;

public Browser(String initialURL)

{

super("Swing Browser");

this.initialURL = initialURL;

addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent event)

{ System.exit(0); }});

JPanel topPanel = new JPanel();

topPanel.setBackground(Color.yellow);

homeButton = new JIconButton("OUTPUT.JPG");

homeButton.addActionListener(this);

JLabel urlLabel = new JLabel("URL:");

urlField = new JTextField(30);

urlField.setText(initialURL);

urlField.addActionListener(this);

topPanel.add(homeButton);

topPanel.add(urlLabel);

13.9. CLASS JEDITORPANE 351

topPanel.add(urlField);

getContentPane().add(topPanel,BorderLayout.NORTH);

try

{

htmlPane = new JEditorPane(initialURL);

htmlPane.setEditable(false);

htmlPane.addHyperlinkListener(this);

JScrollPane scrollPane = new JScrollPane(htmlPane);

getContentPane().add(scrollPane,BorderLayout.CENTER);

}

catch(IOException ioe)

{

warnUser("Cannot build HTML pane for " + initialURL

+ ": " + ioe);

}

Dimension screenSize = getToolkit().getScreenSize();

int width = screenSize.width*8/10;

int height = screenSize.height*8/10;

setBounds(width/8,height/8,width,height);

setVisible(true);

} // end constructor Browser(String initialURL)

public void actionPerformed(ActionEvent event)

{

String url;

if(event.getSource() == urlField)

url = urlField.getText();

else

url = initialURL;

try

{

htmlPane.setPage(new URL(url));

urlField.setText(url);

}

catch(IOException ioe)

{

warnUser("Cannot follow link to " + url + ": " + ioe);

}

} // end actionPerformed

public void hyperlinkUpdate(HyperlinkEvent event)

{

if(event.getEventType() == HyperlinkEvent.EventType.ACTIVATED)

352 CHAPTER 13. THE SWING COMPONENTS

{

try

{

htmlPane.setPage(event.getURL());

urlField.setText(event.getURL().toExternalForm());

}

catch(IOException ioe)

{

warnUser("Cannot follow link to "

+ event.getURL().toExternalForm() + ": " + ioe);

}

}

} //end hyperlinkUpdate

private void warnUser(String message)

{

JOptionPane.showMessageDialog(this,message,"Error",

JOptionPane.ERROR_MESSAGE);

}

public class JIconButton extends JButton

{

public JIconButton(String file)

{

super(new ImageIcon(file));

setContentAreaFilled(false);

setBorderPainted(false);

setFocusPainted(false);

}

}

public static void main(String[] args)

{

if(args.length == 0)

new Browser("http://issc.rau.ac.za");

else new Browser(args[0]);

} // end main

}

13.10. PRINTING IN JAVA 353

13.10 Printing in Java

Rendering to a printer is like rendering to the screen. The printing system controls
when pages are rendered, just like the drawing system controls when a component is
painted on the screen. Our application provides the printig system with information
about the document to a printed, and the printing system determines when each
page needs to be imaged. When pages need to be imaged, the printing system calls
our application’s print method with an appropiate Graphics context. To use Java
2D API features when we print, we cast the Graphics object to a Graphics2D, just
like we do when we are rendering to the screen.

The class PrinterJob is the principal class that controls printing. An application
calls methods in this class to set up a job, optionally to invoke a print dialog with
the user, and then print the pages of the job. The following methods are in this class.

The method

static PrinterJob getPrinterJob()

creates and returns a PrinterJob. The method

abstract void setPrintable(Printable painter)

is used when the pages in the document to be printed by this PrinterJob are drawn
by the Printable object painter. The method

abstract boolean printDialog()

presents the user a dialog for changing properties of the print job interactivly. The
method

abstract void print()

prints a set of pages.

// PrintTest.java

import javax.swing.*;

import java.awt.*;

import java.awt.geom.*;

import java.awt.event.*;

import java.awt.print.*;

import java.awt.print.PrinterJob;

public class PrintTest extends JFrame implements ActionListener

{

public PrintTest()

354 CHAPTER 13. THE SWING COMPONENTS

{

addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent event)

{ System.exit(0); }

});

setTitle("Print Test");

JPanel buttonPanel = new JPanel();

buttonPanel.add(printButton);

printButton.addActionListener(this);

getContentPane().add(buttonPanel,BorderLayout.NORTH);

getContentPane().add(drawPanel);

setSize(400,400);

setVisible(true);

}

public void actionPerformed(ActionEvent event)

{

if(event.getSource() == printButton)

drawPanel.print();

}

public static void main(String[] args)

{

new PrintTest();

}

private JButton printButton = new JButton("Print");

private DrawPanel drawPanel = new DrawPanel();

} // end class PrintTest

class DrawPanel extends JPanel implements Printable

{

public void paint(Graphics gc)

{

draw((Graphics2D) gc);

}

private void draw(Graphics2D gc)

{

Dimension panelSize = getSize();

13.10. PRINTING IN JAVA 355

int width = (int) panelSize.getWidth();

int height = (int) panelSize.getHeight();

gc.setPaint(new GradientPaint(width/4.0F,height/2.0F,Color.black,

3.0F*width/4.0F,height/2.0F,Color.white));

Ellipse2D ellipse

= new Ellipse2D.Double(width/4.0,height/4.0,width/2.0,height/2.0);

gc.fill(ellipse);

}

public int print(Graphics g,PageFormat pf,int pi)

throws PrinterException

{

if(pi >= 1)

return Printable.NO_SUCH_PAGE;

draw((Graphics2D) g);

return Printable.PAGE_EXISTS;

}

public void print()

{

PrinterJob printJob = PrinterJob.getPrinterJob();

printJob.setPrintable(this);

if(printJob.printDialog())

{

try { printJob.print(); }

catch (Exception e) { e.printStackTrace(); }

}

}

} // end class DrawPanel

Chapter 14

Java Beans

14.1 Introduction

Java Beans is a component technology on top of the Java programming language
that tries to simplify programming by reducing it as far as possible to simple graph-
ical operations. It is used mainly to implement graphical user interfaces, but can be
applied to the non-graphical parts of a program as well. A Java Bean is a reusable
software component that works with Java. More specifically: a Java Bean is a reuse-
able software component that can be visually manipulated in builder tools. To work
with Java Beans one needs an appropriate tool like a Java Integrated Development
Environment and a set of components, the beans.

Individual Java Beans will vary in functionality, but share certain common defining
features.

1) Support for introspection allowing a builder tool to analyze how a bean works.

2) Support for customization allowing a user to alter the appearance and behaviour
of a bean.

3) Support for events allowing beans to fire events, and informing builder tools about
both the events they can fire and the events they can handle.

4) Support for properties allowing beans to be manipulated programmatically, as
well as to support the customization.

5) Support for persistence allowing beans that beans that have been customized in
an application builder to have their state saved and restored. Typically persistence
is used with an application builder’s save and load menu commands to restore any
work that has gone into constructing an application.

356

14.1. INTRODUCTION 357

The most common use of beans is for graphical user interface components, such as
components of the java.awt and javax.swing packages. Although all beans can
be manipulated visually, this does not mean every bean has it own visual represen-
tation. The simplest beans are typically basic graphical interface components, such
as a java.awt.Button object.

The Java Beans component model consists of a java.beans and java.beans.beancontext

packages and a number of important naming and API conventions to which con-
forming beans and bean-manipulation tools must adhere. Since Java Beans is a
framework for generic components, the Java Beans conventions are, in many ways,
more important than the actual API.

The Java Bean APIs contain a java.beans.Introspector class which can be used
to find out about the properties and methods of a class. It can find out about
properties of a bean by either an implicit or explicit method. The implicit method
uses design patterns. The Introspector creates a list of all of the public methods
in the bean and searches that list for signatures that matches a particular pattern.
The explicit introspection uses an array of package names to form a search path for
locating explicit information about a bean.

Sometimes when a bean property changes, another object may want to be notified
of the change and react to the change. Whenever a bound property changes, no-
tification of the change is sent to interested listeners. A bean containing a bound
property must maintain a list of property change listeners, and alert those listeners
when the bound property changes. The convenience class PropertyChangeSupport
implements methods that add and remove PropertyChangeListener objects from
a list, and fires PropertyChangeEvent objects at those listeners when the bound
property changes. Our beans can inherit from this class, or use it as an inner class.
An object that wants to listen for property changes must be able to add and remove
itself from the listener list on the bean containing the bound property, and respond
to the event notification method that signals a property change. By implement-
ing the PropertyChangeListener interface the listener can be added to the list
maintained by the bound property bean, and since it implements the

void PropertyChangeListener.propertyChange(PropertyChangeEvent evt)

method, the listener can respond to property change notification. The

PropertyChangeEvent

class encapsulates property change information, and is sent from the property change
event source to each object in the property change listener list via the propertyChange
method.

358 CHAPTER 14. JAVA BEANS

14.2 Example

The following programs give an example for a bean. The class DateAlerter imple-
ments a date alerter and the class DateWatcher implements a date watcher. The
class DateAlerter uses the Date class and we implement the public methods

synchronized void addPropertyChangeListener(PropertyChangeListener lis)

and

synchronized void removePropertyChangeListener(PropertyChangeListener lis)

We also use object serialization. Object serialization supports the encoding of ob-
jects and the objects reachable from them into a stream of bytes. It supports the
complementary reconstruction of the object from the stream. Both String and
Date implement serializable.

// TimeBeans.java

public class TimeBeans

{

public static void main(String[] args)

{

// instaniate beans to watch and warn

DateAlerter alert = new DateAlerter();

DateWatcher watch = new DateWatcher(alert);

long time = alert.getDateTime();

// Set time forward by 10000 units

alert.setDateTime(time + 10000);

alert.showDateTime();

System.exit(0);

}

}

// DateAlerter.java

import java.beans.*;

import java.text.*;

import java.util.*;

public class DateAlerter extends Object

implements java.io.Serializable

{

private static final String PROP_PROPERTY = "dateTime";

private long dateTime;

private Date aDate;

14.2. EXAMPLE 359

private PropertyChangeSupport propertySupport;

// Creates new DateAlerter

public DateAlerter()

{

propertySupport = new PropertyChangeSupport(this);

aDate = new Date();

dateTime = aDate.getTime();

System.out.println("Alerter Waiting");

}

public void showDateTime()

{

aDate = new Date();

String myDate = DateFormat.getDateInstance().format(aDate);

String myTime = DateFormat.getTimeInstance().format(aDate);

System.out.println("The Time is " + myDate + " " + myTime);

}

public long getDateTime()

{

dateTime = aDate.getTime();

return dateTime;

}

public void setDateTime(long value)

{

long oldValue = dateTime;

dateTime = value;

aDate.setTime(dateTime);

if(propertySupport.hasListeners(PROP_PROPERTY))

{

Long WdateTime = new Long(dateTime);

Long WoldValue = new Long(oldValue);

propertySupport.firePropertyChange(PROP_PROPERTY,WoldValue,

WdateTime);

}

}

public void addPropertyChangeListener(PropertyChangeListener lis)

{

propertySupport.addPropertyChangeListener(lis);

}

public void removePropertyChangeListener(PropertyChangeListener lis)

360 CHAPTER 14. JAVA BEANS

{

propertySupport.removePropertyChangeListener(lis);

}

}

// DateWatcher.java

import java.beans.*;

import javax.swing.*;

public class DateWatcher extends Object

implements java.io.Serializable, PropertyChangeListener

{

DateAlerter myAlert;

// Creates new Bean

public DateWatcher(DateAlerter anAlert)

{

myAlert = anAlert;

myAlert.addPropertyChangeListener(this);

System.out.println("Watcher on Patrol");

}

public void propertyChange(PropertyChangeEvent evt)

{

JOptionPane.showMessageDialog(null,"System Date Modified",

"ALERT",JOptionPane.PLAIN_MESSAGE);

System.out.println("end");

}

}

14.3 JavaBeans

JavaBeans are Java classes that follow conventions which allow for easy reuse of
components. This allows, for example, the creation of new GUI components which
can be used and manipulated from the NetBeans IDE GUI builder.

JavaBeans are not necessarily graphical in nature. The NetBeans IDE provides
straightforward access to the capabilities of JavaBeans.

14.3.1 Creating a JavaBean: NetBeans

Add a new Java class to a NetBeans project. Properties can be added by right-
clicking in the editor window, choosing “Insert Code” and “Add Property”.

14.3. JAVABEANS 361

A bean can be used from the palette for a JFrame form. Right clicking on a JFrame
form class node in a project and selecting “Tools” followed by “Add to Palette”
adds a bean to the palette of beans available to the form.

14.3.2 Adding a JavaBean JAR: NetBeans

Beans stored in a JAR file can be used from the palette. Select the “Tools” menu,
“Palette” and “Swing/AWT Components”.

Select the “Add from JAR...” button. Select the JAR file and the beans to be
used in the palette.

14.3.3 Simple properties

Any methods of a class of the form

SomeType getSomething(void)

void setSomething(SomeType)

describes a simple property named “something”. If setSomething is missing, then
“something” is a read-only property.

14.3.4 Simple properties

//Alarm1.java

import java.util.Timer;

import java.util.TimerTask;

public class Alarm1 extends TimerTask

{

private int alarm; //milliseconds

private int rings;

private Timer alarmTimer;

public Alarm1()

{

alarm = -1;

rings = 0;

alarmTimer = new Timer("Alarm", true); // is a daemon

}

public void run()

{

rings++;

362 CHAPTER 14. JAVA BEANS

System.out.println("Alarm (" + rings + ") ...");

}

public int getAlarm() { return alarm; }

public void setAlarm(int newalarm)

{

alarm = newalarm;

if(alarm < 0) alarmTimer.cancel();

else

{

alarmTimer = new Timer("Alarm", true); // is a daemon

if(alarm >= 0) alarmTimer.scheduleAtFixedRate(this, alarm, alarm);

else alarmTimer.cancel();

}

}

public int getRings() { return rings; }

public static void main(String[] args)

{

Alarm1 a = new Alarm1();

a.setAlarm(1000); try { Thread.sleep(5000); }

catch(java.lang.InterruptedException e) { }

}

}

14.3.5 Beans should be serializable

In general, JavaBeans should implement Serializable so that the bean state can
be saved and restored. This allows for the properties of a bean to be saved with a
GUI design.

In many cases this is as simple as

public Class class . . . implements Serializable

14.3.6 Creating a JAR file for JavaBeans

jar cvmf manifest jarfile files . . .

jar cvmf Alarm1.manifest Alarm1.jar Alarm1.class

added manifest

adding: Alarm1.class(in = 1488) (out= 857)(deflated 42%)

14.3. JAVABEANS 363

Alarm1.manifest:

Manifest-Version: 1.0

Name: Alarm1.class

Java-Bean: true

14.3.7 Introspection

//ShowBean.java

import java.beans.BeanDescriptor;

import java.beans.BeanInfo;

import java.beans.IndexedPropertyDescriptor;

import java.beans.Introspector;

import java.beans.PropertyDescriptor;

import java.lang.ClassLoader;

public class ShowBean

{

public static void main(String[] args)

{

if(args.length != 1)

System.out.println("One argument: the name of the JavaBean class.");

else try

{

System.out.println("Info for JavaBean: " + args[0]);

ClassLoader cl = ClassLoader.getSystemClassLoader();

BeanInfo bi = Introspector.getBeanInfo(cl.loadClass(args[0]));

BeanDescriptor bd = bi.getBeanDescriptor();

System.out.println("Name: " + bd.getName());

System.out.println("Description: " + bd.getShortDescription());

PropertyDescriptor[] pd = bi.getPropertyDescriptors();

int i;

for(i=0;i<pd.length;i++)

{

System.out.println("Property: " + pd[i].getName()

+ ((pd[i].isBound())?" (bound)":"")

+ ((pd[i].isConstrained())?" (constrained)":"")

+ ((pd[i] instanceof IndexedPropertyDescriptor)?

" (indexed)":""));

System.out.println("Property: " + pd[i].getName() + ", read: "

+ pd[i].getReadMethod());

System.out.println("Property: " + pd[i].getName() + ", write: "

364 CHAPTER 14. JAVA BEANS

+ pd[i].getWriteMethod());

}

}

catch(java.lang.ClassNotFoundException e)

{ System.out.println("Class not found: " + args[0]); }

catch(java.beans.IntrospectionException e)

{ System.out.println("Error during introspection: " + args[0]); }

}

}

java ShowBean Alarm1

Info for JavaBean: Alarm1

Name: Alarm1

Description: Alarm1

Property: alarm

Property: alarm, read: public int Alarm1.getAlarm()

Property: alarm, write: public void Alarm1.setAlarm(int)

Property: class

Property: class, read: public final native java.lang.Class

java.lang.Object.getClass()

Property: class, write: null

Property: rings

Property: rings, read: public int Alarm1.getRings()

Property: rings, write: null

14.3.8 Bound properties

A bound property is a simple property that notifies listeners of property changes.
This is achieved with an implementation (by inheritence or by aggregation) of
java.beans.PropertyChangeSupport.

Changes are announced using the

firePropertyChange(“name”, old value, new value)

member of PropertyChangeSupport. The two members

void addPropertyChangeListener(PropertyChangeListener)

void removePropertyChangeListener(PropertyChangeListener)

must also be implemented. A PropertyChangeListener implements the propertyChange(PropertyChangeEvent)
method.

//Alarm2.java

14.3. JAVABEANS 365

import java.beans.PropertyChangeEvent;

import java.beans.PropertyChangeListener;

import java.beans.PropertyChangeSupport;

import java.util.Timer;

import java.util.TimerTask;

public class Alarm2 extends TimerTask implements PropertyChangeListener

{

private int alarm; //milliseconds

private int rings;

private Timer alarmTimer;

private PropertyChangeSupport pChange; // can also inherit

public Alarm2()

{

alarm = -1;

rings = 0;

alarmTimer = new Timer("Alarm",true); // is a daemon

pChange = new PropertyChangeSupport(this);

pChange.addPropertyChangeListener(this);

}

// TimerTask

public void run()

{

int oldrings = rings;

rings++;

pChange.firePropertyChange("rings",oldrings,rings);

}

// PropertyChangeListener

public void propertyChange(PropertyChangeEvent e)

{

System.out.println(e.getPropertyName() + " changed from "

+ e.getOldValue() + " to " + e.getNewValue());

}

// PropertyChangeSupport

public void addPropertyChangeListener(PropertyChangeListener p)

{ pChange.addPropertyChangeListener(p); }

public void removePropertyChangeListener(PropertyChangeListener p)

{ pChange.removePropertyChangeListener(p); }

366 CHAPTER 14. JAVA BEANS

public int getAlarm() { return alarm; }

public void setAlarm(int newalarm)

{

alarm = newalarm;

if(alarm < 0) alarmTimer.cancel();

else

{

alarmTimer = new Timer("Alarm", true); // is a daemon

if(alarm >= 0) alarmTimer.scheduleAtFixedRate(this,alarm,alarm);

else alarmTimer.cancel();

}

}

public int getRings() { return rings; }

public static void main(String[] args)

{

Alarm2 a = new Alarm2();

a.setAlarm(1000); try { Thread.sleep(5000); }

catch(java.lang.InterruptedException e) { }

}

}

java ShowBean Alarm2

Info for JavaBean: Alarm2

Name: Alarm2

Description: Alarm2

Property: alarm (bound)

Property: alarm, read: public int Alarm2.getAlarm()

Property: alarm, write: public void Alarm2.setAlarm(int)

Property: class

Property: class, read: public final native java.lang.Class

java.lang.Object.getClass()

Property: class, write: null

Property: rings (bound)

Property: rings, read: public int Alarm2.getRings()

Property: rings, write: null

14.3.9 Constrained properties

A constrained property is very similar to a bound property. However, listeners may
throw a PropertyVetoException to indicate that a property change should not be
allowed. This is achieved with an implementation of

14.3. JAVABEANS 367

java.beans.VetoableChangeSupport.

Changes are announced using the
fireVetoableChange(“name”, old value, new value)
throws PropertyVetoException

member of VetoableChangeSupport. The two members
void addVetoableChangeListener(PropertyChangeListener)

void removeVetoableChangeListener(PropertyChangeListener)

must also be implemented. A VetoableChangeListener implements the
vetoableChange(PropertyChangeEvent)

throws PropertyVetoException

method.

//Alarm3.java

import java.beans.PropertyChangeEvent;

import java.beans.PropertyChangeListener;

import java.beans.PropertyChangeSupport;

import java.beans.PropertyVetoException;

import java.beans.VetoableChangeListener;

import java.beans.VetoableChangeSupport;

import java.util.Timer;

import java.util.TimerTask;

public class Alarm3 extends TimerTask

implements PropertyChangeListener, VetoableChangeListener

{

private int alarm; //milliseconds

private int rings;

private Timer alarmTimer;

private PropertyChangeSupport pChange; // can also inherit

private VetoableChangeSupport vChange; // can also inherit

public Alarm3()

{

alarm = -1;

rings = 0;

alarmTimer = new Timer("Alarm",true); // is a daemon

pChange = new PropertyChangeSupport(this);

pChange.addPropertyChangeListener(this);

vChange = new VetoableChangeSupport(this);

vChange.addVetoableChangeListener(this);

}

// TimerTask

368 CHAPTER 14. JAVA BEANS

public void run()

{

int oldrings = rings;

rings++;

pChange.firePropertyChange("rings",oldrings,rings);

}

// PropertyChangeListener

public void propertyChange(PropertyChangeEvent e)

{

System.out.println(e.getPropertyName() + " changed from "

+ e.getOldValue() + " to " + e.getNewValue());

}

// VetoableChangeListener

public void vetoableChange(PropertyChangeEvent e)

throws PropertyVetoException

{

// throw new PropertyVetoException("I won’t allow it.", e);

System.out.println(e.getPropertyName() + " changed from "

+ e.getOldValue() + " to " + e.getNewValue()

+ " (not vetoed)");

}

// PropertyChangeSupport

public void addPropertyChangeListener(PropertyChangeListener p)

{ pChange.addPropertyChangeListener(p); }

public void removePropertyChangeListener(PropertyChangeListener p)

{ pChange.removePropertyChangeListener(p); }

// VetoableChangeSupport

public void addVetoableChangeListener(VetoableChangeListener v)

{ vChange.addVetoableChangeListener(v); }

public void removeVetoableChangeListener(VetoableChangeListener v)

{ vChange.removeVetoableChangeListener(v); }

public int getAlarm() { return alarm; }

public void setAlarm(int newalarm) throws PropertyVetoException

{

vChange.fireVetoableChange("alarm",alarm,newalarm);

alarm = newalarm;

if(alarm < 0) alarmTimer.cancel();

14.3. JAVABEANS 369

else

{

alarmTimer = new Timer("Alarm", true); // is a daemon

if(alarm >= 0) alarmTimer.scheduleAtFixedRate(this,alarm,alarm);

else alarmTimer.cancel();

}

}

public int getRings() { return rings; }

public static void main(String[] args)

{

Alarm3 a = new Alarm3();

try { a.setAlarm(1000); Thread.sleep(5000); }

catch(PropertyVetoException e)

{ System.out.println("Failed to set alarm time: " + e); }

catch(java.lang.InterruptedException e) { }

}

}

java ShowBean Alarm3

Info for JavaBean: Alarm3

Name: Alarm3

Description: Alarm3

Property: alarm (bound) (constrained)

Property: alarm, read: public int Alarm3.getAlarm()

Property: alarm, write: public void Alarm3.setAlarm(int)

throws java.beans.PropertyVetoException

Property: class

Property: class, read: public final native java.lang.Class

java.lang.Object.getClass()

Property: class, write: null

Property: rings (bound)

Property: rings, read: public int Alarm3.getRings()

Property: rings, write: null

14.3.10 Indexed properties

Indexed properties are array valued simple properties. Indexed properties provide
additional get and set methods which take an integer index as first argument.
Property changes are signalled by the method fireIndexedPropertyChange.

The following classes implement a bean for a Sudoku puzzle. The Sudoku class
extends JTable and consequently inherits all the JavaBean properties of JTable.

370 CHAPTER 14. JAVA BEANS

Thus the starting Sudoku configuration can be set by editing the model property of
JTable.

//SudokuTableModel.java

import java.lang.*;

public class SudokuTableModel

extends javax.swing.table.DefaultTableModel

implements java.io.Serializable

{

private String[][] s;

public SudokuTableModel() { s = new String[9][9]; }

public int getColumnCount() { return 9; }

public int getRowCount() { return 9; }

public Object getValueAt(int x, int y) { return s[x][y]; }

public void setValueAt(Object o, int x, int y)

{

s[x][y] = "";

if(x>=0 && x<9 && y>=0 && y<9)

{

if((o instanceof Integer)

&& (Integer)o>0 && (Integer)o<=9)

s[x][y] = ((Integer)o).toString();

if((o instanceof String)

&& Integer.parseInt((String)o)>0

&& Integer.parseInt((String)o)<=9)

s[x][y] = (String)o;

}

}

}

//Sudoku.java

import java.lang.*;

import java.beans.PropertyChangeEvent;

import java.beans.PropertyChangeListener;

import java.beans.PropertyChangeSupport;

public class Sudoku extends javax.swing.JTable

implements java.io.Serializable, javax.swing.event.TableModelListener

{

private PropertyChangeSupport pc;

// PropertyChangeSupport

14.3. JAVABEANS 371

public void addPropertyChangeListener(PropertyChangeListener p)

{

if(pc == null) pc = new PropertyChangeSupport(this);

pc.addPropertyChangeListener(p);

}

public void removePropertyChangeListener(PropertyChangeListener p)

{ pc.removePropertyChangeListener(p); }

public boolean getSudokuRowValid(int index)

{

int j;

boolean[] usedrow = new boolean[9];

for(j=0;j<9;j++)

{

int v;

try { v = Integer.parseInt((String)getValueAt(index,j)); }

catch(Exception e) { continue; }

if(usedrow[v-1]) return false;

usedrow[v-1] = true;

}

return true;

}

public boolean[] getSudokuRowValid()

{

int i;

boolean[] row = new boolean[9];

for(i=0;i<9;i++) row[i] = getSudokuRowValid(i);

return row;

}

public boolean getSudokuValid()

{

int i, j;

boolean[][] usedblk = new boolean[9][9]; // check blocks

boolean[][] usedcol = new boolean[9][9]; // check columns

boolean[][] usedrow = new boolean[9][9]; // check rows

for(i=0; i<9; i++)

for(j=0; j<9; j++)

usedblk[i][j] = usedcol[i][j] = usedrow[i][j] = false;

for(i=0;i<9;i++)

for(j=0;j<9;j++)

{

int v;

372 CHAPTER 14. JAVA BEANS

try { v = Integer.parseInt((String)getValueAt(i,j)); }

catch(Exception e) { continue; }

if(usedblk[(i/3)*3+(j/3)][v-1]) return false;

if(usedcol[j][v-1]) return false;

if(usedrow[i][v-1]) return false;

usedblk[(i%3)*3+(j/3)][v-1] = true;

usedcol[j][v-1] = true;

usedrow[i][v-1] = true;

}

return true;

}

public void tableChanged(javax.swing.event.TableModelEvent e)

{

int i;

super.tableChanged(e);

if(pc==null) pc = new PropertyChangeSupport(this);

pc.firePropertyChange("sudokuValid",null,getSudokuValid());

for(i=0;i<9;i++)

pc.fireIndexedPropertyChange("sudokuRowValid",i,

null,getSudokuRowValid(i));

}

public Sudoku()

{

super(new SudokuTableModel());

super.setTableHeader(null);

}

}

java ShowBean Sudoku

Info for JavaBean: Sudoku

Name: Sudoku

Description: Sudoku

...

Property: model (bound)

Property: model, read: public javax.swing.table.TableModel

javax.swing.JTable.getModel()

Property: model, write: public void

javax.swing.JTable.setModel(javax.swing.table.TableModel)

...

Property: sudokuRowValid (bound) (indexed)

Property: sudokuRowValid, read: public boolean[] Sudoku.getSudokuRowValid()

Property: sudokuRowValid, write: null

Property: sudokuValid (bound)

14.3. JAVABEANS 373

Property: sudokuValid, read: public boolean Sudoku.getSudokuValid()

Property: sudokuValid, write: null

...

Chapter 15

Additions to JSE 1.5 and 1.6

Java 2 Platform, Standard Edition (J2SE) version 1.5 adds a number of new features
to the language. One of this addition is generic types. Generic types allow us to
abstract over types. The most common examples are container types, such as those
in the Collection hierarchy. The following program gives two examples. The two
container classes ArrayList and Hashtable are used.

// GenericTypes.java

import java.util.*;

public class GenericTypes

{

public static void main(String[] args)

{

ArrayList<Integer> list1 = new ArrayList<Integer>();

list1.add(0,new Integer(-34));

list1.add(1,new Integer(27));

int total = list1.get(0).intValue() + list1.get(1).intValue();

System.out.println("total = " + total);

Hashtable<Integer,String> h = new Hashtable<Integer,String>();

h.put(new Integer(10),"willi");

h.put(new Integer(11),"Nela");

374

375

Integer key = new Integer(10);

String s = h.get(key);

System.out.println("s = " + s);

key = new Integer(11);

s = h.get(key);

System.out.println("s = " + s);

}

}

We can also write our own classes with generic types. An example is given in the
next program

// PairMain.java

class Pair<X,Y>

{

private X first;

private Y second;

public Pair(X a1,Y a2)

{

first = a1;

second = a2;

}

public X getFirst() { return first; }

public Y getSecond() { return second; }

public void setFirst(X arg) { first = arg; }

public void setSecond(Y arg) { second = arg; }

public void printPair(Pair<?,?> pair)

{

System.out.println("("+pair.getFirst()+","+pair.getSecond()+")");

}

}

class PairMain

{

public static void main(String[] args)

{

Pair<String,Long> l1 = new Pair<String,Long>("max",1024L);

Pair<?,?> l2 = new Pair<String,Long>("min",64L);

l1.printPair(l2);

}

}

Java 1.5 now also has an enhanced for loop. The new enhanced for loop can replace
the iterator when simply traversing through a Collection as follows.

376 CHAPTER 15. ADDITIONS TO JSE 1.5 AND 1.6

// EnhancedFor.java

import java.util.*;

public class EnhancedFor

{

public static void main(String[] args)

{

int[] a = { 1, 3, 5, 2, 4, 6, 8, 10 };

int sum = 0;

for(int e : a)

{

sum += e;

}

System.out.println("sum = " + sum); // => 39

ArrayList<Double> list = new ArrayList<Double>();

list.add(0,new Double(3.14159));

list.add(1,new Double(2.789));

list.add(2,new Double(4.50));

double result = 0.0;

for(Double d : list)

{

result += d.doubleValue();

}

System.out.println("result = " + result);

}

}

Converting between basic data types such as int, double, boolean and their equiv-
alent object-based counterparts like Integer, Double, Boolean can require unneces-
sary amounts of extra coding. especially if the conversion is only needed for a method
call to the Collections API, for example. The autoboxing and auto-unboxing of Java
basic data types produces code that is more concise and easier to follow. The fol-
lowing program gives an example. It simplifies the program GenericTypes.java

given above.

// Autoboxing.java

import java.util.*;

public class Autoboxing

{

public static void main(String[] args)

{

377

ArrayList<Integer> list1 = new ArrayList<Integer>();

list1.add(0,-34);

list1.add(1,27);

int total = list1.get(0) + list1.get(1);

System.out.println("total = " + total);

Hashtable<Integer,String> h = new Hashtable<Integer,String>();

h.put(10,"willi");

h.put(11,"Nela");

Integer key = new Integer(10);

String s = h.get(key);

System.out.println("s = " + s);

key = new Integer(11);

s = h.get(key);

System.out.println("s = " + s);

}

}

The following program also gives an example for autoboxing.

// DoubleList.java

import java.util.List;

import java.util.ArrayList;

class DoubleList

{

public static void main(String[] args)

{

List<Double> doubleList = new ArrayList<Double>();

for(double x=0.0;x<10.0;x++)

{

doubleList.add(x);

}

double sum = 0.0;

for(double y=0.0;y<10.0;y++)

{

sum += y;

}

System.out.println("sum = " + sum);

}

}

378 CHAPTER 15. ADDITIONS TO JSE 1.5 AND 1.6

The static import feature, implemented as import static, enables us to refer to
static constants from a class without needing to inhert from it. The following pro-
gram gives an example for the Math class.

// StaticImport.java

import static java.lang.Math.*;

public class StaticImport

{

public static void main(String[] args)

{

double pi = PI;

System.out.println("pi = " + pi);

double r = sin(PI);

System.out.println("r = " + r);

double d = 2.5, e = 3.0;

System.out.println(min(d,e));

System.out.println(PI*pow(d,e));

}

}

The varargs functionality allows multiple arguments to be passed as parameters
to methods. It requires the simple ... notation for the method that accepts the
argument list and is used to implement the flexible number of arguments required
for printf.

// Varargs.java

public class Varargs

{

public static void printf(String s,Object... args)

{

int i=0;

for(char c : s.toCharArray())

{

if(c == ’%’)

System.out.print(args[i++]);

else if(c == ’\n’)

System.out.println();

else

System.out.print(c);

}

}

379

public static void main(String[] args)

{

printf("Addition: % + % = %\n",1,1,2);

printf("Multiplication: % * % * % = %\n",2,3,4,24);

}

}

Another example for using variable arguments is given in the following summation
example

// Varargs1.java

public class Varargs1

{

public static int sum(int... numbers)

{

int total=0;

for(int i=0;i<numbers.length;i++)

{

total += numbers[i];

}

return total;

}

public static void main(String[] args)

{

int r1 = sum(5,17);

System.out.println("r1 = " + r1);

int r2 = sum(18,20,-40);

System.out.println("r2 = " + r2);

}

}

The Scanner class provides us with a simple regular expression-oriented text scan-
ner, for scanning primitive types and strings from an input source. The following
program gives an example.

// ReadKeyboard.java

import java.util.Scanner;

class ReadKeyboard

{

public static void main(String[] args)

{

System.out.printf("enter four values: " +

380 CHAPTER 15. ADDITIONS TO JSE 1.5 AND 1.6

"integer float double string: ");

Scanner sc = Scanner.create(System.in);

int i = sc.nextInt();

float f = sc.nextFloat();

double d = sc.nextDouble();

String s = sc.nextLine();

System.out.printf("%d %f %4.6f %s\n",i,f,d,s);

}

}

The new java.lang.ProcessBuilder class makes it possible to build operating
system processes and manage a collection of process attributes (the command, an
environment, a working directory, and whether or not the error stream is redi-
rected). The following program gives an example. The start() method call starts
the command executing and returns a java.lang.Process reference for retrieving
process-exit status (in addition to other tasks).

// ProcessBuilding.java

import java.lang.ProcessBuilder;

import java.lang.Process;

public class ProcessBuilding

{

public static void main(String[] args) throws java.io.IOException

{

Process p =

new ProcessBuilder("notepad","c:\\javacourse\\Autoboxing.java").start();

}

}

Starting from version 1.6 Java includes the ability to evaluate portions of code for
scripting languages. This allows a Java program to load a custom script and execute
it. The scripts can also interact with the Java program. The classes are available
from the javax.script package. The class ScriptEngine implements the support
for evaluating scripts from a certain language. The methods eval(String) and
eval(Reader) can be used to evaluate strings in the target language or load files to
be interpreted.

Not all scripting languages are supported on all platforms. To determine whether a
scripting language is supported we use ScriptEngineManager. The ScriptEngineManager
can find the engine for a specific language

ScriptEngine getEngineByName(String)

or list all the available engines

381

List<ScriptEngineFactory> getEngineFactories()

ScriptEngineFactory provides details about a ScriptEngine such as the name of
the language supported and the file extensions associated with the scripting lan-
guage.

The following Java program list the available scripting engines. It then attempts
to evaluate any JavaScript files which are named on the command line. If the
JavaScript engine is not available, then getEngineByName returns null. When
trying to evaluate a script, ScriptException may be thrown. This indicates a
problem when evaluating the script, either due to an error in the script or some
other error experienced by the ScriptEngine.

// Script.java

import javax.script.ScriptEngine;

import javax.script.ScriptEngineFactory;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

import java.util.Iterator;

import java.util.List;

public class Script

{

public static void main(String[] args) throws Exception

{

ScriptEngineManager m = new ScriptEngineManager();

Iterator<ScriptEngineFactory> i = m.getEngineFactories().iterator();

while(i.hasNext())

{

ScriptEngineFactory se = i.next();

System.out.println("Engine: " + se.getEngineName());

System.out.println("Language: " + se.getLanguageName());

Iterator<String> names = se.getNames().iterator();

while(names.hasNext())

System.out.println(" Name: " + names.next());

}

ScriptEngine e = m.getEngineByName("JavaScript");

e.eval("print(\"ISSC \" + new Date() + \"\\n\");");

int j;

for(j=0;j<args.length;j++)

{

System.out.println("Running script " + args[j]);

e.eval(new java.io.FileReader(args[j]));

}

382 CHAPTER 15. ADDITIONS TO JSE 1.5 AND 1.6

}

}

The following file, fact.js, is a very simple JavaScript program.

function fact(n)

{

if(n <= 0) return 1;

return n*fact(n-1);

}

println(fact(10));

Running the command

java Script fact.js

yields the output

Engine: Mozilla Rhino

Language: ECMAScript

Name: js

Name: rhino

Name: JavaScript

Name: javascript

Name: ECMAScript

Name: ecmascript

ISSC Mon Aug 17 2009 13:16:53 GMT+0200 (SAST)

Running script fact.js

3628800

The output will differ from computer to computer and according to the Java im-
plementation on the computer. Note that, if your version of Java does not support
the JavaScript ScriptEngine, the program will terminate prematurely due to an
exception (NullPointerException).

Chapter 16

Resources and Web Sites

There are a large number of web sites which provide information, news and tutorials
of Java, HTML and JavaScript. Furthermore there are web sites to download new
versions of Java, HTML and JavaScript.

The main web sites of SUN Microsystems for Java are

http://java.sun.com/

http://java.sun.com/jdc/

http://developer.java.sun.com/

Another useful web site for Java, HTML and JavaScript is “The Web Developer’s
Virtual Library”

http://wdvl.com/WDVL/About.html

The WDVL has more than 2000 pages and some 6000 links.

The web site

http://www.niu.edu/acad/english/htmlref.html

provides an HTML reference guide. The web site

http://developer.netscape.com/docs/

provides links to technical manuals and articles for Java, JavaScript and HTML.

The offical word on the latest standard in HTML can be found on the web site

http://www.w3.org/pub/WWW/MarkUp/MarkUp.html

383

384 CHAPTER 16. RESOURCES AND WEB SITES

Information about XML can be found on the web sites

http://www.w3.org/XML/

http://www.w3schools.com/

Bibliography

[1] Horton Ivor, Beginning Java 2, WROX Press, Birmingham, UK, 1999

[2] Jaworski Jamie, Java 1.2 Unleashed, SAMS NET, Macmillan Computer Pub-
lishing, USA, 1998

[3] Johnson Marc, JavaScript Manual of Style, Macmillan Computer Publishing,
USA, 1996

[4] McComb Gordon, JavaScript Sourcebook, Wiley Computer Publishing, New
York, 1996

[5] Willi-Hans Steeb, The Nonlinear Workbook: Chaos, Fractals, Cellular Au-
tomata, Neural Networks, Genetic Algorithms, Gene Expression Programming,
Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic with
C++, Java and SymbolicC++ Programs, 4th edition World Scientific, Singa-
pore, 2008

[6] Willi-Hans Steeb, Yorick Hardy, Alexandre Hardy, Ruedi Stoop, Problems and
Solutions in Scientific Computing with C++ and Java Simulations, World Sci-
entific, Singapore 2006

[7] Tan Kiat Shi, Willi-Hans Steeb and Yorick Hardy, SymbolicC++: An Intro-
duction to Computer Algebra Using Object-Oriented Programming, 2nd edition
Springer-Verlag, London, 2000

385

Index

Arrays, 22
BufferedReader, 54
Character, 76
Color, 162
DataInputStream, 179
DataOutputStream, 179
Graphics, 153
Image, 166
Iterator, 310
JTree, 345
Math, 55, 80, 378
Number, 75
Object, 27, 85
Panel, 141
Scanner, 379
Socket, 282
String, 64
StringBuffer, 72
StringTokenizer, 69
TreeMap, 321
TreeSet, 317
available(), 190
break, 31, 35, 51
case, 35
catch, 173
char, 14
class, 2
clone(), 27
continue, 51
default, 35
dispose, 153
do-while, 31
double, 13
drawArc, 153
drawLine, 153
drawOval, 153
drawRect, 153

exit, 57
extends, 117
final, 16
finally, 177
float, 13
for, 31
getGraphics, 153
goto, 51
if, 30
length, 22
length(), 37
main(), 8
new, 22
notify(), 245
null, 188
paint, 153
readLine(), 54, 180
repaint, 231
return, 51
run, 228
static, 8, 10
super, 120
supper, 3
switch, 35
synchronized, 240
this, 88
throw, 173
transient, 203, 207
try, 173
wait(), 245
while, 31

Abstract class, 114
Applet, 9
Array, 22

Basic data types, 11
Binary notation, 40

386

Bitwise operations, 40
Broadcast address, 268

Character, 14
Checksum, 192, 194
Constructor, 123
Control statements, 29

Default constructor, 123
deprecated, 4

Equality operator, 14
Exception, 173

Fibonacci numbers, 50
Fields, 4

Garbage collection, 22
Garbage collector, 97
Generic Types, 374

Host, 267

Infinity symbol, 18
Information hiding, 3
Inheritance, 3, 114, 117
Inner classes, 129
Interfaces, 131
Internationalization, 218
Internet, 267

Layout Managers, 133
Locale object, 218
Logical operators, 38

Methods, 4
Modulus operator, 16, 34
Multicast address, 268
Multitasking, 228
Multithreading, 228
MVC, 341

Network, 267
Node, 267

Objects, 8

Pass by reference, 43
Pass by value, 43

Polygon, 34
Polymorphism, 4
Port, 273
Postincrement operator, 20
Precedence, 20
Preincrement operator, 20
Primitive data types, 11
Priority, 237

Recursion, 48
Regular expression, 98
Relational operators, 29
Remainder operator, 16

Scope, 10
Serialization, 203
Shift operators, 42
Socket, 282
String, 14
Synchronization problem, 245

Thread, 228
Tool tips, 336
Two Complement, 41
Type conversion operator, 11

Unicast address, 268
Unicode, 14, 18

Varargs functionality, 378

Wrapper class, 75

387

