
Relational and Object-Oriented Databases

by
Willi-Hans Steeb
International School for Scientific Computing

Contents

1 What is a table? 1

1.1 Introduction . 1

1.2 Examples . 5

1.3 Tables in Programs . 8

1.4 Table and Relation . 33

2 Structured Query Language 35

2.1 Introduction . 35

2.2 Integrity Rules . 38

2.3 SQL Commands . 39

2.3.1 Introduction . 39

2.3.2 Aggregate Function . 40

2.3.3 Arithmetic Operators . 40

2.3.4 Logical Operators . 40

2.3.5 SELECT Statement . 41

2.3.6 INSERT Command . 45

2.3.7 DELETE Command . 46

2.3.8 UPDATE Command . 47

2.3.9 CREATE TABLE Command 48

2.3.10 DROP TABLE Command . 51

2.3.11 ALTER TABLE Command 52

2.4 Set Operators . 53

2.5 Views . 60

2.6 Primary and Foreign Keys . 62

2.7 Datatypes in SQL . 63

2.8 Joins . 66

2.9 Stored Procedure . 71

2.10 MySQL Commands . 72

2.11 Cursors . 73

2.12 PL and SQL . 75

2.13 ABAP/4 and SQL . 76

2.14 Query Processing and Optimization 77
i

3 Normal Forms 83
3.1 Introduction . 83
3.2 Anomalies . 87
3.3 Example . 89
3.4 Fourth and Fifth Normal Forms . 93

4 Transaction 101
4.1 Introduction . 101
4.2 Data Replication . 107
4.3 Locks . 108
4.4 Deadlocking . 111
4.5 Threads . 117

4.5.1 Introduction . 117
4.5.2 Thread Class . 119
4.5.3 Example . 121
4.5.4 Priorities . 123
4.5.5 Synchronization and Locks . 126
4.5.6 Producer Consumer Problem 131

4.6 Locking Files for Shared Access . 134

5 JDBC 137
5.1 Introduction . 137
5.2 Classes for JDBC . 140

5.2.1 Introduction . 140
5.2.2 Classes DriverManager and Connection 141
5.2.3 Class Statement . 144
5.2.4 Class PreparedStatement . 147
5.2.5 Class CallableStatement . 149
5.2.6 Class ResultSet . 151
5.2.7 Class SQLException . 154
5.2.8 Classes Date, Time and TimeStamp 155

5.3 Data Types in SQL . 156
5.4 Example . 158
5.5 Programs . 159
5.6 Metadata . 173
5.7 JDBC 3.0 . 173

6 Object-Oriented Databases 177
6.1 Introduction . 177
6.2 Object-Oriented Properties . 181
6.3 Terms Glossary . 183
6.4 Properties of an Object-Oriented Database 186
6.5 Example . 188
6.6 C++ . 192
6.7 The Object Query Language . 194

ii

6.8 SQL3 Object Model . 195
6.8.1 Basic Concepts . 195
6.8.2 Objects . 197
6.8.3 Operations . 198
6.8.4 Methods . 199
6.8.5 Events . 201
6.8.6 Binding and Polymorphism 202
6.8.7 Types and Classes . 203
6.8.8 Inheritance and Delegation . 208
6.8.9 Noteworthy Objects . 210
6.8.10 Extensibility . 212

6.9 SQL3 Datatypes and Java . 214
6.10 Evaluations of OODBMSs . 219
6.11 Summary . 222

7 Versant 225
7.1 Introduction . 225

8 FastObjects 233
8.1 Introduction . 233

9 Data Mining 235
9.1 Introduction . 235
9.2 Example . 242

Bibliography 243

Index 243

iii

Preface

This book explores the use of databases and related tools in the various applications.
Both relational and object-oriented databases are coverd. An introduction to JDBC
is also given. It also includes C++ and Java programs relevant in databases.

Without doubt, this book can be extended. If you have comments or suggestions,
we would be pleased to have them. The email addresses of the author are:

whs@na.rau.ac.za

steeb_wh@yahoo.com

willi-hans.steeb@fhso.ch

The web sites of the author are:

http://www.fhso.ch/~steeb

http://issc.rau.ac.za

iv

Chapter 1

What is a table?

1.1 Introduction

What is a table? As a definition for a table in the Oxford dictionary we find

"orderly arrangment of facts, information etc

(usually as in columns)"

For a database we find the definition

A database is a means of storing information in such a way that

information can be retrieved from it.

Thus a database is typically a repository for heterogeneous but interrelated pieces
of information. Often a database contains more than one table. Codebooks and
dictionaries can also be considered as tables. A dictionary is a reference book on
any subject, the items of which are arranged in alphabetical order. A codebook
is a list of replacements for words or phrases in the original message. A code is
a system for hiding the meaning of a message by replacing each word or phrase
in the original message with another character or set of characters. The list of
replacements is contained in a codebook. An alternative definition of a code is any
form of encryption which has no built-in flexbility, i.e. there is only one key, namely
the codebook.

Databases contain organized data. A database can be as simple as a flat file (a single
computer file with data usually in a tabular form) containing names and telephone
numbers of one’s friends, or as elaborate as the worldwide reservation system of a
major airline. Many of the principles discussed in this book are applicable to a wide
variety of database systems.

1

2 CHAPTER 1. WHAT IS A TABLE?

Structurally, there are three major types of databases:

Hierarchical

Relational

Network

During the 1970s and 1980s, the hierarchical scheme was very popular. This scheme
treats data as a tree-structured system with data records forming the leaves. Ex-
amples of the hierarchical implementations are schemes like b-tree and multi-tree
data access. In the hierarchical scheme, to get to data, users need to traverse up
and down the tree structure. XML (Extensible Markup Language) is based on a
tree structure. The most common relationship in a hierarchical structure is a one-
to-many relationship between the data records, and it is difficult to implement a
many-to-many relationship without data redundancy.

The network data model solved this problem by assuming a multi-relationship be-
tween data elements. In contrast to the hierarchical scheme where there is a parent-
child relationship, in the network scheme, there is a peer-to-peer relationship. Most
of the programs developed during those days used a combination of the hierarchical
and network data storage and access model.

During the 90s, the relational data access scheme came to the forefront. The re-
lational scheme views data as rows of information. Each row contains columns of
data, called fields. The main concept in the relational scheme is that the data is
uniform. Each row contains the same number of columns. One such collection of
rows and columns is called a table. Many such tables (which can be structurally
different) form a relational database. A relational database is accessed and admin-
istered using Structured Query Language (SQL) statements. SQL is a command
language for performing operations on databases and their component parts. Ta-
bles are the component parts we are dealing with most often. Their column and
row structure makes them look a great deal like spreadsheets, but the resemblance
is only surface-level. Table elements are not used to represent relationships to other
elements - that is, table elements do not hold formulas, they just hold data. Most
SQL statements are devoted to working with the data in these rows and columns,
allowing the user to add, delete, sort, and relate it between tables.

1.1. INTRODUCTION 3

There are many ways to approach the design of a database and tables. The database
layout is the most important part of an information system. The more design and
thought put into a database, the better the database will be in the long run. We
should gather information about the user’s requirement, data objects, and data def-
initions before creating a database layout. The first step we take when determining
the database layout is to build a data model that defines how the data is to be
stored. For most relational databases, we create an entity-relationship diagram or
model. The steps to create this model are as follows:

1. Identify and define the data objects (entities, relationship, and attributes)

2. Diagram the objects and relationship

3. Translate the objects into relational constructs (such as tables)

4. Resolve the data model

5. Perform the normalization process

First, define the entities and the relationships between them. An entity is something
that can be distinctively identified. An example of an entity is a

specific person, an element in the periodic table, a specific book,

etc. The relationship is the association between the entities, which is described as
connectivity, cardinality, or dependency. Connectivity is the occurrence of an en-
tity, meaning the relationship to other entities is either one-to-one, one-to-many, or
many-to-many. The cardinality term places a constraint on the number of times an
entity can have an association in a relationship. The entity dependency describes
whether the relationship is mandatory or optional. After we identified the entities
we can proceed with identifying the attributes. Attributes are all the descriptive
features of the entity. When defining the attributes, we must specify the constraints
(such as valid values or characters) or any other features about the entity. After we
complete the process of defining the entities and the relationship of the database,
the next step is to display the process we designed. There are many purposes for
diagramming the data objects.

1. Organize information

2. Documents for the future and give people new to the project a basic understand-
ing of what is going on

3. Identifies entities and relationships

4. Determines the logical design to be used for the physical layout

4 CHAPTER 1. WHAT IS A TABLE?

After the diagram is complete, the next step is to translate the data objects (entities
and attributes) into relational constructs. We translate all the data objects that are
defined into tables, columns and rows. Each entity is represented as a table, and
each row represents an occurence of that entity.

A table is an object that holds data relating to a single entity. Table design includes
the following

1. Each table is uniquely named within the database

2. Each table has one or more columns

3. Each column is uniquely named within the table

4. Each column contains one data type

5. Each table can contain zero or more rows of data.

The tables contain two types of columns: keys or descriptors. A key column uniquely
defines a specific row of a table, whereas a descriptor column specifies non-uniqueness
in a particular row. When we create tables, we define

primary and foreign keys.

The primary key consists of one or more columns that make each row unique. Each
table should have a primary key. The foreign key is one or more columns in one
table that match the columns of the primary key of another table. The purpose of
a foreign key is to create a relationship between two tables so we can join tables.
Primary keys play a central role in the normalization process.

The next step in our data model is to resolve our relationships. The most common
types of relationships are one-to-many (1:m) and many-to-many (m:n). In some
cases, a one-to-one relationship may exist between tables. In order to resolve the
more complex relationships, we must analyze the relational business rules, and in
some instances, we might need to add additional entities.

1.2. EXAMPLES 5

1.2 Examples

Let us give some examples of tables.

Example 1. A table Person contains their id-number, their surname, their first
name, sex, and birthdate

id# SurName FirstName Sex Birthdate

=== ========= ========= === ============

31 Miller John m 20.03.1945

72 Smith Laura f 10.10.1980

83 Cooper Fred m 28.12.1967

..

==

The id-number could play the role of the primary key.

Example 2. The ASCII table maps characters to integers and vice versa (one-to-
one map)

char value

==== =====

... ...

’0’ 48

’1’ 49

... ...

’9’ 57

... ...

’A’ 65

’B’ 66

... ...

’a’ 97

’b’ 98

... ...

===========

Example 3. The memory address and its contents is a table. In most hardware
design we can store one byte (8 bits) at one memory location.

Address Contents

======= ========

.......

0x45AF2 01100111 <- 1 byte at each address

0x45AF3 10000100 <- 1 byte at each address

.......

=================

6 CHAPTER 1. WHAT IS A TABLE?

This means that at address 0x45AF2 (memory addresses are given in hex notation,
where 0x indicates hex notation) the contents is the bitstring 01100111, which is
103 in decimal. Obviously the contents at a memory address can change.

Example 4. Look up table for integration

integrand variable integral condition

========= ======== =========== =========

a x a*x none

a*x x a*x*x/2 none

exp(a*x) x exp(a*x)/a a not 0

sin(a*x) x -cos(a*x)/a a not 0

a/x x a*ln(x) x > 0

===

Example 5. A table for a soccer league should include the position, the name
of the teams, the number of matches, the number of matches won, draw, lost, the
goals, the difference of the goals, and the points. For example

Pos Name matches won draw lost goals diff points

=== ============== ======= === ==== ==== ===== ==== ======

1 FC Lugano 22 12 6 4 33:16 17 42

2 FC St. Gallen 22 11 7 4 43:18 25 40

3 Gh Zuerich 22 11 3 8 46:25 21 36

4 Lausanne Sport 22 11 2 9 37:34 3 35

5 FC Basel 22 10 4 8 42:36 6 34

6 Servette Genf 22 9 6 7 34:26 8 33

7 FC Sion 22 9 5 8 27:31 -4 32

8 FC Zuerich 22 8 7 7 36:29 7 31

9 FC Aarau 22 6 6 10 31:43 -12 24

10 FC Yverdon 22 5 6 11 27:43 -16 21

11 Xamax Neuchatel 22 6 2 14 21:53 -32 20

12 FC Luzern 22 5 4 13 27:50 -23 19

Example 6. To represent negative integers one uses the so-called two-complement
of a given bitstring. For example, assume we have 8 bits. We can list this as a table

bitstring one-complement two-complement

========= ============== ==============

00000000 11111111 00000000

00000001 11111110 11111111

00000010 11111101 11111110

.......

11111110 00000001 00000010

11111111 00000000 00000001

==

1.2. EXAMPLES 7

Example 7. The most common devices in a PC (COM ports, parallel ports, and
floppies) and their IRQ (Interrupt Request), DMA (Direct Memory Access), and
I/O addresses are listed in tables.

Device IRQ DMA I/O Address (hex)

=================== === ==== =================

COM 1 (/dev/ttyS0) 4 N/A 3F8

COM 2 (/dev/ttyS1) 3 N/A 2F8

COM 3 (/dev/ttyS2) 4 N/A 3E8

COM 4 (/dev/ttyS3) 3 N/A 2E8

LPT 1 (/dev/lp0) 7 N/A 378-37F

LPT 2 (/dev/lp1) 5 N/A 278-27F

Floppy A (/dev/fd0) 6 2 3F0-3F7

Floppy B (/dev/fd1) 6 2 3F0-3F7

==

Since only two COM ports (serial ports) are usually supported by DOS, they share
IRQ values. The I/O addresses are different. Both floppy disks share the same I/O
addresses, IRQ, and DMA. Network cards, SCSI adapters, sound cards, video cards,
and other peripherals all must have unique IRQ, DMA, and I/O addresses, which
can be difficult to arrange with a fully loaded system.

8 CHAPTER 1. WHAT IS A TABLE?

1.3 Tables in Programs

Using several programs we show how to set up a table.

Example 1. We have a table Student. It includes the following attributes

studentno, surname, firstname, subject, marks

The table looks like this

studentno surname firstname subject marks

========= ======= ========= ======= =====

101 Muller Jack C++ 50%

102 Smith Milton C++ 74%

103 Muller John C++ 82%

104 Solms Carl C++ 100%

105 Steeb Hans C++ 100%

===

The student number (studentno) can be considered as a so-called primary key. In
the following C++ program we declare each column in the table as an array of
strings. We provide the function

int lookup(char* number)

with the student number. The function then finds the index for this student number.
The index is in the range 0..4. Using this index in the main function we retrieve the
surname, firstname, subject and the marks. If the student number is not in the
list the function lookup returns -1.

// student.cpp

#include <iostream>

#include <string.h> // for strcmp

using namespace std;

char* studentno[] = { "101", "102", "103", "104", "105" };

char* surname[] = { "Muller", "Smith", "Muller", "Solms", "Steeb" };

char* firstname[] = { "Jack", "Milton", "John", "Carl", "Hans" };

char* subject[] = { "C++", "C++", "C++", "C++", "C++" };

char* marks[] = { "50%", "74%", "82%", "100%", "100%" };

1.3. TABLES IN PROGRAMS 9

int lookup(char* number)

{

int i;

for(i = 0; i < 5; i++)

{

int result = strcmp(number,studentno[i]);

if(result == 0) return i;

}

return -1;

}

int main()

{

char* number = new char[4]; // allocating memory

cout << "enter student number: ";

cin.getline(number,4);

int x = lookup(number);

delete number;

if(x != -1)

{

cout << "studentno = " << studentno[x] << endl;

cout << "surname = " << surname[x] << endl;

cout << "firstname = " << firstname[x] << endl;

cout << "subject = " << subject[x] << endl;

cout << "marks = " << marks[x] << endl;

}

if(x == -1)

{

cout << "StudentNo not in table ";

}

return 0;

}

10 CHAPTER 1. WHAT IS A TABLE?

Example 2. In our second example we have an employeers id-number and the
name

Id-Number Name

========= ========

101 Simpson

102 Singer

103 Carter

104 Thompson

105 Ulrich

===================

We use the container class map from the Standard Template Library (STL) in C++.
The STL provides the class map. The first argument of map is called the key and the
second argument is called the value. In our case the key is an int and the value a
string.

// table.cpp

#include <iostream>

#include <string>

#include <map>

using namespace std;

int main()

{

map<int,string> m;

m.insert(pair<int,string>(101,"Simpson"));

m.insert(pair<int,string>(102,"Singer"));

m.insert(pair<int,string>(103,"Carter"));

m.insert(pair<int,string>(104,"Thompson"));

m.insert(pair<int,string>(105,"Ulrich"));

int stnumber;

cout << "enter the students number: ";

cin >> stnumber;

map<int,string>::iterator p;

p = m.find(stnumber);

if(p != m.end())

cout << p -> second;

else

1.3. TABLES IN PROGRAMS 11

cout << "not a student number";

cout << endl;

map<string,int> n;

n.insert(pair<string,int>("Simpson",101));

n.insert(pair<string,int>("Singer",102));

n.insert(pair<string,int>("Carter",103));

n.insert(pair<string,int>("Thompson",104));

n.insert(pair<string,int>("Ulrich",105));

string name;

cout << "enter the students name: ";

cin >> name;

map<string,int>::iterator q;

q = n.find(name);

if(q != n.end())

cout << q -> second;

else

cout << "not a student name";

return 0;

}

12 CHAPTER 1. WHAT IS A TABLE?

If we need more than two column in the table we can use

map<T1,map<T2,T3> >

The following two programs give two examples.

// mapmap1.cpp

#include <iostream>

#include <string>

#include <map>

using namespace std;

int main()

{

map<string,string> t;

t["Steeb"] = "Willi";

t["de Sousa"] = "Nela";

map<string,map<string,string> > ct;

ct["ten"] = t;

ct["eleven"] = t;

cout << ct["ten"]["Steeb"] << endl; // => Willi

cout << ct["ten"]["de Sousa"] << endl; // => Nela

cout << ct["eleven"]["Steeb"] << endl; // => Willi

cout << ct["eleven"]["de Sousa"] << endl; // => Nela

return 0;

}

1.3. TABLES IN PROGRAMS 13

// mapmap2.cpp

#include <iostream>

#include <string>

#include <map>

using namespace std;

typedef map<string,string> ENTITY;

typedef map<int,ENTITY*> DB;

int main()

{

DB db;

ENTITY* e;

e = new ENTITY;

(*e)["firstname"] = "Willi";

(*e)["surname"] = "Steeb";

db[1] = e;

e = new ENTITY;

(*e)["firstname"] = "Nela";

(*e)["surname"] = "de Sousa";

db[2] = e;

DB::iterator it = db.begin();

while(it != db.end())

{

e = it -> second;

cout << "firstname: " << (*e)["firstname"] << "\tsurname: "

<< (*e)["surname"] << endl;

it++;

}

return 0;

}

// the output is

firstname: Willi surname: Steeb

firstname: Nela surname: de Sousa

14 CHAPTER 1. WHAT IS A TABLE?

Example 3. In our third example we consider a container class from Java. A
useful container class in Java for application in databases is the TreeMap class. The
TreeMap class extends AbstractMap to implement a sorted binary tree that supports
the Map interface. This impementation is not synchronized. If multiple threads ac-
cess a TreeMap concurrently and at least one of the threads modifies the TreeMap

structurally it must be synchronized externally.

The next program shows an application of the class TreeMap. The default construc-
tor TreeMap() constructs a new, empty TreeMap sorted according to the keys in
natural order. The constructor

TreeMap(Map m)

constructs a new TreeMap containing the same mappings as the given Map, sorted
according to the key’s natural order.

The method

Object put(Object key,Object value)

associates the specified value with the specified key in this TreeMap. The method

public Set entrySet()

in class TreeMap returns a Set view of the mapping contained in this map. The
Set’s Iterator will return the mappings in ascending Key order. Each element in
the returned set is a Map.Entry. The method

boolean containsKey(Object key)

returns true if this TreeMap contains a mapping for the specified key. The method

boolean containsValue(Object value)

returns true if this Map maps one or more keys to the specified value. The method

Object get(Object key)

returns the value to which this TreeMap maps the specified key. The method

Object remove(Object key)

removes the mapping for this key from this TreeMap if present.

1.3. TABLES IN PROGRAMS 15

// MyMap.java

import java.util.*;

public class MyMap

{

public static void main(String[] args)

{

String[] sc = new String[3];

sc[0] = new String("A");

sc[1] = new String("B");

sc[2] = new String("C");

String[] sn = new String[3];

sn[0] = new String("65");

sn[1] = new String("66");

sn[2] = new String("67");

TreeMap map = new TreeMap();

int i;

for(i=0; i < sc.length; i++)

{

map.put(sc[i],sn[i]);

}

displayMap(map);

} // end main

static void displayMap(TreeMap map)

{

System.out.println("The size of the map is: " + map.size());

Collection c = map.entrySet();

Iterator it = c.iterator();

while(it.hasNext())

{

Object o = it.next();

if(o == null)

System.out.println("null");

else

System.out.println(o.toString());

}

} // end method displayMap

}

16 CHAPTER 1. WHAT IS A TABLE?

Example 4. Hashtables are associative arrays with key-value pairings. Presenta-
tion of the key retrieves the value. Both the key and the value must be objects, i.e.
primitive values must be represented by their wrapper classes, e.g. Integer for an
int value.

The methods

put(Object key,Object value)

get(Object key)

remove(Object key)

are the methods for entering new pairs, retrieving and removing them. We can test
for the presence of a particular key with the method containsKey(). Hashtables
rely on the

int hashCode()

method derived from the class Object. It overrides hashCode() in class Object.
The return value of the hashCode() method is a unique numerical value derived
from the object contents. The method hashCode() can be overriden.

// Hash.java

import java.util.*;

public class Hash

{

public static void main(String[] args)

{

Hashtable dates = new Hashtable();

dates.put("Birthday Willi",new String("20 March"));

dates.put("Birthday Jan",new String("10 October"));

dates.put("Birthday Mia",new String("8 April"));

dates.put("Birthday Moritz",new String("16 July"));

String jan = (String) dates.get("Birthday Jan");

System.out.println("Jan = " + jan);

boolean b = dates.containsKey("Birthday Moritz");

System.out.println("b = " + b);

dates.remove("Birthday Moritz");

b = dates.containsKey("Birthday Moritz");

System.out.println("b = " + b);

}

}

1.3. TABLES IN PROGRAMS 17

Example 5. In C progamming the tables are implement as structures. In the
following example we have two structures, one for the table Name and one for the
table Employee. The table Name is used inside (nested) the table Employee.

// Employee.cpp

#include <iostream.h>

#include <string.h>

struct Name

{

char firstname[20];

char surname[20];

};

struct Employee

{

struct Name name[2];

int empno, salary;

};

int main()

{

struct Name n[2];

strcpy(n[0].firstname,"Willi");

strcpy(n[0].surname,"Steeb");

strcpy(n[1].firstname,"Lara");

strcpy(n[1].surname,"Smith");

struct Employee emp[2];

emp[0].empno = 123;

emp[0].salary = 1240;

strcpy(emp[0].name[0].firstname,"Willi");

strcpy(emp[0].name[0].surname,"Steeb");

emp[1].empno = 134;

emp[1].salary = 2340;

strcpy(emp[1].name[1].firstname,"Lara");

strcpy(emp[1].name[1].surname,"Smith");

cout << emp[1].name[1].firstname << " "

<< emp[1].name[1].surname << " "

<< emp[1].empno << " " << emp[1].salary;

return 0;

}

18 CHAPTER 1. WHAT IS A TABLE?

Example 6. The table is normally stored as a file, binary or text. In the following
sixth example the table is given by

Name idnumber fee

===== ======== ======

Willi 67890123 -45.66

Hans 12345678 -56.00

Nela 89045677 -13.45

Helen 89734444 -97.11

Audrey 99999999 -1.45

========================

Thus the table includes the name, the identity number and the outstanding fee. The
table is stored as the text file mydata.txt

Willi 67890123 -45.66

Hans 12345678 -56.00

Nela 89045677 -13.45

Helen 89734444 -97.11

Audrey 99999999 -1.45

In our Java program we read the file mydata.txt and display the names and identity
number und calculate the sum of the outstanding fees. We read each line using the
method

String readLine()

in the class BufferedReader which reads a line of text. A line is considered to be
terminated by any one of a line feed ’\n’ a carriage return ’\r’ or a carriage return
followed immediately by a line feed. A String is returned containing the contents
of the line, not including any line termination characters, or null if the end of the
stream has been reached. a String.

Using the class StringTokenizer we cast the String into a String for the name,
an int for the id-number and a double for the fee.

1.3. TABLES IN PROGRAMS 19

// DataBase.java

import java.awt.*;

import java.io.*;

import java.util.*;

public class DataBase

{

public static void main(String args[]) throws IOException

{

int[] idnumber = new int[5];

String[] names = new String[5];

int i = 0;

String str;

double sum = 0.0;

FileInputStream fin = new FileInputStream("mydata.txt");

BufferedReader in = new BufferedReader(new InputStreamReader(fin));

while(!(null == (str = in.readLine())))

{

StringTokenizer tok = new StringTokenizer(str);

String s1 = tok.nextToken();

names[i] = s1;

String s2 = tok.nextToken();

idnumber[i] = new Integer(s2).intValue();

String s3 = tok.nextToken();

double temp = new Double(s3).doubleValue();

sum += temp;

i++;

} // end while

in.close();

for(i=0; i < 5; i++)

{

System.out.println("The name is: " + names[i] + " " +

"The idnumber is: " + idnumber[i]);

}

System.out.println("The sum is: " + sum);

} // end main

}

20 CHAPTER 1. WHAT IS A TABLE?

Example 7. In a more advanced case we have a phone book with the phone number
and the name. We want to insert names and phone numbers in the table, delete
rows, write to the file, exit the manipulation of the database. We have the following
commands:

?name find phone number
/name delete row with the given name
!number name insert or update a row
* list whole phonebook
= save to file (commit changes)
exit phonebook (database)

For example, the command

!34567 Cooper_Jack

inserts a row into the phonebook with the phone number 34567 and the name
Cooper_Jack. To save it to the file phone.txt we have to apply the command =.
In our C++ program we use the Standard Template Library (STL). Here less<T>

is a function object that tests the truth or falsehood of some condition. If f is an
object of class less<T> and x and y are objects of class T, then f(x,y) returns true
if x < y and false otherwise.

// phone.cpp

#include <fstream>

#include <iostream>

#include <iomanip>

#include <string>

#include <map>

using namespace std;

typedef map<string,long,less<string> > directype;

void ReadInput(directype& D)

{

ifstream ifstr;

ifstr.open("phone.txt");

long nr;

string str;

if(ifstr)

{

cout << "Entries read from file phone.txt:\n";

for(;;)

{

1.3. TABLES IN PROGRAMS 21

ifstr >> nr;

ifstr.get(); // skip space

getline(ifstr,str);

if(!ifstr) break;

cout << setw(9) << nr << " " << str << endl;

D[str] = nr;

}

}

ifstr.close();

}

void ShowCommands()

{

cout <<

"Commands: ?name : find phone number\n"

" /name : delete\n"

" !number name: insert (or update)\n"

" * : list whole phonebook\n"

" = : save in file\n"

" # : exit" << endl;

}

void ProcessCommands(directype& D)

{

ofstream ofstr;

long nr;

string str;

char ch;

directype::iterator i;

for(;;)

{

cin >> ch; // skip any whitespace and read ch

switch(ch)

{

case’?’: case ’/’:

getline(cin,str);

i = D.find(str);

if(i == D.end()) cout << "Not found.\n";

else

if(ch == ’?’) cout << "Number: " << (*i).second << endl;

else

D.erase(i);

break;

case ’!’:

cin >> nr;

22 CHAPTER 1. WHAT IS A TABLE?

if(cin.fail())

{

cout << "Usage: !number name\n";

cin.clear();

getline(cin,str);

break;

}

cin.get();

getline(cin,str);

D[str] = nr;

break;

case ’*’:

for(i = D.begin(); i != D.end(); i++)

cout << setw(9) << (*i).second << " "

<< (*i).first << endl;

break;

case ’=’:

ofstr.open("phone.txt");

if(ofstr)

{

for(i = D.begin(); i != D.end(); i++)

ofstr << setw(9) << (*i).second << " "

<< (*i).first << endl;

ofstr.close();

}

else cout << "Cannot open output file.\n";

break;

case ’#’: break;

default: cout << "Use: * (list), ? (find), = (save), "

"/ (delete), ! (insert), or # (exit), \n";

getline(cin,str);

break;

}

if(ch == ’#’) break;

}

}

int main()

{

directype D;

ReadInput(D);

ShowCommands();

ProcessCommands(D);

return 0;

}

1.3. TABLES IN PROGRAMS 23

Example 8. For Microprocessors we also use tables in particular lookup tables. As
an example we consider the PIC 16F84 Microprocessor. We store a lookup table in
the program memory. To access data in program memory, a table read operation
must be performed. The table consists of a series of

RETLW K

statements. The command RETLW returns with literal in W (W is the working register
or accumulator for the PIC16F84). The 8-bit table constants are assigned to the
literal K. The first instruction in the table

ADDWF PCL

computes the offset (counting from 0) to the table and consequently the program
branches to a appropiate RETLW K instruction. The table contains the characters

’A’ ASCII table 65 dec 41 hex 01000001binary

’B’ ASCII table 66 dec 42 hex 01000010binary

’C’ ASCII table 67 dec 43 hex 01000011binary

’D’ ASCII table 68 dec 44 hex 01000100binary

Since we move 3 into W using the command

MOVLW 3

and then add it to PCL (Program counter low) we select the character D which is
ASCII 68 decimal and in binary 01000100. This bit string is moved to PORTB (out-
put) and displayed.

The program counter PC in the PIC16F84 is 13-bits wide. The low 8-bits (PCL)
are mapped in SRAM (static RAM) at location 02h and are directly readable and
writeable. Let k be a label. Then

CALL k

calls a subroutine, where PC + 1 -> TOS (top of stack) and k -> PC.

The upper byte of the program counter is not directly accessible. PCLATH is a slave
register for PC<12:8>. The contents of PCLATH can be transferred to the upper byte
of the program counter, but the contents of PC<12:8> is never transferred to PCLATH.

24 CHAPTER 1. WHAT IS A TABLE?

PROCESSOR 16f84

INCLUDE "p16f84.inc"

ORG H’00’

Start

BSF STATUS, RP0

MOVLW B’11111111’

MOVWF PORTA

MOVLW B’00000000’

MOVWF PORTB

BCF STATUS, RPO

MOVLW 3

CALL Table

MOVWF PORTB

Table:

ADDWF PCL

RETLW ’A’

RETLW ’B’

RETLW ’C’

RETLW ’D’

;

END

1.3. TABLES IN PROGRAMS 25

Example 9. For Web application of databases JavaScript is a good choice, since the
program is embedded in the HTML file. Using a FORM the user enters the surname
of the person and is provided with the complete information about the person (first
name, street, and phone number).

<HTML>

<HEAD>

<TITLE>Names Database</TITLE>

<SCRIPT LANGUAGE="JavaScript">

Names = new Object()

Names[0]=10

Names[1]="cooper"

Names[2]="smith"

Names[3]="jones"

Names[4]="michaels"

Names[5]="avery"

Names[6]="baldwin"

Data = new Object()

Data[1]="Olli|Cooper|44 Porto Street|666-000"

Data[2]="John|Smith|123 Main Street|555-1111"

Data[3]="Fred|Jones|PO Box 5|555-2222"

Data[4]="Gabby|Michaels|555 Maplewood|555-3333"

Data[5]="Alice|Avery|1006 Pike Place|555-4444"

Data[6]="Steven|Baldwin|5 Covey Ave|555=5555"

function checkDatabase()

{

var Found = false; // local variable

var Item = document.testform.customer.value.toLowerCase();

for(Count = 1; Count <= Names[0]; Count++)

{

if(Item == Names[Count])

{

Found = true;

var Ret = parser(Data[Count], "|");

var Temp = "";

for(i = 1; i <= Ret[0]; i++)

{

Temp += Ret[i] + "\n";

}

alert(Temp);

break;

}

26 CHAPTER 1. WHAT IS A TABLE?

}

if(!Found)

alert("Sorry, the name ’" + Item +"’ is not listed in the database.")

} // end function checkDatabase()

function parser(InString,Sep)

{

NumSeps=1;

for(Count=1; Count < InString.length; Count++)

{

if(InString.charAt(Count)==Sep)

NumSeps++;

}

parse = new Object();

Start=0; Count=1; ParseMark=0;

LoopCtrl=1;

while(LoopCtrl==1)

{

ParseMark = InString.indexOf(Sep,ParseMark);

TestMark = ParseMark+0;

if((TestMark==0) || (TestMark==-1))

{

parse[Count]= InString.substring(Start,InString.length);

LoopCtrl=0;

break;

}

parse[Count] = InString.substring(Start,ParseMark);

Start=ParseMark+1;

ParseMark=Start;

Count++;

}

parse[0]=Count;

return (parse);

} // end function parser

</SCRIPT>

<FORM NAME="testform" onSubmit="checkDatabase()">

Enter the customer’s name, then click the "Find" button:

<INPUT TYPE="text" NAME="customer" VALUE="" onClick=0> <P>

<INPUT TYPE="button" NAME="button" VALUE="Find"

onClick="checkDatabase()">

</FORM>

</BODY>

</HTML>

1.3. TABLES IN PROGRAMS 27

Example 10. The class JTable in Java provides a very flexible capability for cre-
ating and displaying tables. The JTable class is another Swing component that
does not have an AWT analog. The JTable class is used to display and edit regu-
lar two-dimensional tables of cells. It allows tables to be constructed from arrays,
vectors of objects, or from objects that implement the TableModel interface. The
DefaultTableModel is a model implementation that uses a Vector of Vectors of
Objects to store the cell values.

The following program gives an example. The table is given by

First Name Last Name Sport # of Years Vegetarian

========== ========= ============ ========== ==========

Mary Lea Snowboarding 5 no

Alison Humi Rowing 3 yes

Kathy Wally Tennis 2 no

Mark Andrews Boxing 10 no

Angela Lih Running 5 yes

===

// MyTable.java

import javax.swing.JTable;

import javax.swing.table.AbstractTableModel;

import javax.swing.JScrollPane;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

import javax.swing.JOptionPane;

import java.awt.*;

import java.awt.event.*;

public class MyTable extends JFrame

{

private boolean DEBUG = true;

public MyTable()

{

super("MyTable");

MyTableModel myModel = new MyTableModel();

JTable table = new JTable(myModel);

table.setPreferredScrollableViewportSize(new Dimension(400,70));

JScrollPane scrollPane = new JScrollPane(table);

28 CHAPTER 1. WHAT IS A TABLE?

getContentPane().add(scrollPane,BorderLayout.CENTER);

addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e)

{

System.exit(0);

}

});

} // end MyTable

class MyTableModel extends AbstractTableModel

{

final String[] columnNames =

{ "First Name", "Last Name", "Sport", "# of Years", "Vegetarian" };

final Object[][] data =

{

{ "Mary", "Lea", "Snowboarding", new Integer(5), new Boolean(false) },

{ "Alison", "Humi", "Rowing", new Integer(3), new Boolean(true) },

{ "Kathy", "Wally", "Tennis", new Integer(2), new Boolean(false) },

{ "Mark", "Andrews", "Boxing", new Integer(10), new Boolean(false) },

{ "Angela", "Lih", "Running", new Integer(5), new Boolean(true) }

};

public int getColumnCount()

{ return columnNames.length; }

public int getRowCount()

{ return data.length; }

public String getColumnName(int col)

{ return columnNames[col]; }

public Object getValueAt(int row,int col)

{ return data[row][col]; }

public Class getColumnClass(int c)

{ return getValueAt(0,c).getClass(); }

public boolean isCellEditable(int row,int col)

{

if(col < 2) { return false; }

else

1.3. TABLES IN PROGRAMS 29

{ return true; }

}

public void setValueAt(Object value,int row,int col)

{

if(DEBUG)

{

System.out.println("Setting value at " + row + "," + col

+ " to " + value

+ " (an instance of "

+ value.getClass() + ")");

}

if(data[0][col] instanceof Integer)

{

try

{

data[row][col] = new Integer((String) value);

fireTableCellUpdated(row,col);

}

catch(NumberFormatException e)

{

JOptionPane.showMessageDialog(MyTable.this,

"The \"" + getColumnName(col)

+ "\" column accepts only integer values.");

}

}

else

{

data[row][col] = value;

fireTableCellUpdated(row,col);

}

if(DEBUG)

{

System.out.println("New value of data:");

printDebugData();

}

}

private void printDebugData()

{

int numRows = getRowCount();

int numCols = getColumnCount();

30 CHAPTER 1. WHAT IS A TABLE?

for(int i=0; i < numRows; i++)

{

System.out.print(" row " + i + ".");

for(int j=0; j < numCols; j++)

{

System.out.print(" " + data[i][j]);

}

System.out.println();

}

System.out.println("--------------------------------");

}

}

public static void main(String[] args)

{

MyTable frame = new MyTable();

frame.pack();

frame.setVisible(true);

}

}

1.3. TABLES IN PROGRAMS 31

Example 11. An XML document is a database only in the strictest sense of the
term. That is, it is a collection of data. In many ways, this makes it no different
from any other file. All files contain data of some sort. As a database format, XML
has some advantages. For example, it is self-describing (the markup describes the
data), it is portable (Unicode), and it describes data in tree format. Every well-
formed XML document is a tree.

A tree is a data structure composed of connected nodes beginning with a top node
called the root. The root is connected to its child nodes, each of which is connected
to zero or more children of its own, and so forth. Nodes that have no children
of their own are called leaves. A diagram of a tree looks much like a genealogical
descendant chart that lists the descendants of a single ancestor. The most use-
ful property of a tree is that each node and its children also form a tree. Thus, a
tree is a hierarchical structure of trees in which each tree is built out of samller trees.

Fo the purpose of XSLT, elements, attributes, namespaces, processing instructions,
and comments are counted as nodes. Furthermore, the root of the document must
be distinguished from the root element. Thus, XSLT processors model an XML
document as a tree that contains seven kinds of nodes:

1) the root

2) elements

3) text

4) attributes

5) namespaces

6) processing instructions

7) comments

32 CHAPTER 1. WHAT IS A TABLE?

An example for the periodic table is given below (we only give the first two elements
of the periodic table)

<?xml version="1.0"?>

<!-- Periodic_Table.xml -->

<periodic_table>

<atom>

<name> hydrogen </name>

<symbol> H </symbol>

<atomic_number> 1 </atomic_number>

<atomic_weight> 1.00794 </atomic_weight>

<atom_phase> gas </atom_phase>

</atom>

<atom>

<name> helium </name>

<symbol> He </symbol>

<atomic_number> 2 </atomic_number>

<atomic_weight> 4.0026 </atomic_weight>

<atom_phase> gas </atom_phase>

</atom>

</periodic_table>

1.4. TABLE AND RELATION 33

1.4 Table and Relation

The table is isomorphic to the mathematical relation, which puts the relational
model of data onto firm theoretical foundations that allow the development of the-
orems and proofs.

Consider two finite sets A and B. For example

A := { a, b}, B := {u, v, w, x } .

The Cartesian product of the sets A and B is

A×B := { (a, u), (a, v), (a, w), (a, x), (b, u), (b, v), (b, w), (b, x)} .

Thus A × B contains 2 · 4 = 8 elements. A relation R is a subset of the Cartesian
product of the sets on which it is defined. For example

R = { (a, u), (a, x), (b, u), (b, v) } .

Here R is a subset of A×B, which is another way of saying that R is a set of couples
(2-tuples) with the first element taken from the set A and the second element taken
from the set B. As table we have

R

== ==

a u

a x

b u

b v

======

The relational algebra (and any equivalent languges) is closed: algebraic operators
take relations as operands and return relations as result, allowing the nesting of
expressions to arbitrary depths.

The Cartesian product can be extended to S1×S2× . . .×Sn of n sets S1, S2, . . .Sn is
the set of all ordered n-tuples (x1, x2, . . . , xn) in which x1 ∈ S1, x2 ∈ S2, . . .xn ∈ Sn.

Since a relation is a set of tuples, we can apply the set theoretical operators

UNION

INTERSECTION

MINUS

TIMES (Cartesian product)

However, note that the operators UNION, INTERSECTION and MINUS can only be
applied to pairs of relations that share the same attributes.

34 CHAPTER 1. WHAT IS A TABLE?

Let R be a relational scheme with a set of attributes X, where {A1, . . . , Ak} ⊆ X.
The projection of R onto {A1, . . . , Ak} is expressed by

SELECT DISTINCT A1, ... , Ak FROM R

Let R be a relational scheme with a set of attributes X, where A,B ∈ X. The
selection of R with respect to condition A = a is expressed by

SELECT DISTINCT * FROM R WHERE A = a

Analogously, the selection with respect to condition A = B is expressed by

SELECT DISTINCT * FROM R WHERE A = B

Let R and S be relational schemata with equal sets of attributes. The union of R
and S is expressed by

SELECT DISTINCT * FROM R

UNION SELECT DISTINCT * FROM S

Analogously, the difference between R and S is expressed by

SELECT DISTINCT * FROM R

EXCEPT SELECT DISTINCT * FROM S

Let R be a relational schema with attributes A1, . . . , An, B1, . . . , Bm and S a
relational schema with attributes B1, . . . , Bm, C1, . . . , Cl. Then the natural join
of R and S, which joins those tuples from R and S which have equal B-values, is
expressed by

SELECT DISTINCT A1, ... , Am, R.B1, ... , R.Bm, C1, ... , Cl

FROM R, S

WHERE R.B1 = S.B1 AND ... AND R.Bm = S.Bm

Since attributes from different relational schemata may have identical names, the
dot-notation R.B is used to specify which occurrence of the respective attribute is
meant. With respect to the natural join, of course, we could have used S.B as well.
The WHERE clause then explicitly states that tuples from the different relations must
have identical values with respect to the shared attributes. A simpler formulation
of the natural join, which is possible in SQL2, is

SELECT * FROM R NATURAL JOIN S

Functional dependency is defined as follows: Consider a relation R that has two
attributes A and B. The attribute B of the relation is functionally dependent on
the attribute A if and only if for each value of A no more than one value of B is
associated.

Chapter 2

Structured Query Language

2.1 Introduction

A database is a means of storing information in such a way that information can be
retrievd from it. In simplest terms, a relational database is one that presents infor-
mation in tables with rows and columns. A table is referred to as a relation, which
explains the term relational database. A Database Management System (DBMS)
handles the way data is stored, maintained, and retrieved. In the case of relational
database, a Relational Database Management System (RDBMS) performs these
tasks. DBMS as used here is a general term that includes RDBMS.

Structured Query Language (SQL) is a relational database language. Amongst other
things the language consists of

select, insert, update, delete, query and protect data.

SQL allows users to access data in relational database mangement systems such as
mySQL, Oracle, Sybase, Informix, DB2, Microsoft SQL Server, Access and others,
by allowing users to describe the data the user wishes to see. Additionally SQL also
allows users to define the data in a database and manipulate that data, for example
update the data. SQL is the most widely used relational database language. Others
are QBE and QUEL.

SQL is a nonprocedural language. We can use SQL to tell what data to retrieve
or modify without telling it how to do its job. SQL does not provide any flow-
of-control programming constructs, function definitions, do-loops, or if-then-else
statements. However, for example Oracle provides procedural language extensions
to SQL through a product called PL/SQL. ABAP/4 contains a subset of SQL (called
Open SQL) that is an integral part of the language.

35

36 CHAPTER 2. STRUCTURED QUERY LANGUAGE

SQL provides a fixed set of datatypes in particular for strings of different length

char(n), varchar(n), longvarchar(n)

We cannot define new datatypes. Unlike object-oriented programming language
that allows to define a new datatype for a specific purpose, SQL forces us to choose
from a given set of predefined datatypes when we create or modify a column.

At the highest level, SQL statements can be broadly categorized as follows into three
types:

Data Manipulation Language (DML), which retrieves or modifies data

Data Definition Language (DDL), which defines the structure of the data

Data Control Language (DCL), which defines the privileges granted to database
users.

The category of DML contains four basic statements:

SELECT, which retrieves rows from a table. The SELECT statement specifies which
columns to include in the result set. The vast majority of the SQL commands used
in applications are SELECT statements.

INSERT, which adds rows to a table. INSERT is used to populate a newly-created
table or to add a new row (or rows) to an already-existing table.

UPDATE, which modifies existing rows in a table. In other words it changes an exist-
ing value in a column of a table.

DELETE, which removes a specified row or a set of rows from a table.

These statements are used most often by application developers. DDL and DCL
statements are commonly used by a database designer and database administrator
for establishing the database structures used by an application.

2.1. INTRODUCTION 37

The most common DDL commands are:

CREATE TABLE, creates a table with the column names the user provides. The user
also needs to specify the data type for each column. Unfortunately, data types vary
slighly from one RDBMS to another, so that user might need metadata to estab-
lish the data types used for a particular database. The command CREATE TABLE is
normally used less often than the data manipulation commands because a table is
created only once, whereas inserting and deleting rows or changing individual values
generally occurs more frequently.

DROP TABLE, deletes all rows and removes the table definition from the database.

ALTER TABLE, adds or removes a column from a table. This command is used in
connection with ADD, MODIFY and DROP.

For most systems (for example mySQL, Oracle), every SQL statement is terminated
by a semicolon. An SQL statement can be entered on one line or split accross sev-
eral lines for clarity. Most of the examples given here are split into readable portions.

For most systems SQL is not case sensitive. We can mix uppercase and lowercase
when referencing SQL keywords (such as SELECT and INSERT), tables names, and
column names. However, case does matter when referring to the contents of a col-
umn.

Before we can create a table we have to create a database. For example in mySQL
we have the command

CREATE DATABASE [IF NOT EXISTS] db_name;

CREATE DATABASE creates a database with the given name. An error occurs if the
database already exists and we did not specify IF NOT EXISTS. Since there are no
tables in a database when it is initially created, the CREATE DATABASE statement
only creates a directory under the mySQL data directory.

38 CHAPTER 2. STRUCTURED QUERY LANGUAGE

2.2 Integrity Rules

Relational tables follow certain integrity rules to ensure that the data they contain
stay accurate and are always accessible.

First, the rows in a relational table should all be distinct. If, there are duplicates
rows, there can be problems resolving which of two possible selections is the correct
one. For most DBMSs, the user can specify that duplicate rows are not allowed,
and if that is done, the DBMS will prevent the addition of any rows that duplicates
an existing row.

A second integrity rule is that column values cannot be repeating groups or arrays.

A third aspect of data integrity involves the concept of a null value. A database
has to take care of situations where data may not be available: a null value indicates
that a value is missing. It does not equate to a blank or zero. A blank is considered
equal to another blank, a zero is equal to another zero, but two null values are not
considered equal.

When each row in a table is different, it is possible to use one or more columns
to identify a particular row. This unique column or group of columns is called a
primary key. Any column that is part of a primary key cannot be null; if it were,
the primary key containing it would no longer be a complete identifier. This rule is
referred to as entity integrity.

Thus some of an entity’s attributes uniquely identify each row in that entity. This
set of attributes is called the primary key.

From a managerial design perspective, it is a good idea to assume that the RDBMS
in use does not enforce referential integrity. Further, it is a good idea to assume
that the programmer/analyst with whom we are working is not necessarily going to
design the system to enforce referential integrity. It is our responsibility to define
procedures that enforce referential integrity.

Example. We must specifically state in our system design that the system cannot
permit the enrollment of a student into a specific course until both the student
information and the course information have been previously established in their
appropriate files. An error message should be displayed if an attempt to enroll a
non-existent student into a non-existent course.

2.3. SQL COMMANDS 39

2.3 SQL Commands

2.3.1 Introduction

SQL (Structered Query Language) is a language designed to be used with relational
databases. There is a set of basic SQL commands that is considered standard and is
used by all RDBMSs. For example, all RDBMSs use the SELECT statement. In this
section we list the SQL commands and give a number of examples. In the following
we assume the following tables are given. The name of the tables are Employees

and Cars.

table: Employees

=========== ========== ========= ============= ==========

Employee_No First_Name Last_Name Date_of_Birth Car_Number

=========== ========== ========= ============= ==========

10001 John Smith 28-AUG-1943 5

10083 Axel Sharma 24-DEC-1954 null

10120 Jonas Goldberg 01-JAN-1956 null

10005 Florence Wojokowski 04-JUL-1971 12

10099 Sean Smith 21-SEP-1966 null

10035 Liz Yamaguchi 24-DEC-1967 null

==

In this table of employees, there are five columns: Employee_No, First_Name,
Last_Name, Date_of_Birth, and Car_Number. There are six rows, each representing
a different employee. The primary key for this table would generally be the employee
number because each one is guaranteed to be different. A number is more efficient
than a string for making comparisons. It would also be possible to use First_Name

and Last_Name together because the combination of the two also identifies just one
row in our sample database. Using the last name alone would not work because
there are two employees with the last name of Smith. In the particular case the first
name are all different, so one would conceivably use that column as a primary key,
but when we add new names to the table the same first name could appear twice.
If we would use the first name as the primary key and add a new employee with the
name Sean Connery to the table the RDMS will not allow his name to be added.

table: Cars

========== ======== ======= ===== ======

Car_Number Make Model Year Price

========== ======== ======= ===== ======

5 BMW Z3 1999 62000

12 Volkswagen Lupo 2000 30000

===

40 CHAPTER 2. STRUCTURED QUERY LANGUAGE

2.3.2 Aggregate Function

SQL system allow five aggregate functions, SUM, AVG, MAX, MIN, and COUNT. They are
called aggregate functions because they summarize the result of a query.

SUM() gives the total of all the rows, satisfying any conditions, of the given column,
where the given column is numeric.

AVG() gives the average (arithmetic mean) of the given column (does floating point
division)

MAX() gives the largest number in the selected column

MIN() gives the smallest number in the selected column

COUNT(*) gives the number of rows satisfying the conditions

2.3.3 Arithmetic Operators

The arithmetic operators used in SQL are similar to those in C.

Description Operator

=========== ========

Addition +

Subtraction -

Multiplication *

Division /

There are six relational operators in SQL.

Less than <

Less than or equal to <=

Greater than >

Greater than or equal to >=

Equal to =

Not equal to !=

2.3.4 Logical Operators

The logical operators are NOT, AND and OR. The AND operator joins two or more
conditions, but only returns a row if all of the conditions listed hold true. The OR

operator joins two or more conditions. It returns a row if any of the conditions listed
hold true.

2.3. SQL COMMANDS 41

2.3.5 SELECT Statement

The SELECT statement, also called a query, is used to get information from a table.
It specifies one or more column headings, one or more tables from which to select,
and some criteria for selection.

Example 1. We want to get all columns and rows from the table Cars.

SELECT Car_Number, Make, Model, Year, Price

FROM Cars;

This displays the whole table. To get all columns and rows of a table without typing
all columns we can use *. Thus

SELECT *

FROM Cars;

The WHERE clause (conditional selection) is used to specify that only certain rows of
the table are displayed, based on the criteria described in that WHERE clause.

Example 2. We select from table Employee the Last_Name and Car_Number when
the First_Name is Sean

SELECT Last_Name, Car_Number

FROM Employees

WHERE First_Name = ’Sean’;

The result set (output) is

Last_Name Car_Number

--------- ----------

Smith null

Example 3. The command

SELECT Make

FROM Cars

WHERE Price > 60000;

gives the output

Make

BMW

42 CHAPTER 2. STRUCTURED QUERY LANGUAGE

Example 4. The command

SELECT First_Name, Last_Name

FROM Employees

WHERE Car_Number IS NOT NULL;

gives the output

First_Name Last_Name

---------- ---------

John Smith

Florence Wojokowski

Example 5. An application of the arithmetic operation + is as follows

SELECT Model, Price + 5000

FROM Cars;

The output is

Model Price + 5000

----- ------------

Z3 67000

Lupo 35000

Example 6. An application of the logical AND is

SELECT First_Name, Last_Name

FROM Employees

WHERE Employee_Number < 10010 AND Car_Number IS NULL;

The result set is empty.

The wildcards are

% zero or more characters

and

_ only one character

Example 7. Consider the command

2.3. SQL COMMANDS 43

SELECT First_Name, Last_Name

FROM Employees

WHERE Last_Name LIKE ’Smit%’;

Then Smit and Smith match, but also Smithling etc. This means % stands for plus
zero or more additional characters. The result set is

First_Name Last_Name

---------- ---------

John Smith

Sean Smith

Example 8. Consider the command

SELECT First_Name, Last_Name

FROM Employees

WHERE Last_Name LIKE ’S_ith’;

The other wildcard used in LIKE clauses is an underbar _, which stands for any one
character. It matches Smith, but also Snith, Skith etc.
The result set is

First_Name Last_Name

---------- ---------

John Smith

Sean Smith

Example 9. The query

SELECT COUNT(*)

FROM Employees

WHERE Car_Number IS NULL;

counts the number of employees which have no car.

Example 10. The IN operator has to be understood in the set theoretical sense.
For example

SELECT First_Name

FROM Employees

WHERE Last_Name IN (’Smith’, ’Sharma’);

The NOT IN operator list all rows excluded from the IN list.

44 CHAPTER 2. STRUCTURED QUERY LANGUAGE

Example 11. Using the BETWEEN operator we can give a numerical range. For
example

SELECT Model

FROM Cars

WHERE Price NOT BETWEEN 30000 AND 50000;

Example 12. To sort data we use the ORDER BY clause. It sorts rows on the basis
of columns. The ORDER BY clause is optional. By default the database system orders
the rows in ascending order.

SELECT Last_Name, First_Name, Date_of_Birth

FROM Employees

ORDER BY Last_Name, First_Name;

To order the rows in descending order, we must add the keyword DESC after the
column name.

A SELECT statement can be nested inside of another SELECT statement which is
nested of another SELECT and so on. When a SELECT is nested it is refered to as a
subquery clause. An example is

SELECT first_name AS name,

last_name AS surname

FROM Employees

WHERE car_number IN

(SELECT DISTINCT car_number FROM

cars WHERE car_number > 4);

The DISTINCT predicate is used to omit duplicate values just in a field. For example,
if we have the last name Smith repeated numerous times in the table Employees

then the code

SELECT DISTINCT Last_Name

FROM Employees;

returns only one Smith.

2.3. SQL COMMANDS 45

2.3.6 INSERT Command

The INSERT command adds rows to a table. We supply literal values or expressions
to be stored as rows in the table. The term INSERT leads some new SQL users to
think that they can control where a row is inserted in a table. Recall that a large
reason for the use of relational databases is the logical data independence they offer
- in other words, a table has no implied ordering. A newly inserted row simply goes
into a table at an arbitrary location.

The INSERT commands takes the form

INSERT INTO table_name

[(column_name[,column_name]...[,column_name])]

VALUES

(column_value[,column_value]...[,column_value])

where

table_name table in which to insert the row

column_name column belonging to table_name

column_value literal value or an expression

whose type matches the corresponding column_name

Notice that the number of columns in the list of column names must match the num-
ber of literal values or expressions that appear in the parentheses after the keyword
VALUES. If it does not match the database system returns an error message. The
column and value datatype must match. Inserting an alphanumeric string into a
numeric column, for example, does not make any sense. Each column value supplied
in an INSERT command must be one of the following:

1) A null, 2) A literal value, such as 3 or ’Swiss’.

An expression containing operators and functions, such as SUBSTR(Last_Name,1,4).
We notice that the column list is an optional element. If we do not specify the column
names, the database system uses all the columns. In addition, the column order that
the database system uses is the order in which the columns were specified when the
table was created.

Example. As an example we insert a new row into the table Cars.

INSERT INTO Cars

(Car_Number, Make, Model, Year, Price)

VALUES

(15, ’AUDI’, ’A6’, 2001, 46000);

46 CHAPTER 2. STRUCTURED QUERY LANGUAGE

2.3.7 DELETE Command

The DELETE statement removes rows from a table. We do not need to know the
physical ordering of the rows in a table to perform a DELETE. The database system
uses the criteria in the WHERE clause to determine which rows to delete. The database
engine determines the internal location of the rows.

The DELETE commamd has the simplest syntax of the four DML statements

DELETE FROM table_name

[WHERE condition]

The variables are defined as follows

table_name is the table to be updated

condition is a valid SQL condition

Example 1. In the table Cars we delete one row with the Make BMW.

DELETE FROM Cars

WHERE Make = ’BMW’;

Example 2.

DELETE FROM Employees

WHERE Car_Number IS NULL;

If we want to delete all rows the DELETE statement is quite inefficient. The

TRUNCATE TABLE table_name

deletes rows much faster than the DELETE command does. Notice that a

TRUNCATE TABLE

statement is not a DML statement. Therefore, if we issue a TRUNCATE TABLE state-
ment, we cannot change our mind and perform a rollback to recover the lost rows.

2.3. SQL COMMANDS 47

2.3.8 UPDATE Command

If we want to modify existing data in an SQL database, we need to use the UPDATE

command. With this statement, we can update zero or more rows in a table.

The UPDATE statement has the following syntax.

UPDATE table_name

SET column_name = expression [, column = expression] ...

[, column = expression]

[WHERE condition]

The variables are defined as follows.

table_name table to be updated

column_name column in the table being updated

expression valid SQL expression

condition valid SQL condition

Example 1.

UPDATE Cars

SET Price = 70000

WHERE Make = ’BMW’;

Example 2.

UPDATE Cars

SET Car_Number = 7

WHERE Car_Number = 5;

48 CHAPTER 2. STRUCTURED QUERY LANGUAGE

2.3.9 CREATE TABLE Command

To generate a table we use the CREATE TABLE statement. Each table must have a
unique name. A table name cannot be an SQL reserved word. A table name should
be descriptive. Within a single table, a column name must be unique. A column
name cannot be an SQL reserved word. We also have to provide the datatype for
each column. Furthermore, we can supply the primary key constraints and the
NOT NULL constraint.

The CREATE TABLE syntax is

CREATE TABLE table_name (

column_name1 data_type [NOT NULL],

.......

column_nameN datatype [NOT NULL],

[Constraint constraint_name]

[Primary key (column_nameA, column_nameB, ... column_nameN)]);

The variables are defined as follows

table_name name for the table

column_name1 through column_nameN valid colun names

datatype valid datatype specification

constraint_name optional name that identifies the

primary key constraint

column_nameA through column_nameN table’s columns that compose

the primary key

Constraints include the following possibilities: NULL or NOT NULL, UNIQUE enforces
that no two rows will have the same values for this column, PRIMARY KEY tells the
database that this column is the primary key.

Example 1. Oracle style (for mySQL replace NUMBER(8) by INT for Integers (4
bytes)).

CREATE TABLE Square

(x NUMBER(6),

x2 NUMBER(6));

Example 2. Oracle style (for mySQL replace VARCHAR2(10) by VARCHAR(10) and
NUMBER(5) by INT).

CREATE TABLE Employees

(EMPLOYEE_NUMBER NUMBER(5) NOT NULL,

FIRST_NAME VARCHAR2(10),

LAST_NAME VARCHAR2(10),

DATE_OF_BIRTH VARCHAR2(10),

CAR_NUMBER NUMBER(5));

2.3. SQL COMMANDS 49

We can also write our create statement in a SQL file. Then we read this file (Oracle
style).

-- exam1.sql

DROP TABLE Employees;

DROP TABLE Cars;

CREATE TABLE Employees

(EMPLOYEE_NUMBER NUMBER(5) NOT NULL,

FIRST_NAME VARCHAR2(10),

LAST_NAME VARCHAR2(10),

DATE_OF_BIRTH VARCHAR2(10),

CAR_NUMBER NUMBER(5));

INSERT INTO Employees VALUES

(10001,’John’,’Smith’,’28-AUG-43’,5);

INSERT INTO Employees VALUES

(10083,’Arvid’,’Sharma’,’24-NOV-54’,null);

INSERT INTO Employees VALUES

(10035,’Sean’,’Washington’,’22-FEB-81’,12);

CREATE TABLE Cars

(CAR_NUMBER NUMBER(2),

MAKE VARCHAR2(14),

MODEL VARCHAR2(14),

YEAR NUMBER(4));

INSERT INTO Cars VALUES

(5,’BMW’,’Z3’,1998);

INSERT INTO Cars VALUES

(12,’VW’,’POLO’,1999);

In mySQL the command

LOAD DATA INFILE ’file_name.txt’

INTO TABLE tbl_name

reads rows from a text file into a table. If the LOCAL keyword is specified, the file is
read from the client host.

50 CHAPTER 2. STRUCTURED QUERY LANGUAGE

In the following SQL file we also include a primary key and foreign key (Oracle
style).

-- exam2.sql

DROP TABLE Employees;

DROP TABLE Cars;

CREATE TABLE Cars

(CAR_NUMBER NUMBER(5),

MAKE VARCHAR2(14),

MODEL VARCHAR2(14),

YEAR NUMBER (4),

CONSTRAINT PK_CARS

Primary Key (CAR_NUMBER));

CREATE TABLE Employees

(EMPLOYEE_NUMBER NUMBER(5) NOT NULL,

FIRST_NAME VARCHAR2(20),

LAST_NAME VARCHAR2(20),

DATE_OF_BIRTH VARCHAR2(10),

CAR_NUMBER NUMBER (5),

CONSTRAINT PK_EMPLOYEES

Primary Key (EMPLOYEE_NUMBER,CAR_NUMBER),

CONSTRAINT FK_EMPLOYEES_CAR_NUMBER

Foreign Key (CAR_NUMBER) REFERENCES Cars (CAR_NUMBER));

INSERT INTO Cars VALUES

(5,’BMW’,’Z3’,1998);

INSERT INTO Cars VALUES

(12,’VW’,’Polo’,1999);

INSERT INTO Cars VALUES

(6,’MERCEDES’,’BENZ’,1999);

INSERT INTO Employees VALUES

(10001,’John’,’Smith’,’28-Aug-43’,5);

INSERT INTO Employees VALUES

(10083,’Arvid’,’Sharma’,’24-Nov-54’,6);

INSERT INTO Employees VALUES

(10035,’Sean’,’Washington’,’28-Feb-81’,12);

2.3. SQL COMMANDS 51

2.3.10 DROP TABLE Command

The SQL DROP TABLE command is used if we decide that a base relation in the
database is not needed any longer. We can then delete the relation and its definitions
using the DROP TABLE command. This also removes a tuple from the SYSTABLES and
system catalog table. This means DROP TABLE deletes all rows and removes the table
definition from the database.

The syntax is as follows

DROP TABLE table_name;

Example.

DROP TABLE Cars;

The DROP command is also used together with the ALTER command.

We may not drop a table if it is referenced by another table.

52 CHAPTER 2. STRUCTURED QUERY LANGUAGE

2.3.11 ALTER TABLE Command

Sometimes it is necessary to modify a table’s definition. The ALTER TABLE statement
serves this purpose. This statement changes the structure of a table, not its con-
tents. Using ALTER TABLE, the changes we can make to a table include the following

1) Adding a new column to an existing table

2) Increasing or decreasing the width of an existing column

3) Changing an existing column from mandatory to optional or vice versa

4) Specifying a default value for an existing column

5) Specifying other constraints for an existing column

Here are the four basic forms of the ALTER TABLE statement:

ALTER TABLE table_name

ADD (column_specification | constraint , ...

column_specification | constraint);

ALTER TABLE table_name

MODIFY (column_specification | constraint , ...

column_specification | constraint);

ALTER TABLE table_name DROP PRIMARY KEY;

ALTER TABLE table_name DROP CONSTRAINT constraint;

The variables are defined as follows:

table_name name of the table

column_specification valid specification for a column

(column name and datatype)

constraint column or table constraint

The first form of the statement is used for adding a column, the primary key, or a
foreign key to a table. The second form of the statement is used to modify an ex-
isting column. Among other things, we can increase a column’s width or transform
it from mandatory to optional. The third and fourth forms of the ALTER TABLE

statement are used for dropping a table’s primary key and other constraints.

Example.

ALTER TABLE Cars

DROP Make;

2.4. SET OPERATORS 53

2.4 Set Operators

In this section we consider the set operators in the SELECT statement. The SQL
language is a partial implementation of the model as envisioned by Codd, the father
of relational databases. As part of that implementation SQL provides three set
operators

INTERSECT, UNION, MINUS

The mathematical symbols are ∩, ∪, \. Let A and B be two sets. The definitions
are

A ∩B := { x ∈ A and x ∈ B }

A ∪B := {x ∈ A or x ∈ B }

A \B := {x ∈ A x /∈ B } .

The symmetric difference ∆ of the sets A and B is defined as

A4B := (A ∪B) \ (A ∩B) .

Example. Let

A = { "Olten", "Johannesburg", "Singapore" }

B = { "Johannesburg", "Stoeckli" } .

Then

A ∩B = { "Johannesburg" }

A ∪B = { "Olten", "Johannesburg", "Singapore", "Stoeckli" }

A \B = { "Olten", "Singapore" }

If the set is finite with n-elements, then the number of subsets (including the empty
set and the set itself) is 2n.

54 CHAPTER 2. STRUCTURED QUERY LANGUAGE

The INTERSECT Operator

The INTERSECT operator returns the rows that are common between two sets of
rows. The syntax for using the INTERSECT operator is

SELECT stmt1

INTERSECT

SELECT stmt2

[ORDER BY clause]

The variables are defined as follows:

SELECT stmt1

and

SELECT stmt2

are valid SELECT statements. The ORDER BY clause references the columns by num-
ber rather than by name.

Requirements and considerations for using the INTERSECT operator are:

The two SELECT statements may not contain an ORDER BY clause. However, we can
order the result of the entire INTERSECT operation.

The number of columns retrieved by SELECT stmt1 must be equal to the number
of columns retrieved by SELECT stmt2.

The datatypes of the columns retrieved by SELECT stmt1 must match the datatypes
of the columns retrieved by SELECT stmt2.

The optional ORDER BY clause differs from the usual ORDER BY clause in a SELECT

statement because the columns used for ordering must be refereneced by number
rather than by name. The reason is that SQL does not require that the column
names retrieved by SELECT stmt1 be identical to the column names retrieved by
SELECT stmt2. Therefore, we must indicate the columns to be used in ordering
results by their position in the select list.

2.4. SET OPERATORS 55

The UNION Operator

To combine the rows from similar tables or produce a report or to create a table for
analysis we apply the UNION operator. The syntax is

SELECT stmt1

UNION

SELECT stmt2

[ORDER BY clause]

The variables are defined as follows

SELECT stmt1

and

SELECT stmt2

are valid SELECT statements. The ORDER BY clause references the columns by num-
ber rather than by name.

The MINUS Operator

The syntax is

SELECT stmt1

MINUS

SELECT stmt2

[ORDER BY clause]

The variables are defined as follows

SELECT stmt1

and

SELECT stmt2

are valid SELECT statements. The ORDER BY clause references the columns by num-
ber rather than by name.

56 CHAPTER 2. STRUCTURED QUERY LANGUAGE

Both C++ using the STL with the class set and Java with the class TreeSet allow
set-theoretical operations. We can find the union, intersection and difference of two
finite sets. We can also get the cardinality of the finite set (i.e. the number of
elements). Furthermore, we can find out whether a finite set is a subset of another
finite set and whether a finite set contains a certain element.

In C++ the class set is a sorted associative container that stores objects of type
Key. The class set is a simple associative container, meaning that its value type,
as well as its key type, is key. It is also a unique associative container meaning that
no two elements are the same. The C++ class set is suited for the set algorithms

includes,

set_union, set_intersection,

set_difference, set_symmetric_difference

The reason for this is twofold. First, the set algorithms require their arguments to
be sorted ranges, and, since the C++ class set is a sorted associative container,
their elements are always sorted in ascending order. Second, the output range of
these algorithms is always sorted, and inserting a sorted range into a set is a fast
operation. The class set has the important property that inserting a new element
into a set does not invalidate iterators that point to existing elements. Erasing
an element from a set also does not invalidate any iterator, except of course, for
iterators that actually point to the element that is being erased. Other functions in
the C++ class set are

bool empty()

which returns true if the container is empty,

int size()

which returns the number of elements in the container.

The following program shows an application of this class.

// setstl.cpp

#include <iostream>

#include <set>

#include <algorithm>

#include <string.h>

using namespace std;

struct ltstr

{

2.4. SET OPERATORS 57

bool operator() (const char* s1,const char* s2) const

{

return strcmp(s1,s2) < 0;

}

};

int main()

{

const int N = 3;

const char* a[N] = { "Steeb", "C++", "80.00" };

const char* b[N] = { "Solms", "Java", "80.00" };

set<const char*,ltstr> S1(a,a+N);

set<const char*,ltstr> S2(b,b+N);

set<const char*,ltstr> S3;

cout << "union of the sets S1 and S2: " << endl;

set_union(S1.begin(),S1.end(),S2.begin(),S2.end(),

ostream_iterator<const char*>(cout," "),ltstr());

cout << endl;

cout << "intersection of sets S1 and S2: " << endl;

set_intersection(S1.begin(),S1.end(),S2.begin(),S2.end(),

ostream_iterator<const char*>(cout," "),ltstr());

cout << endl;

set_difference(S1.begin(),S1.end(),S2.begin(),S2.end(),

inserter(S3,S3.begin()),ltstr());

cout << "Set S3 difference of S1 and S2: " << endl;

copy(S3.begin(),S3.end(),ostream_iterator<const char*>(cout," "));

cout << endl;

// S2 subset of S1 ?

bool b1 = includes(S1.begin(),S1.end(),S2.begin(),S2.end(),ltstr());

cout << "b1 = " << b1 << endl;

// S4 subset of S2 ?

const char* c[1] = { "Solms" };

set<const char*,ltstr> S4(c,c+1);

bool b2 = includes(S2.begin(),S2.end(),S4.begin(),S4.end(),ltstr());

cout << "b2 = " << b2;

return 0;

}

58 CHAPTER 2. STRUCTURED QUERY LANGUAGE

In Java the interface Set is a Collection that cannot contain duplicates elements.
The interface Set models the mathematical set abstraction. The Set interface
extends Collection and contains no methods other than those inherited from
Collection. It adds the restriction that duplicate elements are prohibited. The
JDK contains two general-purpose Set implementations. The class HashSet stores
its elements in a hash table. The class TreeSet stores its elements in a red-black
tree. This guarantees the order of iteration.

The following program shows an application of the TreeSet class.

// SetOper.java

import java.util.*;

public class SetOper

{

public static void main(String[] args)

{

String[] A = { "Steeb", "C++", "80.00" };

String[] B = { "Solms", "Java", "80.00" };

TreeSet S1 = new TreeSet();

for(int i=0; i < A.length; i++)

S1.add(A[i]);

System.out.println("S1 = " + S1);

TreeSet S2 = new TreeSet();

for(int i=0; i < B.length; i++)

S2.add(B[i]);

System.out.println("S2 = " + S2);

// union

TreeSet S3 = new TreeSet(S1);

boolean b1 = S3.addAll(S2);

System.out.println("S3 = " + S3);

System.out.println("S1 = " + S1);

// intersection

TreeSet S4 = new TreeSet(S1);

boolean b2 = S4.retainAll(S2);

System.out.println("S4 = " + S4);

System.out.println("S2 = " + S2);

// (asymmetric) set difference

2.4. SET OPERATORS 59

TreeSet S5 = new TreeSet(S1);

boolean b3 = S5.removeAll(S2);

System.out.println("S5 = " + S5);

// test for subset

TreeSet S6 = new TreeSet(S1);

boolean b4 = S6.containsAll(S2);

System.out.println("b4 = " + b4);

// is element of set (contains)

boolean b = S1.contains("80.00");

System.out.println("b = " + b);

b = S2.contains("Steeb");

System.out.println("b = " + b);

}

}

The output is

S1 = [80.00, C++, Steeb]

S2 = [80.00, Java, Solms]

S3 = [80.00, C++, Java, Solms, Steeb]

S1 = [80.00, C++, Steeb]

S4 = [80.00]

S2 = [80.00, Java, Solms]

S5 = [C++, Steeb]

b4 = false

b = true

b = true

Other methods are

int size()

which returns the number of elements in this set (its cardinality) and

boolean isEmpty()

returns true if this set contains no elements.

60 CHAPTER 2. STRUCTURED QUERY LANGUAGE

2.5 Views

We use the CREATE VIEW statement to create a new view with its definition based
upon a current table or another view of the database. A view is also known as a
synthetic table. We can query or update the view as if it is a table. The table data
is a view of what is stored in the real table. The view does not actually contain or
store its own data. The only storage that a view actually requires is the SELECT

statement that defines it. Thus a view is a stored query based on a query of one or
more tables. Views are created for many purposes.

1) Restrict users to specific rows or columns of tables

2) Control the insert and update data of the table

3) Avoid redundancy of data

A view acts just like any other table and consists of all rows and columns that are
the result of the SELECT statement used at the creation time. The data attributes
for each column are derived from the original table. The user must have the select
privilege on the table in order to create the view.

The syntax for creating a view is

CREATE VIEW view-name

(column1,...,columnN)

AS

SELECT statement

where view-name is the name of the view subject to the same requirements as other
SQL object names. We can use a view in all SQL statements that deal with data
viewing and manipulation, such as

SELECT, INSERT, DELETE, UPDATE .

2.5. VIEWS 61

A view cannot be used in database layout SQL statements such as the following:

1) Alter Index

2) Create Index

3) Drop Index

4) Alter Table

5) Create Table

6) Drop Table

7) Lock Table

8) Rename Table

9) Unlock Table

There are additional restrictions when using views. Because a view is not a real
table, we cannot create an index, and the INTO TEMP, UNION, and ORDER BY functions
cannot be processed. A view is based on one or more tables, so it should always
reflect the most current changes of the tables. We can perform updates and inserts on
a view with certain restrictions. First, we can update a view only if the columns are
not derived from the SELECT statement that creates the view. An INSERT statement
follows the same rules, and the view must be modifiable for any function to complete.
The privileges on a view are checked at the time the CREATE VIEW statement is
processed. The authorization is checked from the table from which we want to
create our view. When a table is created, the grant to public is automatic, but that
is not the case with a view. If the view is modifiable, the database server grants
DELETE, INSERT, and UPDATE privileges.

62 CHAPTER 2. STRUCTURED QUERY LANGUAGE

2.6 Primary and Foreign Keys

A primary key is a column or set of columns that uniquely identifies the rest of the
data in any given row. For example, in the table Employees, the Employee_No col-
umn uniquely identifies that row. This means two things: no two rows can have the
same Employee_No, and, even if two employees have the same first and last names,
the Employee_No column ensures that the two will not be confused with each other,
because the unique Employee_No column will be used through the database to track
the employees, rather than the names.

A foreign key is a column in a table where that column is the primary key of another
table, which means that any data in a foreign key column must have corresponding
data in the other table where the column is the primary key. This correspondence is
known as referential integrity. In the table Employees the Car_Number is a foreign
key. It is the primary key in the table Cars.

When we define a foreign key, the database system verifies the following

1) A primary key has been defined for the table by the foreign key.

2) The number of columns composing the foreign key matches the number of pri-
mary key columns.

3) The datatype and width for each foreign key column matches the datatype and
width of each primary key columm.

For example in mySQL we set up a primary key as follows:

> DROP DATABASE db;

> CREATE DATABASE db;

> USE db;

> CREATE TABLE customers (

> customers_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

> INDEX customers_index(customers_id),

> companyname VARCHAR(80) NOT NULL,

> address VARCHAR(80) NOT NULL,

> PRIMARY KEY(customers_id)

>)

Assume we have a lot of data (i.e. a lot of rows), and we want to try and improve
our performance. The trick is to use an INDEX on commonly used columns in our
queries. If we have a WHERE clause in our SQL statement, then the columns we are
selecting on may benefit from indexes.

2.7. DATATYPES IN SQL 63

2.7 Datatypes in SQL

Datatypes in SQL can be classified as follows:

Numbers

Strings

Date and Time information

Large strings and BLOBs (Binary Large OBjects)

Datatypes slightly differ from system to system. Database systems offer several
datatypes for storing numbers; each suited for a different purpose.

NUMBER stores general numbers

DECIMAL stores fixed-point numbers

FLOAT stores floating-point numbers

(equivalent to double in C++ and Java)

The NUMBER datatype (specific to Oracle) offers the greatest flexibility for storing
numerical data. It accepts positive and negative integers and real numbers, and has
from 1 to 38 digits of precision. The syntax is

NUMBER(precision,scale)

The variables are defined as follows: precision is the maximum number of digits
to be stored, scale is used to indicate the position of the decimal point number of
digits to the right (positive) or left (negative) of the decimal point. The scale can
range from −84 to 127. In mySQL we have INT for signed and unsigned integers (4
bytes).

One can store from 1 to 38 digits of precision for a number. The number of bytes
required to store a number in a database depends on how many digits are used to
express the number. If we limit the precision, the database system limits the values
that can be stored in the column to the defined precision.

The DECIMAL type is used for values for which it is important to preserve exact
precision, for example with monetary data. When declaring a column the precision
and scale can be (and usually is) specified. For example

salary DECIMAL(9,2)

In this example, 9 (precision) represents the number of significant decimal digits
that will be stored for values, and 2 (scale) represents the number of digits that will
be stored following the decimal point. In this case, therefore, the range of values
that can be stored in the salary column is from -9999999.99 to 9999999.99.

64 CHAPTER 2. STRUCTURED QUERY LANGUAGE

To store strings in a database system, we can choose from several datatypes.

CHAR

VARCHAR

VARCHAR2 (Oracle)

LONG or LONGVARCHAR

The bulk of many databases is character data. The CHAR datatype stores fixed-
length character strings of up to 255 characters, but specifying the n in CHAR(n).
If we do not specify a length, a CHAR column stores a single character. Since the
CHAR datatype stores fixed-length columns, we use it when we are defining columns
that will contain a single character. Using the CHAR datatype to store larger strings
is not efficient because we waste storage space. The size for VARCHAR(n) differs
from system to system. For example, Sybase 11.0 has n <= 255 and IBM DB2 has
n <= 4000. In Oracle VARCHAR(n) is replaced by VARCHAR2 which can store up to
2000 characters in a single column. In Oracle VARCHAR2 is the prefered datatype for
storing strings, because it stores variable-length strings. If we need more storage
we choose the LONG or LONGVARCHAR datatype. We can store 2GB of characters in a
LONG column. We face a number of restrictions on the use of LONG columns in SQL.
We cannot use functions or operators to search or modify the contents of a LONG

column. We can think of a LONG column as a large container into which we can store
or retrieve data - but not manipulate it. In mySQL the CHAR and VARCHAR types
are similar, but differ the way they are stored and retrieved. The length of a CHAR

column is fixed to the length that we declare when we create the table. The length
may be 0 to 255. Values in VARCHAR are variable-length strings. We can declare a
VARCHAR column to be any length between 1 and 255.

Each database system also provides the datatypes for date and time. The DATE

datatype provides storage for both date and time information. For example, Oracle
always allocates a fixed 7 bytes for a DATE column, even if we are using a DATE

column to store date information only or time information only. Database systems
have quite a few built-in functions specifically for manipulating DATE values and
expressions. The DATE datatype can store dates in the range of January 1, 4712 B.
C. to December 31, 4712 A. D. Most database system use the default format

DD-MO-YY

for entering and displaying dates. Most systems allow the format to be changed

In mySQL the date and time data types are DATETIME, DATE, TIMESTAMP and YEAR.
Dates must be given in the year-month-day order. The DAYTIME type is used when
we need values that contain both date and time information. MySQL retrieves
and displays DATETIM values in ’YYYY-MM-DD’ HH:MM:SS. The TIMESTAMP column
provides a type that we use to automatically mark INSERT and UPDATE operations
with the current date and time.

2.7. DATATYPES IN SQL 65

Most database systems provide for the storage of binary large objects (BLOBs).
BLOBs include documents, graphics (for example jpeg files), sound, video - actu-
ally, any type of binary file we can have. For example in Oracle LONG RAW datatype
is designed for BLOB storage. When we want to associate a BLOB with a normal
row, two choices are available: store the BLOB in an operating system file and store
the directory and filename in the associated table or store the BLOB itself in a
LONG RAW column.

Some database system also provide the datatype RAW. It can accommodate up to
255 bytes of binary data. Owing to this storage restriction, a RAW column is less
useful than a LONG RAW column.

Newer database systems also have the datatype CLOBs to store character data,
NCLOBs to store character data to support Asian languages, and BFILEs to ref-
erence binary files in the file system.

In mySQL we have four BLOB types. The four BLOB types TINYBLOB, BLOB,
MEDIUMBLOB, and LONGBLOB differ only in the maximum length of the values they
can hold.

mySQL also has four TEXT types TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT

correspond to the four BLOB types and have the same maximum length and storage
requirements. The only difference between BLOB and TEXT types is that sorting
and comparison is performed in case-sensitive fashion for BLOB values and case-
insensitive fashion for TEXT values. In other words, a TEXT is a case-insensitive
BLOB. Since BLOB and TEXT values may be extremely long, we may run up against
constraints when using them. If we want to use GROUP BY or ORDER BY on a BLOB
or TEXT column, we must convert the column value into a fixed-length object.

66 CHAPTER 2. STRUCTURED QUERY LANGUAGE

2.8 Joins

A distinguishing feature of relational databases is that it is possible to get data
from more than one table in what is called a join. Suppose that after retrieving the
names of employees who have company cars, one wanted to find out who has which
car, including the make, model, the year of car and the price. This information is
stored in the table Cars. There must be one column that appears in both tables in
order to relate them to each other. This column, which must be the primary key
in one table, is called the foreign key in the other table. In the present case, the
column that appears in two tables is Car_Number, which is the primary key for the
table Cars and the foreign key for the table Employees. If the 1999 BMW Z3 were
wrecked and deleted from the Cars table, then Car_Number 5 would also be have to
be removed from the Employees table in order to maintain what is called referential
integrity. Otherwise, the foreign key column (Car_Number) in Employees would
contain an entry that did not refer to anything in table Cars. A foreign key must
either be null or equal to an existing primary key value in the table to which it
refers. This is different from a primary key, which may not be null. There are
several null values in the Car_Number column in the table Employees because it is
possible for an employee not to have a company cars.

Example. The following command aks for the first and last names of employees who
have company cars for the make and model. Note that the FROM clause lists both
Employees and Cars because the requested data is contained in both tables. Using
the table name and the access operator . before the column name indicates which
table contains the column.

SELECT Employees.First_Name, Employees.Last_Name, Cars.Make,

Cars.Model, Cars.Price

FROM Employees, Cars

WHERE Employees.Car_Number = Cars.Car_Number;

The result set is

First_Name Last_Name Make Model Price

---------- ---------- -------- ----- -----

John Smith BMW Z3 62000

Florence Wojokowski Volkswagen Lupo 30000

--

2.8. JOINS 67

Thus a join is a process in which two or more tables are combined to form a single
table. The join can be dynamic, where two tables are merged to form a virtual table,
or static, where two tables are joined and saved for future reference. A static join is
usually a stored procedure which can be invoked to refresh and then query the saved
table. Joins are performed on tables that have a column of common information.
Conceptually, there are many types of joins, which are discussed later in this section.

Consider the following example with three tables. We have a table

Students

Student_ID Student_Name

========== ============

1 John

2 Mary

3 Jan

4 Jack

==========================

a table Courses

Course_ID Course_Title

========= =============

S1 Math

S2 English

S3 Computer

S4 Logic

========================

and a table StudentCourses

Student_ID Course_ID

========== =========

2 S2

3 S1

4 S3

=======================

MySQL supports the following JOIN syntaxes for use in SELECT statements

SELECT ... CROSS JOIN table_reference

SELECT ... INNER JOIN table_reference

SELECT ... LEFT OUTER JOIN table_reference

SELECT ... NATURAL JOIN table_referece

68 CHAPTER 2. STRUCTURED QUERY LANGUAGE

Inner Join

A simple join called the inner join with the Students and StudentCourses tables
give us the following table (Inner Join Table)

Student_ID Student_Name Course_ID

========== ============ =========

2 Mary S2

3 Jan S1

4 Jack S3

==

That is, we get a new table which combines the Students and StudentCourses tables
by adding the Student_Name column to the StudentCourses table.

Just because we are using the Student_ID to link the two tables does not mean that
we should fetch that column. We can exclude the key field from the result table of
an inner join. The SQL statement for this inner join is as follows:

SELECT Students.Student_Name, StudentCourses.Course_ID

FROM Students, StudentCourses

WHERE Students.Student_ID = StudentCourses.Student_ID

2.8. JOINS 69

Outer Join

An outer join between two tables (say Table1 and Table2) occurs when the result
table has all the rows of the first table and the common records of the second table.
The first and second table are determined by the order in the SQL statement. There
is a LEFT OUTER JOIN and a RIGHT OUTER JOIN.

If we assume a SQL statement with the

SELECT FROM Table1, Table2

clause, in a left outer join, all rows of the first table (Table1) and common rows
of the second table (Table2) are selected. In a right outer join, all records of the
second table (Table2) and common rows of the first table (Table1) are selected. A
left outer join with the Students table and the StudentCourses table creates

Student_ID Student_Name Course_ID

========== ============ =========

1 John null

2 Mary S2

3 Jan S1

4 Jack S3

==

This join is useful if we want the names of all students, regardless of whether they
are taking any subjects this term, and the subjects taken by the students who have
enrolled in this term. Some people call it an if-any join, as in,

"Give me a list of all students and the subjects they are taking, if any".

The syntax is

SELECT column_list FROM table_reference

LEFT | RIGHT | FULL | [OUTER] JOIN table_reference

ON predicate

[LEFT | RIGHT | FULL [OUTER] JOIN table_reference

ON predicate ...]

We use an OUTER JOIN to join two tables, a source and joining table, that have one
or more columns in common. One or more columns from each table are compared
in the ON clause for equal values. The primary difference between inner and outer
joins is that, in outer joins, rows from the source table that do not have a match
in the joining table are not excluded from the result set. Columns from the joining
table for rows in the source table without matches have NULL values.

70 CHAPTER 2. STRUCTURED QUERY LANGUAGE

The LEFT modifier causes all rows from the table on the left of the OUTER JOIN op-
erator to be included in the result set, with or without matches in the table to the
right. If there is no matching row from the table on the right, its columns contain
NUL values.

The RIGHT modifier causes all rows from the table on the right of the OUTER JOIN

operator to be included in the result set, with or without matches. If there is no
matching row from the table on the left, its columns contain NUL values.

Full Outer Join

The full outer join returns all the records from both the tables merging the common
rows.

Student_ID Student_Name Course_ID

========== ============ =========

1 John null

2 Mary S2

3 Jan S1

4 Jack S3

null null S4

======================================

What if we want only the students who haven’t enrolled in this term or the subjects
who have no students (the tough subjects or professors)? Then, we resort to the
subtract join. In this case, the join returns the rows that are not in the second table.
Remember, a subtract join has only the fields from the first table. By definition,
there are no records in the second table.

There are many other types of joins, such as the self join, which is a left outer join
of two tables with the same structure. An example is the assembly/parts explosion
in a Bill of Materials application for manufacturing. The join types that we have
discussed so far are enough for normal applications. In all of these joins, we were
comparing columns that have the same values; these joins are called equi-joins.
Joins are not restricted to comparing columns of equal values. We can join two
tables based on column value conditions (such as the column of one table being
greater than the other). For equi-joins, as the column values are equal, we retrieved
only one copy of the common column. Then, the joins are called natural joins.
When we have a non equi-join, we might need to retrieve the common columns from
both tables.

2.9. STORED PROCEDURE 71

2.9 Stored Procedure

A stored procedure is a group of SQL statements that can be called by name. In other
words, it is executable code, a mini-program, that performs a particular task that can
be invoked the same way one can call a function. Once a stored procedure is written,
it can be used and reused because a DBMS that supports stored procedures will, as
the name implies, store it in the database. A DBMS compiles a stored procedure
before storing it, so it does not have to be recompiled each time it is called, cutting
down on execution time.

The following code is an example of how to create a very simple stored procedure,
but since each DBMS has its own way of creating stored procedures, it is meant to
give only an idea of how it might be done and is not meant to be used in actual code.

This example creates a stored procedure called Assign_Car_Num, which updates the
Employees table. It takes two input arguments, the number of the car to be added
and the number of the employee to whom the car is being assigned. The type of
each argument must be integer, as specified in the first line.

create procedure Assign_Car_Num(Car_No integer,Emp_No integer)

as begin

UPDATE Employees

SET Car_Number = Car_No

WHERE Employeee_Number = Emp_No

end

72 CHAPTER 2. STRUCTURED QUERY LANGUAGE

2.10 MySQL Commands

The main MySQL commands are:

The command

> SHOW DATABASES;

lists the databases managed by the server.

To find out which database is currently selected, we use the command

> SELECT DATABASE();

The

> USE db_name;

statement tells mySQL to use the db_name database as the default database for
subsequent queries. The database remains current until the end of the session or
until another USE statement is issued.

We can find out about the structure of the table with the command

> DESCRIBE table_name;

To find out what tables the current database contains (for example when we are not
sure about the names of a table), we use the command

> SHOW TABLES;

The

LOAD DATA INFILE ’file_name.txt’

INTO TABLE tbl_name

statement reads rows from a text file into a table at a very high speed. If the LOCAL

keyword is specified, the file is read from the client host.

With the command

> SOURCE sql_file

we can load an sql-file after the commands CREATE DATABASE db_name;

and CONNECT db_name;.

2.11. CURSORS 73

2.11 Cursors

A relational database query normally returns many rows of data. But an application
program usually deals with one row at a time. Even when an application can handle
more than one row-for example, by displaying the data in a table or spreadsheet
format-it can still handle only a limited number of rows. Also, updating, modifying,
deleting, or adding data is done on a row basis. This is where the concept of cursors
come in the picture. In this context, a cursor is a pointer to a row. It is like the cur-
sor on the CRT-a location indicator. Different types of multi-user applications need
different types of data sets in terms of data concurrency. Some applications need to
know as soon as the data in the underlying database is changed. Such as the case
with reservation systems, the dynamic nature of the seat allocation information is
extremely important. Others such as statistical reporting systems need stable data;
if data is in constant change, these programs cannot effectively display any results.
The different cursor designs support the need for the various types of applications.

A cursor can be viewed as the underlying data buffer. A fully scrollable cursor is
one where the program can move forward and backward on the rows in the data
buffer. If the program can update the data in the cursor, it is called a scrollable,
updatable cursor. An important point to remember when we think about cursors is
the transaction isolation. If a user is updating a row, other users might be viewing
the row in a cursor of their own. Data consistency is important here. Worse, the
other users also might be updating the same row!

The ResultSet in JDBC API is a cursor. But it is only a forward scrollable cursor-
this means we can move only forward using the getNext() method.

ODBC cursors are very powerful in terms of updatability, concurrency, data in-
tegrity, and functionality. The ODBC cursor scheme allows positioned delete and
update and multiple row fetch (called a rowset) with protection against lost updates.
ODBC supports static, keyset-driven, and dynamic cursors.

In the static cursor scheme, the data is read from the database once, and the data
is in the snapshot recordset form. Because the data is a snapshot (a static view of
the data at a point of time), the changes made to the data in the data source by
other users are not visible. The dynamic cursor solves this problem by keeping live
data, but this takes a toll on network traffic and application performance.

The keyset-driven cursor is the middle ground where the rows are identified at the
time of fetch, and thus changes to the data can be tracked. Keyset-driven cursors
are useful when we implement a backward scrollable cursor. In a keyset-driven cur-
sor, additions and deletions of entire rows are not visible until a refresh. When we
do a backward scroll, the driver fetches the newer row if any changes are made.

ODBC also supports a modified scheme, where only a small window of the keyset is

74 CHAPTER 2. STRUCTURED QUERY LANGUAGE

fetched, called the mixed cursor, which exhibits the keyset cursor for the data win-
dow and a dynamic cursor for the rest of the data. In other words, the data in the
data window (called a RowSet) is keyset-driven, and when we access data outside
the window, the dynamic scheme is used to fetch another keyset-driven buffer.

Static cursors provide a stable view of the data, because the data does not change.
They are good for data mining and data warehousing types of systems. For these
applications, we want the data to be stable for reporting executive information sys-
tems or for statistical or analysis purposes. Also, the static cursor outperforms other
schemes for large amounts of data retrieval.

On the other hand, for online ordering systems or reservation systems, we need
a dynamic view of the system with row locks and views of data as changes are
made by other users. In such cases, we will use the dynamic cursor. In many of
these applications, the data transfer is small, and the data access is performed on
a row-by-row basis. For these online applications, aggregate data access is very rare.

Bookmark is a concept related to the cursor model, but is independent of the cursor
scheme used. Bookmark is a placeholder for a data row in a table. The application
program requests a bookmark for a row from the underlying database management
system. The DBMS usually returns a 32-bit marker which can be later used by
the application program to get to that row of data. In ODBC, we use the SQLEx-
tendedFetch function with SQL_FETCH_BOOKMARK option to get a bookmark. The
bookmark is useful for increasing performance of GUI applications, especially the
ones where the data is viewed through a spreadsheet-like interface.

This is another cursor-related concept. If a cursor model supports positioned up-
date/delete, then we can update/delete the current row in a result set without any
more processing, such as a lock, read, or fetch. In SQL, a positioned update or
delete statement is in the form of

UPDATE/DELETE Field or Column values etc. WHERE CURRENT OF cursor name;

The positioned update statement to update the fields in the current row is

UPDATE table SET field = value WHERE CURRENT OF cursor name;

The positioned delete statement to delete the current row takes the form of

DELETE table WHERE CURRENT OF cursor name;

Generally, for this type of SQL statement to work, the underlying driver or the
DBMS has to support updatability, concurrency, and dynamic scrollable cursors.
But there are many other ways of providing the positioned update/delete capability
at the application program level.

2.12. PL AND SQL 75

2.12 PL and SQL

SQL is a language without procedural capabilities. However, Oracle offers procedu-
ral language extensions to SQL through the PL/SQL language. PL/SQL is a block-
structered language with a syntax similar to PASCAL. In addition to supporting
embedded SQL statements, PL/SQL offers standard programming constructs such
as procedure and function declarations, control statements such as IF ... ELSE

and LOOP, and declared variables. An example is given below.

> drop table test_table;

Table dropped.

>

> create table test_table (

> record_number int,

> current_date date);

Table created.

>

> DECLARE

>

> max_records CONSTANT int := 100;

> i int := 1;

>

> BEGIN

>

> FOR i IN 1..max_records LOOP

>

> INSERT INTO test_table

> (record_number,current_date)

> VALUES

> (i,SYSDATE);

>

> END LOOP;

>

> COMMIT;

> END;

76 CHAPTER 2. STRUCTURED QUERY LANGUAGE

2.13 ABAP/4 and SQL

ABAP/4 contains a subset of SQL (called Open SQL) that is an integral part of the
language. ABAP/4 programs using Open SQL can access data from all database
systems that are supported by the R/3 system. Internal tables and database tables
work together. The contents of a database table can be mapped into an internal
table at runtime, so that the internal table is a snapshot of a database table. For
example, to create a list containg all the entries in a database table, we can read
the table contents into an internal table with the same structure and display each
line as follows:

tables customers.

data all_customers like customers occurs 100

with header line.

select * from customers into table all_customers.

loop at all_cusomers.

write: / all_customers-name.

endloop.

Using a where clause of a SELECT statement, the set of selected records can be re-
stricted according to a logical condition. We can also specify a subset of all table
fields and use aggregate functions, such as the number of table entries satisfying a
certain condition.

ABAP/4 also provides several commands for changing database table:

insert, update, modify, delete .

Using these commands we can change a single entry as well as a set of entries. The
tables of a relational database always have a flat structure (i.e., a structure cannot
contain another table).

2.14. QUERY PROCESSING AND OPTIMIZATION 77

2.14 Query Processing and Optimization

Queries in a high level language such as SQL must be:

1. Scanned and Parsed (SCANNER-PARSER). The Scanner identifies the tokens
or language elements, and the Parser check for syntax or grammar validity.

2. Validated (VALIDATOR). The Validator check for valid names and semantic
correctness.

3. Converted to internal representation (usually a QUERY TREE)

For example given the database with the three tables called S, C and E

S

|S#|SNAME |LCODE |

===|======|======|

|25|CLAY |NJ5101|

|32|THAISZ|NJ5102|

|38|GOOD |FL6321|

|17|BAID |NY2091|

|57|BROWN |NY2092|

==================

C

|C#|CNAME|SITE|

|==|=====|====|

|8 |DSDE |ND |

|7 |CUS |ND |

|6 |3UA |NJ |

|5 |3UA |ND |

===============

E

|S#|C#|GR|

|==|==|==|

|32|8 |89|

|32|7 |91|

|25|7 |68|

|25|6 |76|

|32|6 |62|

==========

78 CHAPTER 2. STRUCTURED QUERY LANGUAGE

The SQL command

SELECT S.SNAME, C.CNAME, E.GR FROM S,C,E

WHERE

S.S#=E.S# and C.C#=E.C# and S.LCODE=NJ5101

and C.SITE="ND" and E.GR=68;

would get SCANNED, PARSED, VALIDATED and then CONVERTED to a query
tree which follows the WHERE-clause sequencing:

M=PROJ(L)[SNAME,CNAME,GR]

|

L=SELECT(K.GR=68)

|

K=SELECT(H.SITE="ND")

|

H=SELECT(G.LCODE="NJ5101")

|

G=JOIN(F.C#=C.C#)

/\

/ \

JOIN(S.S#=E.S#)=F C

/\

/ \

S E

2.14. QUERY PROCESSING AND OPTIMIZATION 79

The results at each step (starting from the bottom of the tree) is

M=PROJ(L)[SNAME,CNAME,GR]_____________

| |SNAME |CNAME|GR|

| |CLAY |CUS |68|

|

L=SELECT(K.GR=68)_____________________________

| |S#|SNAME |LCODE |C#|GR|CNAME|SITE

| |25|CLAY |NJ5101|7 |68|CUS |ND |

|

K=SELECT(H.SITE="ND")_________________________

| |S#|SNAME |LCODE |C#|GR|CNAME|SITE

| |25|CLAY |NJ5101|7 |68|CUS |ND |

|

H=SELECT(G.LCODE="NJ5101")____________________

| |S#|SNAME |LCODE |C#|GR|CNAME|SITE

| |25|CLAY |NJ5101|7 |68|CUS |ND |

| |25|CLAY |NJ5101|6 |76|3UA |NJ |

|

G=JOIN(F.C#=C.C#)_______________________________

/ \ |S#|SNAME |LCODE |C#|GR|CNAME|SITE

/ \ |25|CLAY |NJ5101|7 |68|CUS |ND |

/ ____C_______ |25|CLAY |NJ5101|6 |76|3UA |NJ |

/ |C#|CNAME|SITE |32|THAISZ|NJ5102|8 |89|DSDE |ND |

| |8 |DSDE |ND | |32|THAISZ|NJ5102|7 |91|CUS |ND |

| |7 |CUS |ND | |32|THAISZ|NJ5102|6 |62|3UA |NJ |

| |6 |3UA |NJ |

| |5 |3UA |ND |

|

F=JOIN(S.S#=E.S#)______________________

/ \ |S#|SNAME |LCODE |C#|GR|

/ \ |25|CLAY |NJ5101|7 |68|

/ \ |25|CLAY |NJ5101|6 |76|

_______________S __E_____ |32|THAISZ|NJ5102|8 |89|

S#|SNAME |LCODE | |S#|C#|GR| |32|THAISZ|NJ5102|7 |91|

25|CLAY |NJ5101| |32|8 |89| |32|THAISZ|NJ5102|6 |62|

32|THAISZ|NJ5102| |32|7 |91|

38|GOOD |FL6321| |25|7 |68|

17|BAID |NY2091| |25|6 |76|

57|BROWN |NY2092| |32|6 |62|

80 CHAPTER 2. STRUCTURED QUERY LANGUAGE

4. Optimized: (QUERY OPTIMIZER) Execution stategy must be devised (plan
for executing, accessing data, storing intermediate results). We have to choose a
execution strategy (query tree?)

Is the query tree above efficient? Is the tree below better?

M=PROJ(G)[SNAME,CNAME,GR]

| |CLAY |CUS |68|

|

G=JOIN(F.C#=K.C#)

/ \ |S#|SNAME|LCODE |C#|GR|CNAME|SITE|

/ \ |25|CLAY |NJ5101|7 |68|CUS |ND |

__________JOIN(H.S#=L.S#)=F \

|S#|SNAME|LCODE |C#|GR| / \ \

|25|CLAY |NJ5101|7 |68| / \ ‘--------------.

/ \ \

.----------------------’ \ \

H=SELECT(S.LCODE="NJ5101") L=SELECT(E.GR=68) K=SELECT(C.SITE="ND")

: |S#|SNAME |LCODE | : |S#|C#|GR| : |C#|CNAME|SITE|

: |25|CLAY |NJ5101| : |25|7 |68| : |8 |DSDE |ND |

: : : |7 |CUS |ND |

: : : |5 |3UA |ND |

: : :

S________________ ______E_ ______C_____

|S#|SNAME |LCODE | |S#|C#|GR| |C#|CNAME|SITE|

|25|CLAY |NJ5101| |32|8 |89| |8 |DSDE |ND |

|32|THAISZ|NJ5102| |32|7 |91| |7 |CUS |ND |

|38|GOOD |FL6321| |25|7 |68| |6 |3UA |NJ |

|17|BAID |NY2091| |25|6 |76| |5 |3UA |ND |

|57|BROWN |NY2092| |32|6 |62|

2.14. QUERY PROCESSING AND OPTIMIZATION 81

Is this tree really optimal? The following could be done:

i. The SITE attribute can be projected off of K (does not require elimination of
duplicates because it is not part of the key)

ii. The LCODE attribute can be projected off of H (does not require elimination of
duplicates because it is not part of the key)

iii. S# could be projected off of F (it is part of the key but duplicate elimination
could be deferred until M since it will have to be done again there anyway - thus this
projection can be a ”non duplicate-eliminating” projection too. These projections
take no time, whereas duplicate eliminating projections take a lot of time).

iv. C# can be (non-duplicate-eliminating) projected off of G.

The rules for query optimization are:

a. Always do SELECTS first (push to the bottom of the tree).

b. Always do the attribute elimination part of PROJECT as soon as possible (push
down).

c. Only do duplicate elimination once (at the top-most PROJECT only).

82 CHAPTER 2. STRUCTURED QUERY LANGUAGE

Chapter 3

Normal Forms

3.1 Introduction

When designing relational database, the tables must be in normal form. When the
database is in normal form, data can be retrieved, changed, added and deleted with-
out anomalities. The process of RDBMS normalization is an exercise in logic - from
a managerial data access and usage perspective. It requires only a little thought and
examination of how data are most logically used. When thinking about the logical
normalization process we first look at all of the data required to accomplish a task.

Normalisation process looks at the data from application viewpoint. Thus we can
not do normalisation without detailed application knowledge. Several current sys-
tems analysis methods produce normalised or near-normalised database schemas.

There are differing opinions how far the normalisation process should go, but in
most practical cases Boyce-Codd normal form is the limit. Practical situations also
exists, where normal form rules will be violated for application reasons or processing
efficiency.

There are also database systems ignoring the first normal form. These are called
Non-First Normal Form (NF2) systems. Automatic database conversion from Non-
First Normal Form into fully normalised form is possible.

We recall that keys are the columns, whose value must be known in order to select
proper rows of the table or to join tables. Whole primary key means all component
columns of the primary key.

Initially Codd (1972) presented the first three normal forms (1NF, 2NF, 3NF) all
based on functional dependencies among the attributes of a relation. Later Boyce
and Codd proposed another normal form called the Boyce-Codd normal form. The
fourth and fifth normal forms are based on multivalue and join dependencies and
were proposed later.

83

84 CHAPTER 3. NORMAL FORMS

Let us recall several definitions that are used in the world of database administration
and normalization.

entity. The word entity as it relates to databases can simply be defined as the
general name for the information that is to be stored within a single table.

Example. If we were interested in storing information about the schools students,
then student would be the entity. The student entity would likely be composed of
several pieces of information, for example: student identification number, name, and
email address. These pieces of information are better known as attributes.

functional dependency. It addresses the concept that certain data fields are
dependent upon other data fields in order to uniquely define and access them.

primary key. A primary key uniquely identifies a row of data found within a table.

Example. Referring to a school system, the student identification number would
be the primary key for the student table since an ID would uniquely identify each
student. A primary key might not necessarily correspond to one specific attribute.
It could be the result of a combination of several components of the entity. For
example, while a location could not be a primary key for a class, since there might
be several classes held there throughout the day, the combined time and location
would make a primary key, since no two classes could be held at the same time in
the same location. When multiple attributes are used to derive a primary key, this
key is known as a concatenated primary key.

relationship. Understanding of the various relationships both between the data
items forming the various entities and between the entities themselves forms the
crux of database normalization. There are three types of data relationships:

one-to-one (1:1). A one-to-one relationship signifies that each instance of a given
entity relates to exactly one instance of another entity.

Example. Each student would have exactly one grade record, and each grade record
would be specific to one student.

one-to-many (1:M). A one-to-many relationship signifies that each instance of a
given entity relates to one or more instances of another entity.

Example. One professor entity could be found teaching several classes, and each
class could in turn be mapped to one professor.

many-to-many (M:N). A many-to-many relationship signifies that many instances
of a given entity relate to many instances of another entity.

3.1. INTRODUCTION 85

Example. A schedule could be comprised of many classes, and a class could be found
within many schedules.

foreign key. A foreign key forms the basis of a 1:M relationship between two ta-
bles. The foreign key can be found within the M table, and maps to the primary
key found in the 1 table.

Example. The primary key in the professor table (probably a unique identification
number) would be introduced as the foreign key within the classes entity, since it
would be necessary to map a particular professor to several classes.

Entity-relationship diagram (ERD). An ERD is essentially a graphical repre-
sentation of the database structure. These diagrams, regardless of whether they are
built using the latest design software or scrawled on a napkin with a crayon, are
immensely useful towards attaining a better understanding of the dynamics of the
various database relationships.

86 CHAPTER 3. NORMAL FORMS

Normal forms

1NF: Each row has equal number of columns and each column contains undivisible
(atomic) data. Reduce entities to first normal form (1NF) by removing repeating
or multi-valued attributes to another, child entry (table).

In other words a relation is in 1NF if and only if all underlying domains contain
atomic values only.

2NF: The table must have a primary key. No variable column exists, which were
specifiable with only some, but not all key columns. Reduce first normal form en-
tities to second normal form (2NF) by removing attributes, that are not dependent
on the whole primary key.

In other words a relation is in 2NF if it is in 1NF and every non-key attribute is
fully dependent on each candidate key of the relation.

3NF: No variable columns may be specifiable with other variable columns. Reduce
second normal form entities to third normal form (3NF) by removing attributes that
depend on other, non-key attributes (other than alternate keys).

BCNF: Reduce third normal form entities to Boyce-Codd Normal Form (BCNF) by
ensuring, that they are in third normal form for any feasible choice of candidate key
as primary key.

4NF: Reduce Boyce-Codd Normal Form entities to fourth normal form (4NF) by
removing any independently multivalued components of the primary key to two new
parent entities. Retain the original (now child) entity only if it contains other, non-
key attributes.

5NF: Reduce fourth normal form entities to fifth normal form (5NF) by removing
pairwise cyclic dependencies (appearing within composite primary keys with three
or more component attributes) to three or more new parent entities.

PJNF: (Alagic) A relation R is in the projection/join normal form if and only if
every nontrivial join dependency, which holds in R is the result of keys.

Overnormalisation rule: In general, do not split fully normalised entities into smaller
entities.

3.2. ANOMALIES 87

3.2 Anomalies

The normalization rules are designed to prevent update and delete anomalies and
data inconsistencies.

Upate Anomaly. If data appears more than once in the database, then if one item
of the data is altered, we must alter all the instances of that data.

Insertion Anomaly. If new information is available we may not be able to enter
the data until we have data for all fields.

Deletion Anomaly. If we delete some information from the database, we may
accidentally remove additional data which we wish to keep.

As an example let us consider a table Student.

sno sname address cno cname instructor office_instructor

==== ===== ======= === ======== ========== =================

101 Smith 1, Main 302 Database Steeb 102

101 Smith 1, Main 303 C++ Hardy 102

101 Smith 1, Main 304 Java Solms 105

105 Jones 12, 7th 302 Database Steeb 102

===

The above table satisfies the properties of a relation and is said to be in first nor-
mal form (or 1NF). Conceptually it is convenient to have all the informationin one
relation since it is then likely to be easier to query the database. However the table
has the following undesirable features.

1. Repetition of information – A lot of information is being repeated. Student
name, address, course name, instructor name and office number of the instructors
are repeated often. Every time we wish to insert a student enrolment, say, for cno
302 we must insert the name of the course cno 302 as well as the name and office
number of its instructor. Also every time we insert a new enrolment for, say Smith,
we must repeat his name and address. Repetition of information results in wastage
of storage as well as other problems.

2. Update Anomalies – Redundant information not only wastes storage but makes
updates more difficult since, for example, changing the name of the instructor of
cno 302 would require that all tuples containing cno 302 enrolment information be
updated. If for some reason, all tuples are not updated, we might have a database
that gives two names of instructor for subject cno 302. This difficulty is called the
update anomaly.

88 CHAPTER 3. NORMAL FORMS

3. Insertional anomalies – Inability to represent certain information – Let the pri-
mary key of the above table be (sno,cno). Any new tuple to be inserted in the
relation must have a value for the primary key since existential integrity requires
that a key may not be totally or partially NULL. However, if one wanted to insert
the number and name of a new course in the database, it would not be possible
until a student enrols in the course and we are able to insert values of sno and cno.
Similarly information about a new student cannot be inserted in the table until the
student enrols in a subject. These difficulties are called insertion anomalies.

4. Deletion anomalies – Loss of useful information – In some instances, useful
information may be lost when a tuple is deleted. For example, if we delete the tuple
corresponding to student 101 doing cno 304, we loose relevant information about
course cno 304 (viz. course name, instructor, office number) if the student 101 was
the only student enrolled in that course. Similarly deletion of course cno 302 from
the table may remove all information about the student named Jones. This is called
deletion anomalies.

The above problems are due to the fact that the table Student has information
about students as well as subjects. One solution to deal with the problem is to
decompose the relation into two or more smaller tables.

Decomposition may provide further benefits, for example, in a distributed database
different tables may be stored at different sites if necessary. Of course, decomposi-
tion does increase the cost of query processing since the decomposed relations will
need to be joined in some cases.

The above table may be easily decomposed into three tables to remove most of the
above undesirable properties:

table Student(sno,sname,address)

table Course(cno,cname,instructor,office)

table Student_Course(sno,cno)

Such a decomposition is called normalization.

3.3. EXAMPLE 89

3.3 Example

We consider the following table, named ENROLL, that contains the data fields (at-
tributes) required to enroll us in a class at a University.

ENROLL(Class_Code,Class_Description,Student_Number,Student_Name,

Address,City,State,Zip,Major_Code,Major_Description,Course_Grade,

Class_Start_Date,Class_Start_Time,Class_Room_Number,

Building_Number,Building_Name,Building_Address,

Professor_Number,Professor_Name)

An object is said to be in 1NF if there are no repeating groups of attributes (fields).
This object is said to be in First Normal Form (1NF) if it is in the format illus-
trated above with no ”gaps” or repeating groups. It is simply a collection of data
fields necessary to complete the job of enrolling, with each record in the file con-
taining all data necessary for the enrollment. The problem with 1NF is that there
is redundancy with respect to entering all of the data into a database for each and
every class in which we enroll. For example, our name, address, etc., will have to
be entered for each class that we take. If we take four classes, our name will have
to be entered four times, not to mention the opportunities to incorrectly enter it.
Developing a logical method of eliminating the entry of our name four times leads
us to the definition of what is called Second Normal Form (2NF).

We must next introduce the concept of a (primary) key field. A key field is one
(or more logically joined) field(s) that is used to uniquely identify each record in a
data file. For example, the Student_Number field can be used to uniquely identify
each student’s record in a student data file. However, since one student may be
enrolled in more than one class each quarter, the Student_Number field alone is not
sufficient to uniquely identify each record in the ENROLL table illustrated above. The
combination of the Student_Number field and the Class_Code field forms a unique
combination and can therefore be considered as the key field for the ENROLL table.

A relation is in 2NF if, and only if, it is in 1NF and every nonkey attribute (field) is
fully functionally dependent upon the key field. This means that all data attributes
(fields) that are not used to uniquely identify records (tuples or rows) in a table
should not appear more than once in the entire database and should never have
to be entered into the database more than once. Any non-identifying data fields
should be placed into separate objects (files). For example, we could remove the
name, address, etc. fields into an table named STUDENT and remove them from the
ENROLL table. The result yields two tables:

STUDENT(Student_Number,Student_Name,Address,City,State,Zip,Major_Code)

ENROLL(Student_Number,Class_Code,Major_Description,Class_Description,

Course_Grade,Class_Start_Date,Class_Start_Time,Class_Room_Number,

Building_Number,Building_Name,Building_Address,

Professor_Code,Professor_Name)

90 CHAPTER 3. NORMAL FORMS

Here we see that the Student_Name, Address, etc., are functionally dependent upon
the Student_Number in the STUDENT table. The class description, Class_Start_Date,
Building_Name, etc., are functionally dependent upon the Student_Number and the
Class_Code in the ENROLL table. The relation between these objects (files) is said
to be in 2NF. The relation is the logical linkage between the files so that all data
necessary to enroll students in classes is available and may be uniquely retrieved
when necessary.

While getting the tables into 2NF is better than 1NF, there are still some problems
with the form. For example, if the location of the class changes buildings, all records
in the ENROLL table for that class will have to be updated. The Building_Name

and Address are transitively dependent upon the Building_Number. Resolving the
transitive dependency leads us to Third Normal Form (3NF).

A relation is in 3NF if, and only if, it is in 2NF and no nonkey fields are transitively
dependent upon the key field(s). That is, no nonkey field can be functionally depen-
dent upon another nonkey field. Our example is clearly not in 3NF since the building
name (nonkey field) depends upon the building number (nonkey field). The relation
can be resolved into 3NF by dividing it into component relations, each meeting 3NF
form. We also have recognized that the class description, start time, and start date
are transitively dependent upon the class code, which is not considered a key field
here because it forms only part of the key field for the ENROLL object. We also rec-
ognize that Professor_Name is functionally dependent upon the Professor_Code,
which is not a key field. The Building_Code and Professor_Code fields are not
key fields because they are not used to uniquely identify each record in the ENROLL

table. Thus we end up with the following tables:

ENROLL(Student_Number,Class_Code,Course_Grade)

BUILDING(Building_Number,Building_Name,Building_Address)

CLASS(Class_Code,Class_Description,Class_Start_Date,Class_Start_Time,

Class_Room_Number,Building_Number,Professor_Code)

PROFESSOR(Professor_Code,Professor_Name,Department_Code,Department_Name)

MAJOR(Major_Code,Major_Description)

STUDENT(Student_Number,Student_Name,Address,City,State,Zip,Major_Code)

Note also that the PROFESSOR table is not in 3NF since the Department_Name is
transitively dependent upon the Department_Code. We resolve this by splitting the
table Professor into two tables

PROFESSOR(Professor_Code,Professor_Name,Department_Code)

3.3. EXAMPLE 91

DEPARTMENT(Department_Code,Department_Name)

The primary key in the tables given above are

BUILDING Building_Number

CLASS Class_Code

PROFESSOR Professor_Code

MAJOR Major_Code

STUDENT Student_Number

DEPARTMENT Department_Code

For the ENROLL table the pair Student_Number and Class_Code is the primar key.

This illustrates that we must consider all relationships within the organization’s
database and resolve all relations into 3NF. An important point here is that no data
may be lost during the normalization process. We must always be able to reconstruct
the original data after the normalization. To lose data will cause problems and will
be an invalid normalization process.

92 CHAPTER 3. NORMAL FORMS

Foreign Keys and Permitted RDBMS Operations

The concept of Foreign Keys must be understood before we can logically utilize a
database that is implemented within a RDBMS. Specific RDBMS operations in-
clude adding, updating, and deleting data from files. The foreign keys specify the
relationships between files and define what can and can’t be logically done in order
to maintain what is called referential integrity. An table that has a part of a key
field (one field in a compound field key) that refers to a complete key in another
table is said to have a foreign key. For example, consider the tables

ENROLL(Student_Number,Course_Code,Course_Grade)

STUDENT(Student_Number,Student_Name, etc.)

COURSE(Course_Code,Course_Description, etc.)

In the ENROLL object, the Course_Code is a foreign key because it is a part of
the key field and referes to the entire key field for the COURSE table. Similarly, the
Student_Number is a foreign key since it refers to the entire key field for the STUDENT
table. The consequences of these relationships is that the ENROLL table and all of its
data cannot validly exist without corresponding data in both the STUDENT and the
COURSE tables. For example, consider the enrollment of John Smith, student number
12234, into the Java class, code 503. We cannot validly enroll John unless his student
number (and all dependent data) have first been established in the STUDENT table
and the Course_code (and all dependent data) have been established in the COURSE
table. In essence, the valid enrollment of John Smith depends upon the data in the
STUDENT and COURSE tables.

If we were permitted to establish a record in the ENROLL table with John Smith’s
Student_Number and the Course_Code, we then want to see who was enrolled and in
what course, it would be impossible. The Student_Number in the ENROLL table has
no corresponding record in the STUDENT table and therefore cannot provide further
information about John Smith. Similarly, the Course_Code in the ENROLL table has
no corresponding record in the COURSE table and cannot provide further information.
Permitting the entry of the data into the ENROLL table would create what is called
a parentless child. The “child”, the record in the ENROLL table, has no “parents”
to provide the required additional data to complete the enrollment. Tables having
foreign keys are said to be “members” of a database. Tables to which the foreign
keys refer are said to be owners - the owners of the key fields to which the foreign
keys refer. Why are foreign keys, relationships, members, and owners important?
They establish specific requirements for permitted database operations in order to
maintain referential integrity.

3.4. FOURTH AND FIFTH NORMAL FORMS 93

3.4 Fourth and Fifth Normal Forms

Fourth and fifth normal forms deal with multi-valued facts. The multi-valued fact
may correspond to a many-to-many relationship, for example employees and skills,
or to a many-to-one relationship, as with the children of an employee (assuming
only one parent is an employee). By many-to-many we mean that an employee may
have several skills, and a skill may belong to several employees. We look at the
many-to-one relationship between children and fathers as a single-valued fact about
a child but a multi-valued fact about a father. In a sense, fourth and fifth normal
forms are also about composite keys. These normal forms attempt to minimize the
number of fields involved in a composite key.

Under fourth normal form, a table should not contain two or more independent
multi-valued facts about an entity. In addtion, the table must satisfy third normal
form.

As an example, consider employees, skills and speaking languages. Thus an employee
may have several skills and speak several languages. We have here two many-to-
many relationships, one between employees and skills, and one between employees
and languages. Under fourth normal form, these two relationships should not be
represented in a single table such as

Employee Skills Language

======== ====== ========

============================

Instead they should be represented in two tables

Employee Skills

======== ======

================

and

Employee Language

======== ========

==================

Note that other fields, not involving multi-valued facts, are permitted to occur in the
table. The main problem with violating fourth normal form is that it leads to un-
certainties in the maintenance policies. Several policies are possible for maintaining
two independent multi-valued facts in one table.

94 CHAPTER 3. NORMAL FORMS

(1) A disjoint format, in which a record contains either a skill or a language, but
not both:

Employee Skill Language

========== ===== ========

Smith cook

Smith type

Smith French

Smith German

Smith Greek

===========================

This is not much different from maintaining two separate record types. Such a for-
mat also leads to ambiguities regarding the meanings of blank fields. A blank SKILL

could mean the person has no skill, or the field is not applicable to this employee, or
the data is unknown, or, as in this case, the data may be found in another record.

(2) A random mix, with three variations:

(a) Minimal number of records, with repetitions:

Employee Skill Language

======== ===== ========

Smith cook French

Smith type German

Smith type Greek

===========================

(b) Minimal number of records, with null values:

Employee Skill Language

======== ===== ========

Smith cook French

Smith type German

Smith Greek

============================

(c) Unrestricted:

Employee Skill Language

======== ===== ========

Smith cook French

Smith type

Smith German

Smith type Greek

======= ===== ========

3.4. FOURTH AND FIFTH NORMAL FORMS 95

(3) A cross-product form, where for each employee, there must be a record for every
possible pairing of one of his skills with one of his languages:

Employee Skill Language

========= ===== ========

Smith cook French

Smith cook German

Smith cook Greek

Smith type French

Smith type German

Smith type Greek

============================

Other problems caused by violating fourth normal form are similar in spirit to those
mentioned earlier for violations of second or third normal form. They take different
variations depending on the chosen maintenance policy:

If there are repetitions, then updates have to be done in multiple records, and they
could become inconsistent.

Insertion of a new skill may involve looking for a record with a blank skill, or in-
serting a new record with a possibly blank language, or inserting multiple records
pairing the new skill with some or all of the languages.

Deletion of a skill may involve blanking out the skill field in one or more records
(perhaps with a check that this doesn’t leave two records with the same language
and a blank skill), or deleting one or more records, coupled with a check that the
last mention of some language hasn’t also been deleted.

Fourth normal form minimizes such update problems.

We mentioned independent multi-valued facts earlier, and we now illustrate what
we mean in terms of the example. The two many-to-many relationships,

Employee:Skill

and

Employee:Language

are independent in that there is no direct connection between skills and languages.
There is only an indirect connection because they belong to some common employee.
That is, it does not matter which skill is paired with which language in a record; the
pairing does not convey any information. That’s precisely why all the maintenance
policies mentioned earlier can be allowed.

96 CHAPTER 3. NORMAL FORMS

In contrast, suppose that an employee could only exercise certain skills in certain
languages. Perhaps Smith can cook French cuisine only, but can type in French,
German, and Greek. Then the pairings of skills and languages becomes meaningful,
and there is no longer an ambiguity of maintenance policies. In the present case,
only the following form is correct:

Employee Skill Language

========= ===== ========

Smith cook French

Smith type French

Smith type German

Smith type Greek

============================

Thus the employee:skill and employee:language relationships are no longer in-
dependent. These records do not violate fourth normal form. When there is an
interdependence among the relationships, then it is acceptable to represent them in
a single record.

Multivalued Dependencies

Fourth normal form is defined in terms of multivalued dependencies, which corre-
spond to our independent multi-valued facts. Multivalued dependencies, in turn,
are defined essentially as relationships which accept the cross-product maintenance
policy mentioned above. That is, for our example, every one of an employee’s skills
must appear paired with every one of his languages. This is equivalent to our notion
of independence: since every possible pairing must be present, there is no informa-
tion in the pairings. Such pairings convey information only if some of them can be
absent, that is, only if it is possible that some employee cannot perform some skill
in some language. If all pairings are always present, then the relationships are really
independent.

We should also point out that multivalued dependencies and fourth normal form
apply as well to relationships involving more than two fields. For example, suppose
we extend the earlier example to include projects, in the following sense:

An employee uses certain skills on certain projects.

An employee uses certain languages on certain projects.

If there is no direct connection between the skills and languages that an employee
uses on a project, then we could treat this as two independent many-to-many re-
lationships of the form EP:S and EP:L, where EP represents a combination of an
employee with a project. A record including employee, project, skill, and language
would violate fourth normal form. Two records, containing fields E,P,S and E,P,L,
respectively, would satisfy fourth normal form.

3.4. FOURTH AND FIFTH NORMAL FORMS 97

Fifth Normal Form

Fifth normal form deals with cases where information can be reconstructed from
smaller pieces of information that can be maintained with less redundancy. Second,
third, and fourth normal forms also serve this purpose, but fifth normal form gen-
eralizes to cases not covered by the others.

We illustrate the central concept with a commonly used example, namely one in-
volving agents, companies, and products. If agents represent companies, companies
make products, and agents sell products, then we might want to keep a record of
which agent sells which product for which company. This information could be kept
in one record type with three fields:

Agent Company Product

===== ======= =======

Smith Ford car

Smith GM truck

=========================

This form is necessary in the general case. For example, although agent Smith sells
cars made by Ford and trucks made by GM, he does not sell Ford trucks or GM
cars. Thus we need the combination of three fields to know which combinations are
valid and which are not. But suppose that a certain rule was in effect: if an agent
sells a certain product, and he represents a company making that product, then he
sells that product for that company.

Agent Company Product

====== ======= ========

Smith Ford car

Smith Ford truck

Smith GM car

Smith GM truck

Jones Daimler car

==========================

In this case, we can reconstruct all the true facts from a normalized form consisting
of three separate record types, each containing two fields:

Agent Company Company Product Agent Product

====== ======= ========= ======= ====== =======

Smith Ford Ford car Smith car

Smith GM Ford truck Smith truck

Jones Daimler GM car Jones car

================ GM truck ===============

Daimler car

==================

98 CHAPTER 3. NORMAL FORMS

These three record types are in fifth normal form, whereas the corresponding three-
field record shown previously is not. Roughly speaking, we may say that a record
type is in fifth normal form when its information content cannot be reconstructed
from several smaller record types, i.e., from record types each having fewer fields
than the original record. The case where all the smaller records have the same key
is excluded. If a record type can only be decomposed into smaller records which
all have the same key, then the record type is considered to be in fifth normal form
without decomposition. A record type in fifth normal form is also in fourth, third,
second, and first normal forms.

Fifth normal form does not differ from fourth normal form unless there exists a
symmetric constraint such as the rule about agents, companies, and products. In
the absence of such a constraint, a record type in fourth normal form is always in
fifth normal form.

One advantage of fifth normal form is that certain redundancies can be eliminated.
In the normalized form, the fact that Smith sells cars is recorded only once; in the
unnormalized form it may be repeated many times.

It should be observed that although the normalized form involves more record types,
there may be fewer total record occurrences. This is not apparent when there are
only a few facts to record, as in the example shown above. The advantage is real-
ized as more facts are recorded, since the size of the normalized files increases in an
additive fashion, while the size of the unnormalized file increases in a multiplicative
fashion. For example, if we add a new agent who sells x products for y companies,
where each of these companies makes each of these products, we have to add x+y
new records to the normalized form, but xy new records to the unnormalized form.

All three record types are required in the normalized form in order to reconstruct
the same information. From the first two record types shown above we learn that
Jones represents Ford and that Ford makes trucks. But we can’t determine whether
Jones sells Ford trucks until we look at the third record type to determine whether
Jones sells trucks at all.

3.4. FOURTH AND FIFTH NORMAL FORMS 99

The following example illustrates a case in which the rule about agents, companies,
and products is satisfied, and which clearly requires all three record types in the
normalized form. Any two of the record types taken alone will imply something
untrue.

Agent Company Product

====== ======= =======

Smith Ford car

Smith Ford truck

Smith GM car

Smith GM truck

Jones Ford car

Jones Ford truck

Brown Ford car

Brown GM car

Brown Daimler car

Brown Daimler bus

==========================

Thus the fifth normal form is

Agent Company Company Product Agent Product

====== ======== ======== ======= ====== =======

Smith Ford Ford car Smith car

Smith GM Ford truck Smith truck

Jones Ford GM car Jones car

Brown Ford GM truck Jones truck

Brown GM Daimler car Brown car

Brown Daimler Daimler bus Brown bus

=============== ================= ===============

Thus Jones sells cars and GM makes cars, but Jones does not represent GM. Brown
represents Ford and Ford makes trucks, but Brown does not sell trucks. Brown
represents Ford and Daimler and Brown sells buses and cars, but Ford does not
make buses.

Fourth and fifth normal forms both deal with combinations of multivalued facts.
One difference is that the facts dealt with under fifth normal form are not inde-
pendent, in the sense discussed earlier. Another difference is that, although fourth
normal form can deal with more than two multivalued facts, it only recognizes them
in pairwise groups. We can best explain this in terms of the normalization process
implied by fourth normal form. If a record violates fourth normal form, the asso-
ciated normalization process decomposes it into two records, each containing fewer
fields than the original record. Any of these violating fourth normal form is again
decomposed into two records, and so on until the resulting records are all in fourth
normal form. At each stage, the set of records after decomposition contains exactly

100 CHAPTER 3. NORMAL FORMS

the same information as the set of records before decomposition.

In the present example, no pairwise decomposition is possible. There is no com-
bination of two smaller records which contains the same total information as the
original record. All three of the smaller records are needed. Hence an information-
preserving pairwise decomposition is not possible, and the original record is not in
violation of fourth normal form. Fifth normal form is needed in order to deal with
the redundancies in this case.

Normalization certainly doesn’t remove all redundancies. Certain redundancies seem
to be unavoidable, particularly when several multivalued facts are dependent rather
than independent. In the example given above, it seems unavoidable that we record
the fact that Smith can type; several times. Also, when the rule about agents, com-
panies, and products is not in effect, it seems unavoidable that we record the fact
that Smith sells cars several times.

The normal forms discussed here deal only with redundancies occurring within a
single record type. Fifth normal form is considered to be the ultimate normal form
with respect to such redundancies.

Other redundancies can occur across multiple record types. For the example con-
cerning employees, departments, and locations, the following records are in third
normal form in spite of the obvious redundancy:

Employee Department Department Location Employee Location

======== ========== ========== ======== ======== ========

==================== ==================== ==================

In fact, two copies of the same record type would constitute the ultimate in this kind
of undetected redundancy. Inter-record redundancy has been recognized for some
time, and has recently been addressed in terms of normal forms and normalization.

The factors affecting normalization have to be assessed:

Single-valued vs. multi-valued facts.
Dependency on the entire key.
Independent vs. dependent facts.
The presence of mutual constraints.
The presence of non-unique or non-singular representations.

And, finally, the desirability of normalization has to be assessed, in terms of its
performance impact on retrieval applications.

Chapter 4

Transaction

4.1 Introduction

A transaction is defined as a logical unit of work - a set of database changes to
one or more tables that accomplishes a defined task. In other wordsa transaction
is a group of database actions that are performed together. Either all the actions
succeed together or all fail together.

A transaction begins after a COMMIT statement, a ROLLBACK statement, or an initial
database connection. A transaction ends when any of the following events occurs.

1) A COMMIT statement is processed

2) A ROLLBACK statement is processed

3) The database connection is terminated

The COMMIT statement commits a transaction. It makes permanent all the database
changes made since the execution of the previous COMMIT (or ROLLBACK). We can
COMMIT only the database changes that we personally have made. The COMMIT

statement that one user issues has no effect on another user’s database changes.

The ROLLBACK statement will undo all database changes made by the user since the
last committed transaction or since the beginning of the session.

For example, JDBC supports transaction processing with the commit() and rollback()

methods. Also, JDBC has the autocommit() which, when on, all changes are com-
mitted automatically and, if off, the Java program has to use the commit() or
rollback() methods to effect the changes to the data.

101

102 CHAPTER 4. TRANSACTION

Example. Consider the Cars table and the following session (Oracle)

SELECT * FROM Cars;

The whole table consisting of two rows is displayed.

DELETE FROM Cars;

The output is: 2 rows deleted.

SELECT * FROM Cars;

The output is: No rows selected

ROLLBACK;

The output is: Rollback complete

SELECT * FROM Cars;

The whole table is displayed again.

The rows that satisfy the conditions of a query are called the result set. The number
of rows returned in a result set can be zero, one, or many or even the whole table.
One accesses the data in a result set one row at the time, and a cursor provides the
means to do that. A cursor can be thought of as a pointer into a file that contains
the rows of the result set, and that pointer has the ability to keep track of which
row is currently being accessed. A cursor allows one to process each row of a result
set from top to bottom and consequently may be used for iterative processing. Most
DBMSs create a cursor automatically when a result set is generated.

For transactions that involve the execution of multiple SQL statements, we might
want to consider using savepoints as intermediate steps for the transaction. A save-
point is a label within a transaction that contains a subset of the changes made by
the transaction. We can think of a savepoint as a label within a transaction that
references a subset of a transaction’s changes. The syntax is

SAVEPOINT name-of-savepoint

In MySQL we can choose between three basic formats for tables (ISAM, HEAP, and
MyISAM). The default table type in MySQL is MyISAM. These are non-transaction-
safe tables. MySQL also supports BDB (Berkely Database) and InnoDB. These are
transaction-safe tables. For transaction-safe tables we can execute ROLLBACK. When
we create a table in MySQL we can provide the type. For example,

CREATE TABLE person (name varchar(10)) type = bdb;

4.1. INTRODUCTION 103

The concept of transactions is an integral part of any client/server database. A
transaction is a group of SQL statements that update, add, and delete rows and
fields in a database. Transactions have an all or nothing property-either they are
committed if all statements are successful, or the whole transaction is rolled back
if any of the statements cannot be executed successfully. Transaction processing
assures the data integrity and data consistency in a database.

The characteristics of a transaction are described in terms of the

Atomicity, Consistency, Isolation, and Durability (ACID)

properties.

1) A transaction is atomic in the sense that it is an entity. All the components of
a transaction happen or do not happen. There is no partial transaction. If only
a partial transaction can happen, then the transaction is aborted. The atomicity
is achieved by the commit() or rollback() methods. Thus a transaction must be
an all-or-nothing proposition. Everything must be updated successfully or nothing
should be updated.

2) A transaction is consistent because it does not perform any actions that violate
the business logic or relationships between data elements. The consistent property
of a transaction is very important when we develop a client/server system, because
there will be many transactions to a data store from different systems and objects.
If a transaction leaves the data store inconsistent, all other transactions also would
potentially be wrong, resulting in a system-wide crash or data corruption. Thus
individual operations within a transaction may leave data in such a state that it
violates the system’s integrity constraints. Before a transaction completes, the sys-
tem’s data as whole must be returned to a valid state.

3) A transaction is isolated because the results of a transaction are self-contained.
They do not depend on any preceding or succeeding transaction. This is related
to a property called serializability, which means the sequence of transactions are
independent; in other words, a transaction does not assume any external sequence.
Thus the system must hide the uncommited changes of a transaction from all the
other transactions. The act of hiding or isolating changes is typically accomplished
through locking.

4) Finally, a transaction is durable, meaning the effects of a transaction are per-
manent even in the face of a system failure. That means some form of permanent
storage should be a part of a transaction. Thus when a transaction is committed,
the data sources involved must keep all changes in stable storage and these changes
must be recovered in the event of a system failure.

104 CHAPTER 4. TRANSACTION

A related topic in transactions is the coordination of transactions across heteroge-
neous data sources, systems, and objects. When the transactions are carried out in
one relational database, we can use the commit(), rollback(), beginTransaction(),
and endTransaction() statements to coordinate the process. But what if we have
diversified systems participating in a transaction? How do we handle such a system?

As an example, look at the Distributed Transaction Coordinator (DTC) available
as a part of Microsoft SQL Server 6.5 database system.

In the Microsoft DTC, a transaction manager facilitates the coordination. Resource
managers are clients that implement resources to be protected by transactions-for
example, relational databases and ODBC data sources.

An application begins a transaction with the transaction manager, and then starts
transactions with the resource managers, registering the steps (enlisting) with the
transaction manager. The transaction manager keeps track of all enlisted transac-
tions. The application, at the end of the multi-data source transaction steps, calls
the transaction manager to either commit or abort the transaction.

When an application issues a COMMIT command to the transaction manager, the
DTC performs a two-phase commit protocol:

It queries each resource manager if it is prepared to commit. If all resources are
prepared to commit, DTC broadcasts a commit message to all of them.

The Microsoft DTC is an example of powerful next generation transaction coordina-
tors from the database vendors. As more and more multi-platform, object-oriented
Java systems are being developed, this type of transaction coordinators will gain
importance. Many middleware vendors are developing Java-oriented transaction
systems.

A deadlock is a condition that can occur when two or more users are all waiting
for each other to give up locks. More advanced DBMSs do deadlock detection and
abort one of the user transactions when this happens.

A dirty read happens when a transaction reads data from a database that has been
modified by another transaction, and that data has not yet been committed. If dirty
reads are not desired, one must specify a higher isolation level possibly resulting in
lower performance.

A phantom read occurs when our program fetches a tuples that has been inserted by
another user’s transaction, and the other transaction subsequently aborts, erasing
the tuple we fetched.

4.1. INTRODUCTION 105

As an example let us consider three cases:

Case 1:

S1
T1 T2

read A
A=A-10
write A
read B
B=B+10
write B

read B
B=B-20
write B
read C
C=C+20
write C

t

S1 is serial.

Case 2:

S2
T1 T2

read A
read B

A=A-10
B=B-20

write A
write B

read B
read C

B=B+10
C=C+20

write B
write C

t

S2 is not serial but can be serialized.

106 CHAPTER 4. TRANSACTION

Case 3:

S3
T1 T2

read A
A=A-10

read B
write A

B=B-20
read B

write B
B=B+10

read C
write B

C=C+20
write C

t

S3 cannot be serialized (transaction with conflict).

4.2. DATA REPLICATION 107

4.2 Data Replication

Many situations occur in the daily operation of an organization that involves the
need to have the same information in more than one loaction.

Data replication is the distribution of corporate data to many locations across the
organization, and it provides reliability, fault-tolerance, data-access performance due
to reduced communication, and, in many cases, manageability as the data can be
managed as subsets. Put simply, data replication is a process that automatically
copies information from one database to one or more additional databases. The
client/server systems span an organization, possibly its clients and suppliers, most
probably in a wide geographic locations. Systems spanning the entire globe are not
uncommon when we are talking about mission-critical applications, especially in
today’s global business market. If all the data is concentrated in a central location,
it would be almost impossible for the systems to effectively access data and offer
high performance. Also, if data is centrally located, in the case of mission-critical
systems, a single failure will bring the whole business down. Using replicated data
across an organization at various geographic locations is a sound strategy.

Different vendors handle replication differently.

For example, the Lotus Notes group-ware product uses a replication scheme where
the databases are considered peers, and additions/updates/deletions are passed be-
tween the databases. Lotus Notes has replication formulas that can select subsets
of data to be replicated based on various criteria.

The Microsoft SQL server, on the other hand, employs a publisher-subscriber scheme
where a database or part of a database can be published to many subscribers. A
database can be a publisher and a subscriber. For example, the western region can
publish its slice of sales data while receiving (subscribing to) sales data from other
regions.

There are many other replication schemes from various vendors to manage and
decentralize data. Replication is a young technology that is slowly finding its way
into many other products.

108 CHAPTER 4. TRANSACTION

4.3 Locks

When one is accessing data in a database, someone else may be accessing the same
data at the same time. If, for instance, one user is updating some columns in a
table at the same time another user is selecting columns from that table, it could
be possible that the data returned is partly the old data and partly updated data.
For this reason, DBMSs use transaction to maintain data in a consistent state (data
consistency) while allowing more than one user to access a database at the same
time (data concurrency). A transaction is a set of one or more SQL statements
that make up a logical unit of work. A transaction ends with either a COMMIT or a
ROLLBACK, depending on whether there are any problems with data consistency or
data concurrency. The COMMIT statement makes permanent the changes resulting
from the SQL statements in the transaction, and a ROLLBACK statement undoes all
changes resulting from the SQL statements in the transaction.

A lock is a mechanism that prohibits two transactions from manipulation the same
data at the same time. For example, a table lock prevents a table from being
dropped if there is an uncommited transaction on that table. A row lock prevents
two transactions from modifying the same row, or it prevents one transaction from
selecting a row while another transaction is still modifying it.

For example, even though Oracle provides consistency within a single SQL state-
ment, its default behaviour does not guarantee read consistency during more than
one statement. If we query a table twice, we may obtain different results the second
time if another Oracle user changes the table between our first and second queries.
We may encounter a situation in which we need more than single-statement read
consistency. In fact, we may need to have read consistency across a particular
transaction. For this purpose, we need to issue the following statement

SET TRANSACTION READ ONLY;

The SQL Server of Microsoft lock manager uses two primary lock types: write locks
and read locks. SQL Server uses write locks (also called exclusive locks) on data
items to isolate the uncommitted changes of a transaction. SQL Server places read
locks (also called shared locks) on data items while they are being read. A write
lock conflicts with other write locks and with read locks. A transaction that has a
write lock blocks all other transactions from reading or writing to the data item in
question. The data item remains locked until the transaction is committed or rolled
back. This makes sense because the system must isolate uncommitted changes to
ensure data consistency. But this isolation has a price: the blocking reduces overall
system concurrency and throughput. Read locks do not conflict with other read
locks. Many transactions can obtain a read lock on the same data item concurrently.
A transaction cannot obtain a write lock on a data item that has outstanding read
locks. This ensures that a transaction does not overwrite a data item while another
transaction is reading it.

4.3. LOCKS 109

Read locks are shared, i.e. there can be many read locks on the same data item.
Write locks are exclusive, i.e. no other locks (read or write) can be held. The
transaction manager maintains a lock table, and delays operations that are blocked
by locks. Thus data integrity is ensured through record locking.

Deadlocking occurs when two user processes have locks on separate objects and
each process is trying to acquire a lock on the object that the other process has.
When this happens a database system ends the deadlock by automatically choosing
one and aborting the process, allowing the other process to continue. The aborted
transaction is rolled back and an error message is sent to the user of the aborted
process.

For example, in mySQL we have the command LOCK TABLES/UNLOCK TABLES. The
syntax is

LOCK TABLES table_name [AS alias]

{READ | [READ_LOCAL] | [LOW_PRIORITY] WRITE}

[, table_name {READ | [LOW_PRIORITY] WRITE} ...]

...

UNLOCK TABLES

LOCK TABLES locks tables for the current thread. UNLOCK TABLES releases any locks
held by the current thread. All tables that are locked by the current thread are
automatically unlocked when the thread issues another LOCK TABLES, or when the
connection to the server is closed. If a thread obtains a READ lock on the table, that
thread (all other threads) can only read from the table. If a thread obtains a WRITE

lock on a table, then only the thread holding the lock can READ from or WRITE to
the table. Other threads are blocked.

The difference between READ_LOCAL and READ is that READ_LOCAL allows non con-
flicting INSERT statements to execute while the lock is hold.

Each thread waits (without timing out) until it obtains all the locks it has requested.

WRITE locks normally have higher priority than READ locks, to ensure that updates
are processed as soon as possible. This means that if one thread obtains a READ

lock and then another thread requests a WRITE lock, subsequent READ lock requests
will wait until the WRITE thread has gotten the lock and released it. We can use
LOW_PRIORITY WRITE locks to allow other threads to obtain READ locks while the
thread is waiting for the WRITE lock. We should only use LOW_PRIORITY WRITE locks
if we are sure that there will eventually be a time when no threads will have a READ

lock.

110 CHAPTER 4. TRANSACTION

When we are using LOCK TABLES, we must lock all tables that we are going to use
and we must use the same alias as we are going to use in our queries. If we are using
a table multiple times in a query (with aliases), we must get a lock for each alias.
This policy ensures that table locking is deadlock free.

Note that we should not lock any tables that we are using with INSERT DELAYED.
This is because that in this case the INSERT is done by a separate thread.

Normally, we do not have to lock tables, as all single UPDATE statements are atomic;
no other thread can interfere with any other currently executing SQL statement.
There are a few cases when we would like to lock tables anyway:

1) If we are going to run many operations on a bunch of tables, it is must faster to
lock the tables we are going to use. The downside is, of course, that no other thread
can update a READ-locked table and no other thread can read a WRITE-locked table.

2) mySQL does not support a transaction enviroment, so we must use LOCK TABLES

if we want to ensure that no other thread comes between a SELECT and an UPDATE.
The example shown below require LOCK TABLES in order to execute safely:

> LOCK TABLES trans READ, customer WRITE;

> SELECT sum(value) FROM trans WHERE customer_id = some_id;

> UPDATE customer SET total_value = sum_from_previous_statement

WHERE customer_id = some_id;

> UNLOCK TABLES

By using incremental updates

UPDATE customer SET value = value + new_value

or the LAST_INSERT_ID() function, we can avoid using LOCK TABLES in many cases.
We can also solve some cases by using the user-level lock functions GET_LOCK()

and RELEASE_LOCK(). These locks are saved in a hash table in the server and
implemented with the

pthread_mutex_lock()

and

pthread_mutex_unlock()

for high speed.

4.4. DEADLOCKING 111

4.4 Deadlocking

Deadlocking occurs when two user processes have locks on separate objects and each
process is trying to acquire a lock on the object that the process has. An example of
deadlock in a computer system is: Consider two processes p1 and p2. They update
a file F and require a CD during the updating. Only one CD is available. CD and F
are serially reuseable resources, and can be used only by exclusive access. p2 needs
CD immediately prior to updating. p1 can block on CD holding F while p2 can block
on F holding CD.

When deadlocking occurs, Microsoft SQL Server ends the deadlock by automati-
cally choosing one and aborting the other process, allowing the chosen process to
continue. The aborted transaction is rolled back and an error message is sent to the
user of the aborted process.

Most well-designed applications, after receiving this message, will resubmit the
transaction, which most likely can now run successfully. This process, if it hap-
pens often on our server, can drag down performance.

Here are some tips on how to avoid deadlocking on a SQL Server.

1) Keep All Transact-SQL transactions as short as possible. This helps to reduce
the number of locks (of all types), helping to speed up the overall performance of our
SQL Server application. If practical, we may want to break down long transactions
into groups of smaller transactions.

2) An often overlooked cause of locking is an I/O bottleneck. Whenever our server
experiences an I/O bottleneck, the longer it takes user’s transactions to complete.
And the longer they take to complete, the longer locks must be held, which can lead
to other transactions being prevented from processing because they have to wait for
previous locks to be released.

3) If our server is experiencing excessive locking problems, be sure to check if we are
also running into an I/O bottleneck. If we do find that we have an I/O bottleneck,
then resolving it will help to resolve our locking problem, greatly speeding up the
performance of our server.

4) To help reduce the amount of time tables are locked, which hurts concurrency
and performance, avoid interleaving reads and database changes within the same
transaction. Instead, try to do all our reading first, then perform all of the database
changes (UPDATES, INSERTS, DELETES) near the end of the transaction. This
helps to minimize the amount of time that exclusive locks are held.

5) Any conditional logic, variable assignment, and other related preliminary setup
should be done outside of transactions, not inside them. Don’t ever pause a transac-

112 CHAPTER 4. TRANSACTION

tion to wait for user input. User input should always be done outside of a transaction.

6) Encapsulate all transactions within stored procedures, including both the BEGIN

TRANSACTION and COMMIT TRANSACTION statements in the procedure. This provides
two benefits that help to reduce blocking locks. First, it limits the client application
and SQL Server to communications before and after when the transaction runs,
thus forcing any messages between them to occur at a time other than when the
transaction is running (reducing transaction time). Second, it prevents the user
from leaving an open transaction (holding locks open) because the stored procedure
forces any transactions that it starts to complete or abort.

7) If we have a client application that needs to “check-out” data for awhile, then
perhaps update it later, or maybe not, we don’t want the records locked during the
entire time the record is being viewed. Assuming “viewing” the data is much more
common that “updating” the data, then one way to handle this particular circum-
stance is to have the application select the record (not using UPDATE, which will put
a share lock on the record) and send it to the client.

8) If the user just “views” the record and never updates it, then nothing has to be
done. But if the user decides to update the record, then the application can perform
an UPDATE by adding a WHERE clause that checks to see whether the values in the
current data are the same as those that were retrieved.

9) Similarly, we can check a timestamp column in the record, if it exists. If the
data is the same, the the UPDATE can be made. If the record has changed, then
the application must include code to notify the user so he or she can decide how
to proceed. While this requires extra coding, it reduces locking and can increase
overall application performance.

10) Use the least restrictive transaction isolation level possible for our user con-
nection, instead of always using the default READ COMMITTED. In order to do this
without causing other problems, the nature of the transaction must be carefully
analyzed as to what the effect of a different isolation will be.

11) Using cursors can reduce concurrency. To help avoid this, use the READ_ONLY cur-
sor option if applicable, or if we need to perform updates, try to use the OPTIMISTIC
cursor option to reduce locking. Try to avoid the SCROLL_LOCKS cursor option, which
can increase locking problems.

12) If our users are complaining that they have to wait for their transactions to
complete, we may want to find out if object locking on the server is contributing to
this problem. To do this, use the SQL Server Locks Object: Average Wait Time
(ms). We can use this counter to measure the average wait time of a variety of locks,
including: database, extent, Key, Page, RID, and table.

4.4. DEADLOCKING 113

13) If we can identify one or more types of locks causing transaction delays, then we
will want to investigate further to see if we can identify what specific transactions
are causing the locking. The Profiler is the best tool for this detailed analysis.

14) Use sp_who and sp_who2 to identify which users may be blocking what other
users.

15) Try one or more of the following suggestions to help avoid blocking locks: 1)
Use clustered indexes on heavily used tables; 2) Try to avoid Transact-SQL state-
ments that affect large numbers of rows at once, especially the INSERT and UPDATE

statements; 3) Try to have the UPDATE and DELETE statements use an index; and 4)
When using nested transactions, avoid commit and rollback conflicts.

16) On tables that change little, if at all, such as lookup tables, consider altering
the default lock level for the table. By default, SQL Server uses row level locking
for all tables, unless the SQL Query Optimizer determines that a more appropriate
locking level, such as page or table locks, is more appropriate. For most lookup tables
that aren’t huge, SQL Server will automatically use row level locking. Because row
locking has to be done at the row level, SQL Server needs to work harder maintain
row locks that it does for either page or table locks. Since lookup tables aren’t
being changed by users, it would be more efficient to use a table lock instead of
many individual row locks. How do we accomplish this? We can override how SQL
Server performs locking on a table by using the SP_INDEXOPTION command. Below
is an example of code we can run to tell SQL Server to use page locking, not row
locks, for a specific table:

SP_INDEXOPTION ’table_name’, ’AllowRowLocks’, FALSE

GO

SP_INDEXOPTION ’table_name’, ’AllowPageLocks’, FALSE

GO

This code turns off both row and page locking for the table, thus only table locking
is available.

17) If there is a lot of contention for a particular table in our database, consider
turning off page locking for that table, requiring SQL Server to use row level locking
instead. This will help to reduce the contention for rows located on the same page.
It will also cause SQL Server to work a little harder in order to track all of the row
locks. How well this option will work for us depends on the tradeoff in performance
between the contention and the extra work SQL Server has to perform. Testing
will be needed to determine what is best for our particular environment. Use the
SP_INDEXOPTION stored procedure to turn off page locking for any particular table.

18) If table scans are used regularly to access data in a table, and our table doesn’t
have any useful indexes to prevent this, then consider turning off both row locking

114 CHAPTER 4. TRANSACTION

and page locking for that table. This in effect tells SQL Server to only use table
locking when accessing this table. This will boost access to this table because SQL
Server will not have to escalate from row locking, to page locking, to table locking
each time a table lock is needed on the table to perform the table scan. On the
negative side, doing this can increase contention for the table. Assuming the data
in the table is mostly read only, then this should not be too much of a problem.
Testing will be needed to determine what is best for our particular environment.

19) Do not create temporary tables from within a stored procedure that is invoked
by the INSERT INTO EXECUTE statement. If we do, locks on the syscolumns, sysob-
jects, and sysindexes tables in the TEMPDB database will be created, blocking
others from using the TEMPDB database, which can significantly affect perfor-
mance.

20) To help reduce the amount of time it takes to complete a transaction (and thus
reducing how long records are locked) try to avoid using the WHILE statement or Data
Definition Language within a transaction. In addition, do not open a transaction
while browsing data and don’t SELECT more data than we need for the transaction
at hand. For best performance, we always want to keep transactions as short as
possible.

21) While nesting transactions is perfectly legal, it is not recommended because of
its many pitfalls. If we nest transactions and our code fails to commit or roll back
a transaction properly, it can hold locks open indefinitely, significantly impacting
performance.

22) By default in SQL Server, a transaction will wait indefinitely for a lock to be
removed before continuing. If we want, we can assign a locking timeout value to
SQL Server so that long running locks won’t cause other transactions to wait long
periods of time. To assign a locking timeout value to SQL Server, run this command,

SET LOCK_TIMEOUT length_of_time_in_milliseconds

from Query Analyzer.

23) Sometimes we need to perform a mass INSERT or UPDATE of thousands, if not
millions of rows. Depending on what we are doing, this could take some time. Un-
fortunately, performing such an operation could cause locking problems for our other
users. If we know users could be affected by our long-running operation, consider
breaking up the job into smaller batches, perhaps even with a WAITFOR statement,
in order to allow others to “sneak” in and get some of their work done.

24) One way to reduce locking, especially for queries or stored procedures that are
used to create reports, is to force SQL Server to turn off shared locking when the
query or stored procedure is run. By default, SQL Server will use shared locks on

4.4. DEADLOCKING 115

any rows that are queried by a query or stored procedure. The purpose of these
shared locks is to prevent any user from changing any of the affected rows while
the transaction is still running. Assuming we don’t care if any of the rows we are
querying change during the query itself (which is common for many reports), we
can turn off shared locking, which in turn increases concurrently in the database
and can boost performance. Of course, if we require our data not to change while
our transaction is still running, then we cannot take advantage of this technique.

25) One of the easiest ways to turn of shared locks during a query or stored proce-
dure is to use the NOLOCK hint. This hint, when used with the SELECT statement,
tells SQL Server not to issue any shared locks on the table(s) being read. This hint
is only good for the query or stored procedure we give it to. It does not affect any
other queries or stored procedures. Before using this technique, be sure we test it
thoroughly to ensure that turning off sharing locks does not present we with any
unexpected problems.

26) When a query affects many records in a table, SQL Server can automatically
escalate locking from individual rows, to locking multiple pages or even an entire ta-
ble. This happens because maintaining locks requires internal SQL Server resources,
and it takes much less resources for SQL Server to lock pages rather than rows, or
to lock an entire table instead of many different pages.

27) While it is good that SQL Server knows how to limit its use of lock resources,
lock escalation can sometimes cause us problems. For example, if SQL Server es-
calates locking from rows to pages or to the entire table, this reduces concurrency,
preventing users from accessing the data they need in a timely basis. Sometimes
we may want to be able to control lock escalation in order to reduce concurrency
problems.

28) There may be times when it is beneficial for our application, from a performance
point of view, to actually escalate locks even before SQL Server decides it is a good
idea. This may come in handy when we know that a specific type of lock will be
needed, such as a page or table lock, and rather than having SQL Server waste’s its
time going through lock escalation, we can skip past this directly and go to the type
of lock that is most appropriate for a specific query. This reduces concurrently, so
we must consider this implication if we decide to escalate locks directly, rather than
let SQL Server do it for us.

29) By default, SQL Server controls lock escalation, but we can control it ourself
by using lock optimizer hints. Here are some lock escalation hints we may want to
consider:

Rowlock: This hint tells SQL Server to use row-level locking instead of page locks
for INSERTS. By default, SQL Server may perform a page-level lock instead of a
less intrusive row-level lock when inserting data. By using this hint, we can tell SQL

116 CHAPTER 4. TRANSACTION

Server to always start out using row-level locking. But, this hint does not prevent
lock escalation if the number of locks exceeds SQL Server’s lock threshold.

Pagelock: This hint forces SQL Server to use page-level locking no matter what. So
SQL Server will not use either row-level or table-level locking if this hint is used.

Tablock: This hint forces SQL Server to use table-level locking only, and not to use
either row-level or page-level locking.

30) If we decide to try one or more of these optimizer hints, keep in mind that
using hints prevents SQL Server from figuring out what it thinks is best. If our
data changes a lot, or if our queries or dynamic, using hints such as these may cause
more problems than they cure. But if we know that a specific query has lock-related
performance issues, and that the results of this query are predictable, then using
one of these hints may be a good idea.

31) Sometimes it is beneficial for performance reasons to turn all locking off for a
specific query. Normally, when a SELECT query runs, it places shared locks on each
of the rows affected by the query as each row is read. Sometimes these shared row
locks are escalated to page and tables locks, reducing concurrency in our database.
If the query is long-running, it can prevent other users from accessing the rows they
need to UPDATE or DELETE rows on a timely basis.

32) If we write queries that are used for reporting, we can often increase concur-
rently in our database by turning off locking for the specific query. While turning
off all locking can result in “dirty reads”, assuming that the report is used for seeing
the “big picture” and does not have to reflect perfectly exact numbers, then turning
off locking for the query is acceptable. Dirty reads occur when a query reads a row
that is part of another transaction that isn’t complete. So if the other transaction
should be rolled back, then the data read by the original query for that row will
be incorrect. In many cases, reports don’t have to reflect perfect data, as “good
enough” data is acceptable.

33) There are two ways to turn off all locking for a specific query or transaction. If
we are writing a simple query that provides the data for a report, the easiest way
to turn off locking is to use the NOLOCK optimizer hint as part of the query. If we
are running a larger transactions that may include multiple queries, then we may
consider setting the isolation level for the transaction to READ UNCOMMITTED. If we
do this, we will have to turn it on, and then off, from within our transaction.

4.5. THREADS 117

4.5 Threads

4.5.1 Introduction

Multitasking and multithreading are two types of concurrencies. Multitasking refers
to the ability of executing more than one program at the time. It is usually supported
on the operating system level. Multithreading, on the other hand, refers to a single
pogram which has more than one execution thread running concurrently. Each of
these independent subtasks is called a thread. An execution thread refers to the
execution of a single sequence of instructions. In Java support for multithreaded
programmming is built into the language.

Threads are sequences of code that can be executed independently alongside one
another. The Java Virtual Machine allows an application to have multiple threads
of execution running concurrently. Thus a thread is an independent sequential flow
of control within a process. Threads run with programs. A single application or
applet can have many threads doing different things independently. The Thread

class is defined in java.lang as a subclass of the Object class. To use Threads
in a program, one needs to define a local subclass of the Thread class and therein
override its

void run()

method. We put the code that we want the threads of that subclass to execute in
that void run() method.

The public abstract interface Runnable should be implemented by any class
whose instances are intended to be executed by a thread. The class must define a
method of no arguments called run().

There are two ways in which to initiate a new thread of execution. The first is to
create a subclass of the Thread class and redefine the run() method to perform the
set of actions that the thread is intended to do. The second one is to define a new
class that implements the Runnable interface. It must define the run() method and
can be started by passing an instance of the class to a new Thread instance. In both
cases we define a class which specifies the operations or actions that the new thread
(of execution) performs.

118 CHAPTER 4. TRANSACTION

A thread can be in any one of four states:

1) New: the thread object has been created but it has not been started yet so it
cannot run.

2) Runnable: this means that a thread can be run when the time-slicing mecha-
nism has CPU cycles available for the thread. Thus, the thread might or might not
be running, but there is nothing to prevent it from being run if the scheduler can
arrange it. It is not dead or blocked.

3) Dead: the normal way for a thread to die is by returning from its run() method.

4) Blocked: the thread could be run but there is something that prevents it. While
a thread is in the blocked state the scheduler will simply skip over it and not give
any CPU time. Until a thread re-enters the runnable state it will not perform any
operations. A thread can be blocked for five reasons. First we have put the thread
to sleep by calling the method

void sleep(milliseconds)

in which case it will not be run for the specified time. Second we have suspended
the execution of the thread by calling the method suspend(). It will not become
runnable again until the thread gets the resume() message. Note that both methods
are deprecated. Third we have suspended the execution of the thread with the
method wait(). The method

public final void wait() throws InteruptedException

waits to be notified by another thread of a change in this object. It will not become
runnable again until the thread gets the notify() or notifyAll() message. The
method

public final native void notify()

wakes up a single thread that is waiting on this object’s monitor. A thread waits
on an object’s monitor by calling one of the wait methods. The method

public final native void notifyAll()

wakes up all threads that are waiting on this object’s monitor. A thread waits
on an object’s monitor by calling one of the wait methods. Fourth the thread is
waiting for some Input/Output to complete. Finally the thread is trying to call
a synchronized method on another object and that object’s lock is not available.
The keyword synchronized indicates that while a method is accessing an object,
other synchronized methods are blocked from accessing that object.

4.5. THREADS 119

4.5.2 Thread Class

The Thread class provides all the facilities required to create a class which can
execute within its own lightweight process (within the JVM). Next we give the
methods that can change the state of a thread. The

void start()

method in class Thread causes this thread to begin execution. The Java Virtual
Machine calls the run method of this thread. The Runnable interface has a single
method called run(). The class which implements the Runnable interface must
therefore supply its own run() method. Starting a thread causes the run() method
to be executed. This method is executed for a brief time and then another thread
of the application is executed. This thread runs briefly and is then suspended so
another thread can run and so on. If this thread was constructed using a separate
Runnable object, then that Runnable object’s run() method is called; otherwise,
this method does nothing and returns. The method

static void sleep(long millis)

in the Thread class causes the currently executing thread to sleep (temporely cease
execution) for the specified number of milliseconds. The method

void yield()

causes the currentlty executing thread object to temporarily pause and allow other
threads to execute. The method

void destroy()

destroys this thread without any cleanup.

There are a number of methods in the class Thread that provide information about
the status of the process. The method

boolean isAlive()

tests to see if the thread has started execution. On the other hand the method

boolean isInterrupted()

tests if this thread has been interrupted.

Every thread has a unique name. If we do not provide one, then a name is auto-
matically generated by the system. There are two methods that access and set a
thread’s name. The method

String getName() // in Thread class

120 CHAPTER 4. TRANSACTION

returns this thread’s name. The method

void setName(String name)

changes the name of this thread to be equal to the argument name.

The field

static int MAX_PRIORITY

is an integer which defines the maximum priority of a thread. The field

static int MIN_PRIORITY

is an integer which defines the minimum priority of a thread.

The methods

void resume(), void stop(), void suspend()

are deprecated. Instead of using the stop() method, it is recommended that threads
monitor their execution and stop by returning from their run() method.

In many cases we call the method

void repaint()

inside the run() method. The method repaint() is in class Component. It repaints
this component, i.e. it calls the method paint(). The method paint() is in class
Component. It paints this component. The method

void repaint(long tm)

repaints the component. This will result in a call to update() within tm milliseconds,
i.e. tm is the maximum time in milliseconds before update.

4.5. THREADS 121

4.5.3 Example

In our example we create a subclass TestThread of class Thread and redefine the
run() method to perform the set of actions that the thread is intended to do. The
names of the threads are 0, 1, 2, 3.

// MyThread.java

class TestThread extends Thread

{

int sleepTime;

public TestThread(String s)

{

super(s);

sleepTime = (int) (500*Math.random());

System.out.println("Name: " + getName() + "\t Sleep: " + sleepTime);

} // end constructor TestThread

public void run()

{

try { sleep(sleepTime); }

catch(Exception e) { }

System.out.println("Thread " + getName());

} // end run

} // end class TestThread

public class MyThread

{

public static void main(String[] args)

{

TestThread thread0, thread1, thread2, thread3;

thread0 = new TestThread("0"); thread1 = new TestThread("1");

thread2 = new TestThread("2"); thread3 = new TestThread("3");

thread0.start();

thread1.start();

thread2.start();

thread3.start();

} // end main

} // end class MyThread

122 CHAPTER 4. TRANSACTION

A typical output is

first run:

Name: 0 Sleep: 223

Name: 1 Sleep: 55

Name: 2 Sleep: 401

Name: 3 Sleep: 482

Thread 0

Thread 2

Thread 3

Thread 1

second run

Name: 0 Sleep: 36

Name: 1 Sleep: 145

Name: 2 Sleep: 345

Name: 3 Sleep: 290

Thread 0

Thread 3

Thread 1

Thread 2

4.5. THREADS 123

4.5.4 Priorities

The priority of a thread tells the scheduler how important this thread is. If there
are a number of threads blocked and waiting to be run, the scheduler will run
the one with the highest priority first. However, this does not mean that threads
with lower priority do not get run. This means we cannot be deadlocked because
of priorities. Lower priority threads just tend to run less often. In Java we can
read the priority of a thread with the method getPriority() and change it with
the method setPriority(). The following program shows an application of these
methods.

// Bounce.java

import java.awt.*;

import java.awt.event.*;

public class Bounce extends Frame implements WindowListener,

ActionListener

{

Canvas canvas;

public Bounce()

{

setTitle("BouncingBalls");

addWindowListener(this);

canvas = new Canvas();

add("Center",canvas);

Panel panel = new Panel();

add("North",panel);

Button b = new Button("Normal Ball");

b.addActionListener(this);

panel.add(b);

b = new Button("High Priority Ball");

b.addActionListener(this);

panel.add(b);

b = new Button("Close");

b.addActionListener(this);

panel.add(b);

} // end constructor Bounce()

124 CHAPTER 4. TRANSACTION

public void windowClosing(WindowEvent e) { System.exit(0); }

public void windowClosed(WindowEvent e) { }

public void windowOpened(WindowEvent e) { }

public void windowDeiconified(WindowEvent e) { }

public void windowIconified(WindowEvent e) { }

public void windowActivated(WindowEvent e) { }

public void windowDeactivated(WindowEvent e) { }

public void actionPerformed(ActionEvent action)

{

if(action.getActionCommand() == "Normal Ball")

{

Ball ball = new Ball(canvas,Color.blue);

ball.setPriority(Thread.NORM_PRIORITY);

ball.start();

}

else if(action.getActionCommand() == "High Priority Ball")

{

Ball ball = new Ball(canvas,Color.red);

ball.setPriority(Thread.NORM_PRIORITY+1);

ball.start();

}

else if(action.getActionCommand() == "Close")

System.exit(0);

}

public static void main(String[] args)

{

Frame frame = new Bounce();

frame.setSize(400,300);

frame.setVisible(true);

}

} // end class Bounce

class Ball extends Thread

{

Canvas box;

private static final int diameter = 10;

private int x = 0;

private int y = 0;

private int dx = 2;

private int dy = 2;

Color color;

4.5. THREADS 125

Ball(Canvas canvas,Color col)

{

box = canvas;

color = col;

}

public void draw()

{

Graphics g = box.getGraphics();

g.setColor(color);

g.fillOval(x,y,diameter,diameter);

g.dispose();

} // end draw

public void move()

{

Graphics g = box.getGraphics();

g.setColor(color);

g.setXORMode(box.getBackground());

g.fillOval(x,y,diameter,diameter);

x += dx;

y += dy;

Dimension d = box.getSize();

if(x < 0) { x = 0; dx = -dx; }

if(x+diameter >= d.width) { x = d.width-diameter; dx = -dx; }

if(y < 0) { y = 0; dy = -dy; }

if(y+diameter >= d.height) { y = d.height - diameter; dy = -dy; }

g.fillOval(x,y,diameter,diameter);

g.dispose();

} // end move

public void run()

{

draw();

for(;;)

{

move();

try { sleep(10); }

catch(InterruptedException e) { }

} // end for loop

} // end run

} // end class Ball

126 CHAPTER 4. TRANSACTION

4.5.5 Synchronization and Locks

Threads behave fairly independently with the Java virtual machine switching be-
tween the threads. This can cause problems since it is not known when a thread
will be paused to allow another thread to run. Java has built-in support to prevent
collisions over one kind of resource: the memory in an object. We typically make the
data elements of a class private and access that memory only through methods,
we can prevent collisions by making a particular method synchronized. Only one
thread at the time can call a synchronized method for a particular object. Thus
to prevent one thread from interfering with the other the synchronized modifier
can be used when defining a method.

Any method can be preceded by the word

synchronized

The rule is: no two threads may be executing synchronized methods of the same
object at the same time. The Java system enforces this rule by associating a monitor
lock with each object. When a thread calls a synchronized method of an object,
it tries to grab the object’s monitor lock. If another thread is holding the lock, it
waits until that thread releases it. A thread releases the monitor lock when it leaves
the synchronized method. Of one synchronized method of a call contains a call
to another, a thread may have the same lock multiple times. Java keeps track of
that correctly.

Thus there is a lock with every object. The synchronized statement computes a
reference to an object. It then attempts to perform a lock operation on that object
and does not proceed further until the lock operation has successfully completed. A
lock operation may be delayed because the rules about locks can prevent the main
memory from participating until some other thread is ready to perform one or more
unlock operations. After the lock operation has been performed, the body of the
synchronized statement is executed. Normally, a compiler ensures that the lock
operation implemented by a monitorenter instruction executed prior to the execu-
tion of the body of the synchronized statement is matched by an unlock operation
implemented by a monitorexit instruction whenever the synchronized statement
completes, whether completion is normal or abrupt. The Java Virtual Machine pro-
vides separate monitorenter and monitorexit instructions that implements the lock
and unlock operations.

A synchronized method automatically performs a lock operation when it is in-
voked. Its body is not executed until the lock operation has successfully completed.
If the method is an instance method, it locks the lock associated with the instance
for which it was invoked. This means, the object that will be known as this during
execution of the method’s body. If the method is static, it locks the lock associated
with the Class object that represents the class in which the method is defined. If
execution of the method’s body is ever completed, either normally or abruptly, an

4.5. THREADS 127

unlock operation is automatically performed on that same lock.

This mutual exclusion can be accomplished in Java using the synchronized key-
word. This can be applied to methods, such as

public synchronized void withdraw(double ammount) {

...

}

A synchronized method/block can be viewed as a “critical section” that excludes
access the object by any other synchronized methods during its execution.

In the following program we start two threads f1 and f2. The method display()

is synchronized. The output the program Synchronized.java is

100 101 102

100 101 102

100 101 102

100 101 102

100 101 102

100 101 102

If we change the line

synchronized void display()

in the program to

void display()

the output is

100 100 101 101 102 102

100 100 101 101 102 102

100 100 101 101 102 102

128 CHAPTER 4. TRANSACTION

// Synchronized.java

public class Synchronized

{

Count f1, f2;

Synchronized()

{

f1 = new Count(this);

f2 = new Count(this);

f1.start();

f2.start();

} // end constructor Synchronized

synchronized void display()

{

System.out.print("100 ");

System.out.print("101 ");

System.out.print("102 ");

System.out.println();

}

public static void main(String[] args)

{

new Synchronized();

}

} // end class Synchronized

class Count extends Thread

{

Synchronized current;

Count(Synchronized thread)

{

current = thread;

}

public void run()

{

int i;

for(i=0; i < 3; i++)

current.display();

}

}

4.5. THREADS 129

In the following programs BankAccount.java and Transfer.java we consider the
problem of transferring money between bank accounts. It is left as an exercise
to the reader to investigate whether or not the method getBalance() should be
synchronized or not in the following two programs.

// BankAccount.java

public class BankAccount

{

private double balance;

public BankAccount(double balance)

{

this.balance = balance;

}

public double getBalance()

{

return balance;

}

public synchronized void deposit(double amount)

{

balance += amount;

}

public synchronized void withdraw(double amount)

throws RuntimeException

{

if(amount > balance)

{

throw new RuntimeException("Overdraft");

}

balance -= amount;

}

public synchronized void transfer(double amount,BankAccount destination)

{

this.withdraw(amount);

Thread.yield(); // allows the scheduler to select another runnable thread

destination.deposit(amount);

}

} // end class BankAccount

130 CHAPTER 4. TRANSACTION

// Transfer.java

import BankAccount;

public class Transfer implements Runnable

{

public static void main(String[] args)

{

Transfer x =

new Transfer(new BankAccount(100.0),new BankAccount(100.0),50.0);

Thread t = new Thread(x);

t.start();

Thread.yield(); // the thread on which yield() is invoked would

// move from running state to ready state

System.out.println("Account A has Dollar: " + x.A.getBalance());

System.out.println("Account B has Dollar: " + x.B.getBalance());

}

public BankAccount A, B;

public double amount;

public Transfer(BankAccount A,BankAccount B,double amount)

{

this.A = A;

this.B = B;

this.amount = amount;

}

public void run()

{

System.out.println("Before transfer A has Dollar: "

+ A.getBalance());

System.out.println("Before transfer B has Dollar: "

+ B.getBalance());

A.transfer(amount,B);

System.out.println("After transfer A has Dollar: "

+ A.getBalance());

System.out.println("After transfer B has Dollar: "

+ B.getBalance());

}

}

4.5. THREADS 131

4.5.6 Producer Consumer Problem

The producer consumer problem is a classic synchronization problem. The producer
and consumer processes share a common buffer. The producer executes a loop in
which it puts new items into the buffer and the consumer executes a loop in which
it removes items from the buffer. The following important conditions have to be
satisfied by the producer and consumer. At most one process (producer or consumer)
may be accessing the shared buffer at any time. This condition is called mutual
exclusion. When the buffer is full, the producer should be put to sleep. It should
only wake up when an empty slot becomes available. This is called synchronization.
When the buffer is empty, the consumer should be put to sleep. It should only wake
up when at least one slot becomes full. This is also called synchronization.

The following four programs

Producer.java, Consumer.java, Buffer.java, Main.java

provide a solution to this problem. The methods wait() and notify() are in the
class Object. Class Object is the root of the class hierarchy. Every class has Object
as a superclass. All objects, including arrays, implement the methods of this class.
The method wait() causes the current thread to wait until another thread invokes
the notify() method or the notifyAll() method for this object. The method
notify() wakes up a single thread that is waiting on this object’s monitor. If any
threads are waiting on this object, one of them is chosen to be awakend. The choice
is arbitrary and occurs at the discretion of the implementation. A thread waits on
an object’s monitor by calling one of the wait methods.

// Producer.java

public class Producer extends Thread

{

private Buffer buffer;

public Producer(Buffer b)

{

buffer = b;

}

public void run()

{

for(int i=0; i < 10; i++)

{

buffer.put(i);

System.out.println("Producer put: " + i);

132 CHAPTER 4. TRANSACTION

try

{

sleep((int) (Math.random()*100));

}

catch(InterruptedException e) { }

}

}

}

// Consumer.java

public class Consumer extends Thread

{

private Buffer buffer;

public Consumer(Buffer b)

{

buffer = b;

}

public void run()

{

int value = 0;

for(int i=0; i < 10; i++)

{

value = buffer.get();

System.out.println("Consumer got: " + value);

}

}

}

// Buffer.java

public class Buffer

{

private int contents;

private boolean available = false;

public synchronized int get()

{

while(available == false)

{

try

4.5. THREADS 133

{

wait();

}

catch(InterruptedException e) { }

}

available = false;

notify();

return contents;

}

public synchronized void put(int value)

{

while(available == true)

{

try

{

wait(); // block until woken up by a call to notify

}

catch(InterruptedException e) { }

}

contents = value;

available = true;

notify();

}

}

// Main.java

public class Main

{

public static void main(String[] args)

{

Buffer b = new Buffer();

Producer p = new Producer(b);

Consumer c = new Consumer(b);

p.start();

c.start();

}

}

134 CHAPTER 4. TRANSACTION

4.6 Locking Files for Shared Access

Using the FileLock class and FileChannel class we can use a file lock to restrict
access to a file from multiple processes. We have the option of restricting access to
an entire file or just a region of it. A file-lock is either shared or exclusive. A file
lock object is created each time a lock is acquired on a file via one of the lock()

or tryLock() methods of the FileChannel class. A file-lock is initially valid. It
remains valid until the lock is released by invoking the release() method. The
release() method is in the FileLock class. The following two programs show an
example.

We compile the program LockFile.java which accesses the file data.dat for read
and write. Then we run the program. The program gets an exclusive lock on the
file data.dat, reports when it has the lock, and then waits until we press the Enter
key. Before we press the Enter key we start a new process by compiling and running
the program NoOfLines.java. This program counts the numbers of lines in the file
data.dat. Since the file data.dat is locked it cannot access the file only after we
press the Enter key in the first process. Then the lock is released.

// LockFile.java

import java.io.*;

import java.nio.*;

import java.nio.channels.*;

public class LockFile

{

public static void main(String[] args) throws IOException

{

File f = new File("c:\\javacourse/data.dat");

RandomAccessFile raf = new RandomAccessFile(f,"rw");

FileChannel channel = raf.getChannel();

FileLock lock = channel.lock();

try

{

System.out.println("locked");

System.out.println("Press ENTER to continue");

System.in.read(new byte[10]);

}

finally

{

lock.release();

}

}

}

4.6. LOCKING FILES FOR SHARED ACCESS 135

// NoOfLines.java

import java.io.*;

import java.util.*;

public class NoOfLines

{

public static void main(String[] args) throws IOException

{

FileInputStream fin = new FileInputStream("c:\\javacourse/data.dat");

BufferedReader in;

in = new BufferedReader(new InputStreamReader(fin));

int count = 0;

while(in.readLine() != null)

{

count++;

}

System.out.println("count = " + count);

} // end main

}

136 CHAPTER 4. TRANSACTION

Chapter 5

JDBC

5.1 Introduction

Standard relational data access is very important for Java programs because the
Java applets by nature are not monolithic, all-consuming applications. As applets
by nature are modular, they need to read persistent data from data stores, pro-
cess the data, and write the data back to data stores for other applets to process.
Monolithic programs could afford to have their own proprietary schemes of data
handling. But as Java applets cross operating system and network boundaries, we
need published open data access schemes.

The Java Database Connectivity (JDBC) of the Java Enterprise API’s JavaSoft is
the first of such cross-platform, cross-database approaches to database access from
Java programs. From a developer’s point of view, JDBC is the first standardized
effort to integrate relational databases with Java programs. JDBC has opened all
the relational power that can be mustered to Java applets and applications. We see
how JDBC can be used to develop database programs using Java.

JDBC supports transaction processing with the commit() and rollback() meth-
ods. JDBC also has the autocommit() method which, when on, all changes are
committed automatically and, if off, the Java program has to use the commit() or
rollback() methods to effect the changes to the data.

JDBC is Java Database Connectivity - a set of relational database objects and
methods for interacting with data sources. Even though the objects and methods
are based on the relational database model, JDBC makes no assumption about the
underlying data source or the data storage scheme. We can access and retrieve
audio or video data from many sources and load into Java objects using the JDBC
APIs! The only requirement is that there should be a JDBC implementation for
that source.

137

138 CHAPTER 5. JDBC

The JDBC designers based the API on X/Open SQL Call Level Interface (CLI).
It is not coincidental that Open Database Connection (ODBC) an API defined by
Microsoft is also based on the X/Open CLI. The JavaSoft engineers wanted to gain
leverage from the existing ODBC implementation and development expertise, thus
making it easier for Independent Software Vendors (ISVs) and system developers to
adopt JDBC. But ODBC is a C interface to DBMSs and thus is not readily convert-
ible to Java. So JDBC design followed ODBC in spirit as well in its major abstrac-
tions and implemented the SQL CLI with a Java interface that is consistent with
the rest of the Java system. For example, instead of the ODBC SQLBindColumn
and SQLFetch to get column values from the result, JDBC used a simpler approach.

JDBC is designed upon the CLI model. JDBC defines a set of API objects and
methods to interact with the underlying database. A Java program first opens a
connection to a database, makes a statement object, passes SQL statements to the
underlying DBMS through the statement object, and retrieves the results as well
as information about the result sets. Typically, the JDBC class files and the Java
applet/application reside in the client. They could be downloaded from the net-
work also. To minimize the latency during execution, it is better to have the JDBC
classes in the client. The Database Management System and the data source are
typically located in a remote server. The applet/application and the JDBC layers
communicate in the client system, and the driver takes care of interacting with the
database over the network.

The JDBC driver can be a native library, like the JDBC-ODBC Bridge, or a Java
class talking across the network to an RPC or Jeeves Servlet or HTTP listener pro-
cess in the database server.

The JDBC classes are in the java.sql package, and all Java programs use the ob-
jects and methods in the java.sql package to read from and write to data sources.
A program using the JDBC will need a driver for the data source with which it
wants to interface. This driver can be a native module (like the JDBCODBC.DLL for
the Windows JDBC-ODBC Bridge developed by Sun/Intersolv), or it can be a Java
program that talks to a server in the network using some RPC or Jeeves Servlet or
an HTTP talker-listener protocol.

JDBC can be implemented as a native driver or as a gateway to an RPC. Which im-
plementation is better is a question that will be answered as the JDBC architecture
matures. One reason to implement a native library is the advantage of speed. Also,
local databases could be handled using native libraries more easily than gateways.
On the other hand, for a handheld device or a network computer, network is the
system. For these devices, a full Java implementation of JDBC that talks to an
RPC type of system or a Jeeves servlet on the database server is a good solution.

5.1. INTRODUCTION 139

It is conceivable that an application will deal with more than one data source-
possibly heterogeneous data sources. A database gateway program is a good exam-
ple of an application that accesses multiple heterogeneous data sources. For this
reason, JDBC has a DriverManager whose function is to manage the drivers and
provide a list of currently loaded drivers to the application programs.

Even though the word Database is in the name JDBC, the form, content, and loca-
tion of the data is immaterial to the Java program using JDBC, so long as there is
a driver for that data. Hence, the notation data source to describe the data is more
accurate than Database, DBMS, DB, or just file. ODBC also refers to data sources,
rather than databases when being described in general terms.

Security is an important issue, especially when databases are involved. JDBC fol-
lows the standard security model in which applets can connect only to the server
from where they are loaded; remote applets cannot connect to local databases. Ap-
plications have no connection restrictions. For pure Java drivers, the security check
is automatic, but for drivers developed in native methods, the drivers must have
some security checks.

As a part of JDBC, JavaSoft also will deliver a driver to access ODBC data sources
from JDBC. This driver is jointly developed with Intersolv and is called the JDBC-
ODBC bridge. The JDBC-ODBC bridge is implemented as the JdbcOdbc.class

and a native library to access the ODBC driver. For the Windows platform, the
native library is a DLL (JDBCODBC.DLL). As JDBC is close to ODBC in design, the
ODBC bridge is a thin layer over JDBC. Internally, this driver maps JDBC methods
to ODBC calls, and thus interacts with any available ODBC driver. The advantage
of this bridge is that now JDBC has the capability to access almost all databases,
as ODBC drivers are widely available.

JDBC makes it possible to do three things:

1. establish a connection with a database

2. send SQL statements

3. process the results

140 CHAPTER 5. JDBC

5.2 Classes for JDBC

5.2.1 Introduction

The first thing we need to do is establish a connection with the DBMS we want to
use. This involves two steps:

(1) loading the driver

(2) making the connection.

Loading the driver or drivers we want to use is simple and involves one line of code.
If, for example, we want to use the JDBC-ODBC Bridge driver, the following code
will load it

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

The driver documentation will give us the class name to use. For instance, if the
class name is jdbc.DriverXYZ, we would load the driver with the following line of
code

Class.forName("jdbc.DriverXYZ");

We do not need to create an instance of a driver and register it with the class
DriverManager because calling Class.forName will do that for us automatically.
If we were to create our own instance, we would be creating an unecessary duplicate.

When we look at the class hierarchy and methods associated with it, the topmost
class in the hierarchy is the DriverManager. This class provides the basic service
for managing a set of JDBC drivers. Thus the DriverManager keeps the driver
information, state information, and so on. When each driver is loaded, it registers
with the DriverManager. The DriverManager, when required to open a connection,
selects the driver depending on the JDBC URL. JDBC identifies a database with
an URL. Databases are specified with URL syntax. The URL is of the form

jdbc:<subprotocol>:<subname related to the DBMS/Protocol>

For databases on the Internet/intranet, the subname can contain the Net URL

//hostname:port/...

The <subprotocol> can be any name that a database understands. The odbc sub-
protocol name is reserved for ODBC-style data sources. A normal ODBC database
JDBC URL looks like:

jdbc:odbc:<>;User=<>;PW=<>

5.2. CLASSES FOR JDBC 141

5.2.2 Classes DriverManager and Connection

The java.sql.Driver class is usually referred to for information such as Property-
Info, version number, and so on. So the class could be loaded many times during the
execution of a Java program using the JDBC API. Looking at the java.sql.Driver
and java.sql.DriverManager classes and methods we see that the DriverMan-
ager returns a Connection object when we use one of the three getConnection()

method. The methods

static Connection getConnection(String url)

static Connection getConnection(String url,Properties info)

static Connection getConnection(String url,String user,String password)

attempt to establish a connection to a given database.

The following line of code illustrates the use

Connection con = DriverManager.getConnection(url,"myLogin","myPassword");

Other useful methods include the

static void registerDriver(Driver driver)

which registers the given driver with the DriverManager

static void deregisterDriver(Driver driver)

drops a driver from the DriverManager’s list

static Driver getDrivers(String url)

atempts to locate a driver that understands the given URL.

If we are using the JDBC-ODBC bridge driver, the JDBC URL will start with
jdbc:odbc:. The rest of the URL is generally our data source name or database
system. The connection returned by the method

DriverManager.getConnection()

is an open connection we can use to create JDBC statements that pass our SQL
statements to the DBMS.

142 CHAPTER 5. JDBC

First we need to configure an ODBC data source. The getConnection() method
requires

1) data source name (DSN),

2) user ID,

3) password

for the ODBC data source. The database driver type or subprotocol name is odbc.
So the driver manager finds out from the ODBC driver the rest of the details.
Where do we put the rest of the details? This is where the ODBC setup comes
into the picture. The ODBC Setup program runs outside the Java application from
the Microsoft ODBC program group. With the ODBC Setup program we set up
the data source so that this information is available to the ODBC Driver Manager,
which, in turn, loads the Microsoft Access ODBC driver. If the database is in
another DBMS form-say, Oracle we configure this source as Oracle ODBC driver.
With Windows 98 and Windows NT 4.0, this information is in the Registry.

The Connection class is one of the major classes in JDBC. It has a lot of func-
tionality, ranging from transaction processing to creating statements, in one class.
The connection is for a specific database that can be interacted with in a specific
subprotocol. The Connection object internally manages all aspects about a con-
nection, and the details are transparent to the program. The Connection object is
a pipeline into the underlying DBMS driver. The information to be managed in-
cludes the data source identifier, the subprotocol, the state information, the DBMS
SQL execution plan ID or handle, and any other contextual information needed to
interact successfully with the underlying DBMS. The data source identifier could be
a port in the Internet database server that is identified by the server

name:port/...

URL, just a data source name used by the ODBC driver, or a full path name to a
database file in the local computer.

Another important function performed by the Connection object is transaction
management. The handling of transactions depends on the state of an internal
autocommit flag that is set using the

void setAutoCommit(boolean)

method, and the state of this flag can be read using the

boolean getAutoCommit()

5.2. CLASSES FOR JDBC 143

method. When the flag is true, the transactions are automatically committed as
soon as they are completed. There is no need for any intervention or commands
from the Java application program. When the flag is false, the system is in the man-
ual mode. The Java program has the option to commit the set of transactions that
happened after the last commit or to rollback the transactions using the commit()

and rollback() methods. Both methods are in the class Connection.

JDBC also provides methods for setting the transaction isolation modularity. When
we are developing multi-tiered applications, there will be multiple users perform-
ing concurrently interleaved transactions that are on the same database tables. A
database driver has to employ sophisticated locking and data-buffering algorithms
and mechanisms to implement the transaction isolation required for a large-scale
JDBC application. This is more complex when there are multiple Java objects
working on many databases that could be scattered across the globe!

Once we have a successful Connection object to a data source, we can interact with
the data source in many ways. The most common approach from an application
developer standpoint is the objects that handle the SQL statements.

When a connection is created, it is in auto-commit mode. This means that each
individual SQL statement is treated as a transaction and will be automatically com-
mitted right after it is executed. To be more precise, the default is for SQL statement
to be committed when it is completed, not when it is executed. A statement is com-
pleted when all of its result sets and update counts have been retrieved. In almost
all case, however, a statement is completed, and therefore committed, right after it
is executed.

Calling the method rollback() aborts a transaction and returns any values that
were modified to their previous values. If we are trying to execute one or more
statements in a transaction and get an SQLException, we should call the method
rollback() to abort the transaction and start the transaction all over again. That
is the only way to be sure of what has been committed and what has not been
committed. Catching an SQLException provides the information that something is
wrong, but we do not what was or was not committed. Since we cannot count on
the fact that nothing was committed, calling the method rollback() is the only
way to be sure.

144 CHAPTER 5. JDBC

5.2.3 Class Statement

The Statement object does all of the work to interact with the Database Manage-
ment System in terms of SQL statements. We can create many Statement objects
from one Connection object. Internally, the Statement object would be storing the
various data needed to interact with a database, including state information, buffer
handles, and so on. But these are transparent to the JDBC application program.

To handle data from a database, a Java program implements the following general
steps. First, the program calls the getConnection() method to get the Connection
object. Then, it creates the Statement object and prepares a SQL statement.
A SQL statement can be executed immediately (Statement object), or can be a
compiled statement (PreparedStatement object) or a call to a stored procedure
(CallableStatement object). When the method executeQuery() is executed, a
ResultSet object is returned. SQL statements such as update or delete will not
return a ResultSet. For such statements, the executeUpdate() method is used.
The executeUpdate() method returns an integer which denotes the number of rows
affected by the SQL statement. The ResultSet contains rows of data that is parsed
using the next() method. In case of a transaction processing application, methods
such as rollback() and commit() can be used either to undo the changes made by
the SQL statements or permanently affect the changes made by the SQL statements.

When a program attempts an operation that is not in sync with the internal state
of the system (for example, a next() method to get a row when no SQL statements
have been executed), this discrepancy is caught and an exception is raised. This
exception, normally, is probed by the application program using the methods in the
SQLException object.

JDBC supports three types of statements:

Statement

PreparedStatement

CallableStatement

The Connection object has the

public Statement createStatement() throws SQLException

public PreparedStatement prepareStatement(String sql) throws SQLException

and

public CallableStatement prepareCall(String sql) throws SQLException

methods to create these Statement objects.

5.2. CLASSES FOR JDBC 145

A Java application program first builds the SQL statement in a string buffer and
passes this buffer to the underlying DBMS through some API call. A SQL statement
needs to be verified syntactically, optimized, and converted to an executable form
before execution. In the Call Level Interface (CLI) Application Program Interface
(API) model, the application program passes the SQL statement to the driver which,
in turn, passes it to the underlying DBMS. The DBMS prepares and executes the
SQL statement. After the DBMS receives the SQL string buffer, it parses the state-
ment and does a syntax check run. If the statement is not syntactically correct, the
system returns an error condition to the driver, which generates a SQLException.
If the statement is syntactically correct, depending on the DBMS, then many query
plans usually are generated that are run through an optimizer (often a cost-based op-
timizer). Then, the optimum plan is translated into a binary execution plan. After
the execution plan is prepared, the DBMS usually returns a handle or identifier to
this optimized binary version of the SQL statement back to the application program.

The three JDBC statements

Statement, PreparedStatement, CallableStatement

differ in the timing of the SQL statement preparation and the statement execution.
In the case of the simple Statement object, the SQL is prepared and executed in
one step (at least from the application program point of view. Internally, the driver
might get the identifier, command the DBMS to execute the query, and then dis-
card the handle). In the case of a PreparedStatement object, the driver stores the
execution plan handle for later use. In the case of the CallableStatement object,
the SQL statement is actually making a call to a stored procedure that is usually
already optimized.

Stored procedures are encapsulated business rules or procedures that reside in the
database server. They also enforce uniformity across applications, as well as pro-
vide security to the database access. Stored procedures last beyond the execution
of the program. So the application program does not spend any time waiting for
the DBMS to create the execution plan.

The JDBC processing is synchronous; that is, the application program must wait for
the SQL statements to complete. However Java is a multithreaded platform. Thus
the JDBC designers suggest using threads to simulate asynchronous processing.

The Statement object is best suited for ad hoc SQL statements or SQL statements
that are executed once. The DBMS goes through the syntax run, query plan opti-
mization, and the execution plan generation stages as soon as this SQL statement is
received. The DBMS executes the query and then discards the optimized execution
plan. So, if the executeQuery() method is called again, the DBMS goes through
all of the steps again.

146 CHAPTER 5. JDBC

We give now all methods in the class Statement. A Statement object is created
using the createStatement() method in the Connection object.

Table: Statement Methods

ResultSet executeQuery(String sql)

int executeUpdate(String sql)

Boolean execute(String sql)

Boolean getMoreResults()

void close()

int getMaxFieldSize()

void setMaxFieldSize(int max)

int getMaxRows()

void setMaxRows(int max)

void setEscapeProcessing(boolean enable)

int getQueryTimeout()

void setQueryTimeout(int seconds)

void cancel()

java.sql.SQLWarning getWarnings()

void clearWarnings()

void setCursorName(String name)

ResultSet getResultSet()

int getUpdateCount

The most important methods are

ResultSet executeQuery(String)

int executeUpdate(String)

boolean execute(String)

As we create a Statement object with a SQL statement, the executeQuery()

method takes a SQL string. It passes the SQL string to the underlying data source
through the driver manager and gets the ResultSet back to the application pro-
gram.

Important! The executeQuery() method returns only one ResultSet.

For those cases that return more than one ResultSet, the execute() method should
be used. Only one ResultSet can be opened per Statement object at one time.
For SQL statements that do not return a ResultSet such as the UPDATE, DELETE,
and DDL statements, the Statement object has the executeUpdate() method that
takes a SQL string and returns an integer. This integer indicates the number of
rows that are affected by the SQL statement.

5.2. CLASSES FOR JDBC 147

5.2.4 Class PreparedStatement

In the case of a PreparedStatement object, as the name implies, the application
program prepares a SQL statement using the

java.sql.Connection.prepareStatement()

method. The prepareStatement() method takes a SQL string, which is passed
to the underlying DBMS. The DBMS goes through the syntax run, query plan
optimization, and the execution plan generation stages but does not execute the
SQL statement. Possibly, the DBMS returns a handle to the optimized execution
plan that the JDBC driver stores internally in the PreparedStatement object. The
methods of the PreparedStatement object are shown in the following Table. Notice
that the executeQuery(), executeUpdate(), and execute() methods do not take
any parameters. They are just calls to the underlying DBMS to perform the already
optimized SQL statement.

Table: PreparedStatement Methods

ResultSet executeQuery()

int executeUpdate()

boolean execute()

One of the major features of a PreparedStatement is that it can handle IN types
of parameters. The parameters are indicated in a SQL statement by placing the
? as the parameter marker instead of the actual values. In the Java program, the
association is made to the parameters with the

void setXXXX()

methods, as shown in the following Table. All of the setXXXX() methods take the
parameter index, which is

1 for the first ?, 2 for the second ?

and so on.

148 CHAPTER 5. JDBC

Table: java.sql.PreparedStatement Methods

void clearParameters()

void setAsciiStream(int parameterIndex,InputStream x,int length)

void setBinaryStream(int parameterIndex,InputStream x,int length)

void setBoolean(int parameterIndex, boolean x)

void setByte(int parameterIndex,byte x)

void setBytes(int parameterIndex,byte x[])

void setDate(int parameterIndex,java.sql.Date x)

void setDouble(int parameterIndex,double x)

void setFloat(int parameterIndex,float x)

void setInt(int parameterIndex,int x)

void setLong(int parameterIndex,long x)

void setNull(int parameterIndex,int sqlType)

void setNumeric(int parameterIndex,Numeric x)

void setShort(int parameterIndex,short x)

void setString(int parameterIndex,String x)

void setTime(int parameterIndex,java.sql.Time x)

void setTimestamp(int parameterIndex,java.sql.Timestamp x)

void setUnicodeStream(int parameterIndex,InputStream x,int length)

Advanced Features-Object Manipulation

void setObject(int parameterIndex,Object x,int targetSqlType,int scale)

void setObject(int parameterIndex,Object x,int targetSqlType)

void setObject(int parameterIndex,Object x)

In the case of the PreparedStatement, the driver actually sends only the execution
plan ID and the parameters to the DBMS. This results in less network traffic and is
well-suited for Java applications on the Internet. The PreparedStatement should be
used when we need to execute the SQL statement many times in a Java application.
But remember, even though the optimized execution plan is available during the
execution of a Java program, the DBMS discards the execution plan at the end of
the program. So, the DBMS must go through all of the steps of creating an execution
plan every time the program runs. The PreparedStatement object achieves faster
SQL execution performance than the simple Statement object, as the DBMS does
not have to run through the steps of creating the execution plan.

5.2. CLASSES FOR JDBC 149

5.2.5 Class CallableStatement

For a secure, consistent, and manageable multi-tier client/server system, the data
access should allow the use of stored procedures. Stored procedures centralize the
business logic in terms of manageability and also in terms of running the query.
Java applets running on clients with limited resources cannot be expected to run
huge queries. But the results are important to those clients. JDBC allows the use
of stored procedures by the

CallableStatement

class and with the escape clause string. A CallableStatement object is created by
the prepareCall() method in the Connection object. The prepareCall() method
takes a string as the parameter. This string, called an escape clause, is of the form

{[? =] call stored procedure name [parameter,parameter ...]}

The CallableStatement class supports parameters. These parameters are of the
OUT kind from a stored procedure or the IN kind to pass values into a stored
procedure. The parameter marker (question mark) must be used for the return
value (if any) and any output arguments, because the parameter marker is bound to
a program variable in the stored procedure. Input arguments can be either literals
or parameters. For a dynamic parameterized statement, the escape clause string
takes the form:

{[? =] call stored procedure name [?,?; ...]}

The OUT parameters should be registered using the registerOutparameter()

method-as shown in the Table before the call to the executeQuery(), executeUpdate(),
or execute() methods.

Table: CallableStatement Methods

void registerOutParameter(int parameterIndex,int sqlType)

void registerOutParameter(int parameterIndex,int sqlType,int scale)

After the stored procedure is executed, the DBMS returns the result value to the
JDBC driver. This return value is accessed by the Java program using the methods
in following Table.

150 CHAPTER 5. JDBC

Table: CallableStatement Methods

Boolean getBoolean(int parameterIndex)

byte getByte(int parameterIndex)

byte[] getBytes(int parameterIndex)

java.sql.Date getDate(int parameterIndex)

double getDouble(int parameterIndex)

float getFloat(int parameterIndex)

int getInt(int parameterIndex)

long getLong(int parameterIndex)

Numeric getNumeric(int parameterIndex,int scale)

Object getObject(int parameterIndex)

short getShort(int parameterIndex)

String getString(int parameterIndex)

java.sql.Time getTime(int parameterIndex)

java.sql.Timestamp getTimestamp(int parameterIndex)

boolean wasNull()

The method boolean wasNull() indicates whether or not the last OUT parameter
read had the value of SQL NULL.

JDBC has minimized the complexities of getting results from a stored procedure. It
still is a little involved, but is simpler. Maybe in the future, these steps will become
simpler.

5.2. CLASSES FOR JDBC 151

5.2.6 Class ResultSet

The ResultSet object is actually a tabular data set; that is, it consists of rows of
data organized in uniform columns. In JDBC, the Java program can see only one
row of data at one time. The program uses the next() method to go to the next
row. JDBC does not provide any methods to move backwards along the ResultSet

or to remember the row positions (called bookmarks in ODBC). Once the program
has a row, it can use the positional index (1 for the first column, 2 for the second
column, and so on) or the column name to get the field value by using the getXXXX()
methods. The Table shows the methods associated with the ResultSet object.

Table: java.sql.ResultSet Methods

boolean next()

void close()

boolean wasNull()

The ResultSet methods are very simple. The major ones are the getXXX() meth-
ods. The getMetaData() method returns the meta data information about a
ResultSet. The interface DatabaseMetaData also returns the results in the ResultSet
form. The ResultSet also has methods for the silent SQLWarnings. It is a good
practice to check any warnings using the getWarning() method that returns a null

if there are no warnings.

Although the method getString is recommended for retrieving the SQL types CHAR
and VARCHAR, it is also possible to retrieve any of the basic SQL types with it. For
instance, if it is used to retrieve a numeric type, the method getString will convert
the numeric value to a Java String object, and the value will have to be converted
back to a numeric type before it can be operated on as a number. In case where the
value will be treated as a string anyway, there is no drawback.

It is now possible to produce ResultSet objects that are scrollable and/or updat-
able. For example

Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("SELECT a, b FROM MyTable");

152 CHAPTER 5. JDBC

The methods in class ResultSet to get data by column position are

java.io.InputStream

getAsciiStream(int columnIndex)

java.io.InputStream

getBinaryStream(int columnIndex)

boolean getBoolean(int columnIndex)

byte getByte(int columnIndex)

byte[] getBytes(int columnIndex)

java.sql.Date getDate(int columnIndex)

double getDouble(int columnIndex)

float getFloat(int columnIndex)

int getInt(int columnIndex)

long getLong(int columnIndex)

java.sql.Numeric

getNumeric(int columnIndex, int scale)

Object getObject(int columnIndex)

short getShort(int columnIndex)

String getString(int columnIndex)

java.sql.Time getTime(int columnIndex)

java.sql.Timestamp getTimestamp(int columnIndex)

java.io.InputStream getUnicodeStream(int columnIndex)

5.2. CLASSES FOR JDBC 153

The methods in class ResultSet to get data by column name are

java.io.InputStream getAsciiStream(String columnName)

java.io.InputStream getBinaryStream(String columnName)

boolean getBoolean(String columnName)

byte getByte(String columnName)

byte[] getBytes(String columnName)

java.sql.Date getDate(String columnName)

double getDouble(String columnName)

float getFloat(String columnName)

int getInt(String columnName)

long getLong(String columnName)

java.sql.Numeric getNumeric(String columnName,int scale)

Object getObject(String columnName)

short getShort(String columnName)

String getString(String columnName)

java.sql.Time getTime(String columnName)

java.sql.Timestamp getTimestamp(String columnName)

java.io.InputStream getUnicodeStream(String columnName)

int findColumn(String columnName)

SQLWarning getWarnings()

void clearWarnings()

String getCursorName()

ResultSetMetaData getMetaData()

154 CHAPTER 5. JDBC

5.2.7 Class SQLException

The SQLException class in JDBC provides a variety of information regarding errors
that occurred during a database access. The SQLException objects are chained
so that a program can read them in order. This is a good mechanism, as an error
condition can generate multiple errors and the final error might not have anything to
do with the actual error condition. By chaining the errors, we can actually pinpoint
the first error. Each SQLException has an error message and vendor-specific error
code. Also associated with a SQLException is a SQLState string that follows the
XOPEN SQLstate values defined in the SQL specification. The following Table lists
the methods for the SQLException class.

Table: SQLException Methods

SQLException SQLException(String reason,String SQLState,int vendorCode)

SQLException SQLException(String reason,String SQLState)

SQLException SQLException(String reason)

SQLException SQLException()

String getSQLState()

int getErrorCode()

SQLException getNextException()

void setNextException(SQLException ex)

Handling Exceptions in JDBC-SQLWarning Class

Unlike the SQLExceptions that the program knows have happened because of raised
exceptions, the SQLWarnings do not cause any commotion in a Java program. The
SQLWarnings are tagged to the object whose method caused the warning. So we
should check for warnings using the getWarnings() method that is available for all
objects. The Table lists the methods associated with the SQLWarnings class.

Table: SQLWarning Methods

SQLWarning SQLWarning(String reason,String SQLstate,int vendorCode)

SQLWarning SQLWarning(String reason,String SQLstate)

SQLWarning SQLWarning(String reason)

SQLWarning SQLWarning()

SQLWarning getNextWarning()

void setNextWarning(SQLWarning w)

5.2. CLASSES FOR JDBC 155

5.2.8 Classes Date, Time and TimeStamp

We now look at some of the supporting classes that are available in JDBC. These
classes are Date, Time and TimeStamp. Most of these classes extend the basic Java
classes to add the capability to handle and translate data types that are specific to
SQL. The package

java.sql.Date

gives a Java program the capability to handle SQL Date information with only year,
month, and day values. This package contrasts with the java.util.Date, where
the time in hours, minutes, and seconds is also kept.

Table: java.sql.Date Methods

Date Date(int year,int month,int day)

Date valueOf(String s)

String toString()

The package

java.sql.Time

adds the Time object to the java.util.Date package to handle only hours, minutes,
and seconds. java.sql.Time is also used to represent SQL time information.

Table: java.sql.Time Methods

Time Time(int hour,int minute,int second)

Time Time valueOf(String s)

String toString()

The

java.sql.Timestamp

package adds the Timestamp class to the java.util.Date package. It adds the ca-
pability of handling nanoseconds. But the granularity of the subsecond timestamp
depends on the database field as well as the operating system.

Table: java.sql.Timestamp Methods

Timestamp Timestamp(int year,int month,int day,int hour,

int minute,int second,int nano)

Timestamp valueOf(String s)

String toString()

int getNanos()

void setNanos(int n)

boolean equals(Timestamp ts)

156 CHAPTER 5. JDBC

5.3 Data Types in SQL

In JDBC, the SQL types are defined in the

java.sql.Types

class and the different numeric types are handled in the

java.sql.Numeric

class. The class java.sql.Types defines a set of XOPEN equivalent integer con-
stants that identify SQL types. The constants are final types. Therefore, they
cannot be redefined in applications or applets. The Table lists the constant names
and their values.

Table: java.sql.Types Constants

Constant Name Value

============= =====

BIGINT -5

BINARY -2

BIT -7

CHAR 1

DATE 91

DECIMAL 3

DOUBLE 8

FLOAT 6

INTEGER 4

LONGVARBINARY -4

LONGVARCHAR -1

NULL 0

NUMERIC 2

OTHER 1111

REAL 7

SMALLINT 5

TIME 92

TIMESTAMP 93

TINYINT -6

VARBINARY -3

VARCHAR 12

5.3. DATA TYPES IN SQL 157

JDBC Types Mapped to Java Types

JDBC Type Java Type

========= =========

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

=======================================

Standard Mapping from Java Types to JDBC Types

Java Type JDBC Type

========= =========

String CHAR, VARCHAR or LONGVARCHAR

java.math.BigDecimal NUMERIC

boolean BIT

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

float REAL

double DOUBLE

byte[] BINARY, VARBINARY, LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

==

158 CHAPTER 5. JDBC

5.4 Example

The database is the Microsoft Access database. We access the database using JDBC
and the JDBC-ODBC bridge. Here we describe how to link JDBC with Microsoft
ACCESS.

1) First we create in Microsoft ACCESS an empty (blank) database with filename:

Phone.mdb

in a given directory, for example

C:\Swiss

2) Next we have to set up the database driver and the DSN (data source name).
We select PhoneBook for the DSN. The DSN is used in our Java code to specify (or
points to) the database that are going to be used.

a) Click on MyComputer
b) Click on Control Panel
c) Click on Data Source (32 bit)(ODBC)
d) Click on Add
e) Select the Microsoft Access Driver
f) Click the Finish button
g) Fill in the Data Source Name: PhoneBook
h) Click on Select
i) Fill in name of .mdb file, in our case
Phone.mdb

in the directory Swiss.
j) Click O.K.

The string PhoneBook is stored in the file Odbc.ini

......

PhoneBook=Microsoft Access Driver (*.mdb) (32 bit)

......

[PhoneBook]

Driver32=C:\WINNT\System32\odbcjt32.dll

5.5. PROGRAMS 159

5.5 Programs

We creates a table called MyPhoneBook with four columns for firstname, surname,
phonehome, phonebus.

// CreateTable.java

import java.sql.*;

public class CreateTable

{

public static void main(String[] args)

{

String url = "jdbc:odbc:PhoneBook"; // PhoneBook is the DSN

// it points to the file

// Phone.mdb

// in directory Swiss

String username = "";

String password = "";

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // loads the driver

}

catch(ClassNotFoundException cnfe)

{ System.out.println(cnfe); }

try

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

stmt.execute("CREATE TABLE MyPhoneBook(firstname char(20),"

+ "surname char(20),phonehome char(15),phonebus char(15))");

// MyPhoneBook is the name of the table in the database file Phone.mdb

stmt.close();

con.close();

System.out.println("MyPhoneBook table has been successfully created.");

}

catch(SQLException sqle)

{

System.out.println(sqle);

}

} // end main

}

160 CHAPTER 5. JDBC

We insert data in the table called MyPhoneBook with the four columns for firstname,
surname, phonehome, phonebus using the INSERT command.

// InsertData.java

import java.sql.*;

public class InsertData

{

public static void main(String[] args)

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // loads the driver

}

catch(ClassNotFoundException cnfe)

{ System.out.println(cnfe); }

String url = "jdbc:odbc:PhoneBook";

String username = "";

String password = "";

try

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

stmt.executeUpdate("INSERT INTO MyPhoneBook " +

"VALUES(’John’,’Smith’,’233-4567’,null)");

stmt.executeUpdate("INSERT INTO MyPhoneBook " +

"VALUES(’Lea’,’Cooper’,’345-4567’,’908-4567’)");

// MyPhoneBook is the name of the table in the database Phone.mdb

stmt.close();

con.close();

System.out.println("Data inserted successfully");

}

catch(SQLException sqle)

{

System.out.println(sqle);

}

} // end main

}

5.5. PROGRAMS 161

We use the SELECT statement to retrieve data from the table called MyPhoneBook.

// SelectData.java

import java.sql.*;

public class SelectData

{

public static void main(String[] args)

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // loads the driver

}

catch(ClassNotFoundException cnfe)

{ System.out.println(cnfe); }

String url = "jdbc:odbc:PhoneBook";

String username = "";

String password = "";

try

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT phonehome, phonebus FROM " +

" MyPhoneBook WHERE firstname = ’Lea’");

while(rs.next())

{

System.out.println(rs.getString(1) + rs.getString(2));

}

stmt.close();

con.close();

}

catch(SQLException sqle)

{

System.out.println(sqle);

}

} // end main

}

162 CHAPTER 5. JDBC

By updating the table we can modify selected rows and columns in the table called
MyPhoneBook.

// UpdateData.java

import java.sql.*;

public class UpdateData

{

public static void main(String[] args)

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // loads the driver

}

catch(ClassNotFoundException cnfe)

{ System.out.println(cnfe); }

String url = "jdbc:odbc:PhoneBook";

String username = "";

String password = "";

try

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

stmt.executeUpdate("UPDATE MyPhoneBook " +

"SET phonehome = ’333-6666’ WHERE " +

"surname = ’Smith’ AND " +

"firstname = ’John’");

System.out.println("Update is done successfully");

stmt.close();

con.close();

}

catch(SQLException sqle)

{

System.out.println(sqle);

}

} // end main

}

5.5. PROGRAMS 163

Doing an update with a PreparedStatement for the table MyPhoneBook.

// Prepared.java

import java.sql.*;

public class Prepared

{

public static void main(String[] args)

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // loads the driver

}

catch(ClassNotFoundException cnfe)

{ System.out.println(cnfe); }

String url = "jdbc:odbc:PhoneBook";

String username = "";

String password = "";

try

{

Connection con = DriverManager.getConnection(url,username,password);

PreparedStatement pstmt = con.prepareStatement("UPDATE MyPhoneBook " +

"SET phonehome=?, phonebus=? WHERE " +

"firstname=? AND surname=?");

pstmt.setString(1,"888-9999");

pstmt.setString(2,"555-7777");

pstmt.setString(3,"Lea");

pstmt.setString(4,"Cooper");

pstmt.executeUpdate();

System.out.println("Update is done successfully");

pstmt.close();

con.close();

}

catch(SQLException sqle)

{

System.out.println(sqle);

}

} // end main

}

164 CHAPTER 5. JDBC

Deleting rows from the table MyPhoneBook..

// DeleteData.java

import java.sql.*;

public class DeleteData

{

public static void main(String[] args)

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // loads the driver

}

catch(ClassNotFoundException cnfe)

{ System.out.println(cnfe); }

String url = "jdbc:odbc:PhoneBook";

String username = "";

String password = "";

try

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

stmt.execute("DELETE FROM MyPhoneBook WHERE " +

"firstname = ’Lea’");

stmt.close();

con.close();

System.out.println("Row has been successfully deleted from the table");

}

catch(SQLException sqle)

{

System.out.println(sqle);

}

} // end main

}

5.5. PROGRAMS 165

In the following program we show how to use the

ALTER TABLE ... ADD COLUMN

statement. We add a new column called email to our table.

// AlterTable.java

import java.sql.*;

public class AlterTable

{

public static void main(String[] args)

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // loads the driver

}

catch(ClassNotFoundException cnfe)

{

System.out.println(cnfe);

}

String url = "jdbc:odbc:PhoneBook";

String username = "";

String password = "";

try

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

stmt.executeUpdate("ALTER TABLE MyPhoneBook ADD COLUMN email char(10)");

stmt.close();

con.close();

System.out.println("Data inserted successfully");

}

catch(SQLException sqle)

{

System.out.println(sqle);

}

} // end main

}

166 CHAPTER 5. JDBC

We can delete (drop) a tables from the database. We drop the table MyPhoneBook.
The file Phone.mdb of course still exists.

// DropTable.java

import java.sql.*;

public class DropTable

{

public static void main(String[] args)

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // loads the driver

}

catch(ClassNotFoundException cnfe)

{ System.out.println(cnfe); }

String url = "jdbc:odbc:PhoneBook";

String username = "";

String password = "";

try

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

stmt.execute("DROP TABLE MyPhoneBook");

stmt.close();

con.close();

System.out.println("Table has been successfully dropped");

}

catch(SQLException sqle)

{

System.out.println(sqle);

}

} // end main

}

5.5. PROGRAMS 167

Implementation of a graphic user interface for JDBC.

// JDBCGUI.java

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.sql.*;

public class JDBCGUI extends JFrame implements ActionListener

{

private JTextField firstname, surname, phonehome, phonebus;

private JButton newrec, ret, upd, del;

private String dbfirstname, dbsurname, dbphonehome, dbphonebus;

private String url = "jdbc:odbc:PhoneBook";

private String username = null;

private String password = null;

public JDBCGUI()

{

addWindowListener(new WindowAdapter()

{

public void windowClosing(WindowEvent e) { System.exit(0); }});

getContentPane().setLayout(new GridLayout(4,1));

firstname = new JTextField(8); surname = new JTextField(8);

phonehome = new JTextField(8); phonebus = new JTextField(8);

newrec = new JButton("Insert"); newrec.addActionListener(this);

ret = new JButton("Select"); ret.addActionListener(this);

upd = new JButton("Update"); upd.addActionListener(this);

del = new JButton("Delete"); del.addActionListener(this);

JPanel panel = new JPanel();

panel.add(new JLabel("Firstname"));

panel.add(firstname);

panel.add(new JLabel("Surname"));

panel.add(surname);

panel.add(new JLabel("Home Phone#"));

panel.add(phonehome);

panel.add(new JLabel("Business Phone#"));

panel.add(phonebus);

getContentPane().add(panel);

168 CHAPTER 5. JDBC

panel = new JPanel();

panel.add(newrec); panel.add(ret);

panel.add(upd); panel.add(del);

getContentPane().add(panel);

setTitle("JDBCGUI");

setSize(400,300);

setLocation(100,100);

setVisible(true);

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(ClassNotFoundException cnfe)

{

JOptionPane.showMessageDialog(this,cnfe,"Driver Error",

JOptionPane.ERROR_MESSAGE);

}

} // end default constructor JDBCGUI()

public void actionPerformed(ActionEvent e)

{

if(e.getSource() == newrec) { insert(); }

if(e.getSource() == ret) { select(); }

if(e.getSource() == upd) { update(); }

if(e.getSource() == del) { delete(); }

} // end actionPerformed

public void insert()

{

dbfirstname = firstname.getText();

dbsurname = surname.getText();

dbphonehome = phonehome.getText();

dbphonebus = phonebus.getText();

try

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

stmt.executeUpdate("INSERT INTO MyPhoneBook " +

"VALUES(’"+dbfirstname+"’,’"+dbsurname+"’,’"+dbphonehome+"’,’"+dbphonebus+"’)");

firstname.setText("");

surname.setText("");

5.5. PROGRAMS 169

phonehome.setText("");

phonebus.setText("");

stmt.close();

stmt.close();

} // try block end

catch(SQLException sqle)

{

JOptionPane.showMessageDialog(this,sqle,"SQLERROR",JOptionPane.ERROR_MESSAGE);

}

} // end insert()

public void select()

{

dbfirstname = firstname.getText();

dbsurname = surname.getText();

try

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

ResultSet rs =

stmt.executeQuery("SELECT phonehome, phonebus FROM MyPhoneBook " +

"WHERE firstname = ’"+dbfirstname+"’AND surname = ’"+dbsurname+"’");

while(rs.next())

{

phonehome.setText(rs.getString(1));

phonebus.setText(rs.getString(2));

}

stmt.close(); con.close();

} // end try

catch(SQLException sqle)

{

JOptionPane.showMessageDialog(this,sqle,"SQLERROR",JOptionPane.ERROR_MESSAGE);

}

} // end select()

public void update()

{

dbfirstname = firstname.getText();

dbsurname = surname.getText();

dbphonehome = phonehome.getText();

dbphonebus = phonebus.getText();

try

170 CHAPTER 5. JDBC

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

stmt.executeUpdate("UPDATE MyPhoneBook SET " +

"phonehome = ’"+dbphonehome+"’ AND surname = ’"+dbsurname+"’");

stmt.close(); stmt.close();

} // try block end

catch(SQLException sqle)

{

JOptionPane.showMessageDialog(this,sqle,"SQLERROR",JOptionPane.ERROR_MESSAGE);

}

} // end update()

public void delete()

{

dbfirstname = firstname.getText();

dbsurname = surname.getText();

try

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

stmt.execute("DELETE FROM MyPhoneBook " +

"WHERE firstname = ’"+dbfirstname+"’ AND surname = ’"+dbsurname+"’");

firstname.setText(""); surname.setText("");

phonehome.setText(""); phonebus.setText("");

stmt.close(); stmt.close();

} // try block end

catch(SQLException sqle)

{

JOptionPane.showMessageDialog(this,sqle,"SQLERROR",JOptionPane.ERROR_MESSAGE);

}

}

public static void main(String[] args)

{ new JDBCGUI(); }

} // end class JDBCGUI

5.5. PROGRAMS 171

Assume we added a new column DateInserted of data type Date to the table
MyPhoneBook we can insert a new row into the table MyPhoneBook with the present
date as follows.

// InsertData1.java

import java.sql.*;

import java.util.Date;

public class InsertData1

{

public static void main(String[] args)

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // loads the driver

}

catch(ClassNotFoundException cnfe)

{ System.out.println(cnfe); }

String url = "jdbc:odbc:PhoneBook";

String username = "";

String password = "";

Date now = new Date();

try

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

stmt.executeUpdate("INSERT INTO MyPhoneBook " +

"VALUES(’Jolly’,’Pulli’,’233-4567’,’908-4567’,now)");

// MyPhoneBook is the name of the table in the database Phone.mdb

stmt.close();

con.close();

System.out.println("Data inserted successfully");

}

catch(SQLException sqle)

{

System.out.println(sqle);

}

} // end main

}

172 CHAPTER 5. JDBC

To display the dates we use the following program.

// SelectData1.java

import java.sql.*;

import java.sql.Date;

import java.util.*;

public class SelectData1

{

public static void main(String[] args)

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // loads the driver

}

catch(ClassNotFoundException cnfe)

{ System.out.println(cnfe); }

String url = "jdbc:odbc:PhoneBook";

String username = "";

String password = "";

try

{

Connection con = DriverManager.getConnection(url,username,password);

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT DateInserted FROM MyPhoneBook");

while(rs.next())

{

System.out.println(rs.getDate(1));

}

stmt.close();

con.close();

}

catch(SQLException sqle)

{

System.out.println(sqle);

}

} // end main

}

5.6. METADATA 173

5.6 Metadata

Databases store user data, and they also store information about the database itself.
Most DBMSs have a set of system tables, which list tables in the database, column
names in each table, primary keys, foreign keys, stored procedures, and so forth.
Each DBMS has its own functions for getting information about table layouts and
database features. For example in JDBC we can call the methods of the classes
DatabaseMetaData and ResultSetMetaData to get this information.

Thus metadata is the data about data. Metadata describe how and when and
by whom a particular set of data was collected, and how the data is formatted.
Metadata is essential for understanding information stored in data warehouses.

5.7 JDBC 3.0

JDBC 1.0 – introduced with JDK 1.1 – had minimal database functionality. JDK 1.2
delivered JDBC 2.0, which contained enhanced features like scrollable result sets,
batch updates, Blob and Clob support, Array type, user defined types (UDTs),
structured types (Ref type), and distinct types.

public interface Array

provides the mapping in the Java programming language for the SQL type ARRAY.

public interface Ref

provides the mapping in the Java programming language of a SQL REF value, which
is a reference to an SQL structure type value in the database.

Then came the development of the JDBC 2.0 optional package: a standard exten-
sion that provides the DataSource class (which uses JNDI to connect to any kind of
data, such as flat files or spreadsheets), connection pooling, distributed transactions,
and RowSets (a higher-level interface on top of ResultSet).

For its part, JDK 1.4 has major JDBC changes in store. It is being bundled with
JDBC 3.0 including the packages java.sql and javax.sql.

JDBC 3.0 contains the JDBC 2.0 classes and the JDBC optional package classes.
That means the optional package is being merged into standard JDBC, making
the Java platform more flexible and complete. The SQL99 standard has also been
finalized, so JDBC 3.0 will also attempt to be consistent with that standard. JDBC
3.0 will not support the whole SQL99, but the features that are implemented will
be consistent with the standard.

174 CHAPTER 5. JDBC

A mechanism for connecting JDBC with a connector architecture using the Service
Provider Interface (SPI) is also in the works. The connector architecture is a gen-
eral way to connect to enterprise information systems (EIS), such as ERP systems,
mainframe transaction processing systems, and hierarchical databases. The connec-
tor architecture specification defines a set of contracts that allow a resource adapter
to extend a container in a pluggable way.

RowSets are a Tabular Data Datatype. A javax.sql.RowSet object encapsulates
a set of rows that have been retrieved from a tabular data source. A RowSet object
is simply a ResultSet object that can be function as a JavaBeans component.

public interface RowSet extends ResultSet

Since the RowSet interface includes an event notification mechanism and supports
getting and setting properties, every RowSet object is a JavaBeans component. This
means, for example, that a RowSet can be used as a JavaBeans component in a visual
JavaBeans development enviroment. As a result, a RowSet instance can be created
and configured at design time, and its methods can be executed at run time. Let
rset be an object of RowSet. An example is

rset.setDataSourceName("jdbc/SomeDataSourceName");

rset.setTransactionIsolation(

Connection.TRANSACTION_READ_COMMITTED);

rset.setCommand("SELECT Model, Make FROM Cars");

The javax.sql package also introduces the class javax.sql.RowSetEvent. The
class RowSetEvent is used when an event occurs to a RowSet object. A RowSetEvent

is generated when a single row in a RowSet is changed, the whole RowSet is changed,
or the RowSet cursor moves.

Three new row sets could be implemented:

JDBCRowSet makes the JDBC driver look like a JavaBean component. We can use
it to make JDBC applications with GUI tools.

CachedRowSet loads the data into a cache and disconnects the SQL connection from
the database. Hence, we can pass that cached row set between tiers of the applica-
tion. It also helps to optimize the database connections. Any changes made to the
cached data can later be reflected back into the database.

WebRowSet lets us convert JDBC data (with its properties and metadata) to XML,
which we can use anywhere. We can also convert the XML back to data and save
any data changes back to the database. This will be very useful with upcoming
XML communication protocols and tools. We can also use custom readers and
writers with these row sets to provide our own mechanisms to read and write data.
For instance, we can provide custom mechanisms to read data from a nonrelational

5.7. JDBC 3.0 175

database or we can provide our own conflict-resolution mechanism while saving data.

Other features of JDBC 3.0 include:

1) Savepoint support (the ability to roll back transactions to designated savepoints)

2) Connection pool configurations (added properties to describe how PooledConnection

objects should be pooled)

3) Reuse of prepared statements with connection pools (in JDK 1.3, when we close
a SQL connection, the prepared statement dies with it, but now the statement will
be independent)

4) Retrieval of parameter metadata (the new interface ParameterMetaData describes
the number, type, and properties of parameters to prepared statements)

5) Retrieval of auto-generated key columns

6) Multiple open result sets on a statement

7) BOOLEAN data type

8) DATALINK data type (allows JDBC drivers to store and retrieve references to ex-
ternal data)

9) Updateable Blob, Clob, Array, and Ref objects. The methods updateBlob(),
updateClob(), updateArray() and updateRef() have been added to the ResultSet
interface

10) Transform groups and type mapping (defines how UDT can be transformed to
a predefined SQL type and how that is reflected in metadata)

11) DatabaseMetaData APIs that retrieve SQL type hierarchies

12) Holdable cursor support

176 CHAPTER 5. JDBC

An application of interface Savepoint would be

Statement stmt = conn.createStatement();

int rows = stmt.executeUpdate("INSERT INTO Tab1 (Col1) VALUES " +

"(’FIRST’)");

// set savepoint

Savepoint svpt1 = conn.setSavepoint("SAVEPOINT_1");

rows = stmt.executeUpdate("INSERT INTO Tab1 (Col1) " +

"VALUES (’SECOND’)");

...

conn.rollback(svpt1);

...

conn.commit();

Security

Also bundled in the new release is the optional Java Secure Socket Extension (JSSE)
package. JSSE implements Secure Socket Layer (SSL) and Transport Layer Security
(TLS) protocols.

Java Authentication and Authorization Service (JAAS) is a new API that lets us
establish access control on a per-user basis. JAAS can be used in situations when
an administrator needs more menus and options than a normal user.

Java Cryptography Extension (JCE) is another standard extension that will be bun-
dled with Merlin. JCE provides functionality for encryption, key generation and key
agreement, and message authentication code (MAC). Fortunately, JCE can now be
exported from the US and Canada because of more lenient security regulations.
Now, applications that use cryptography can be exported, so people in other coun-
tries can benefit from the Cryptography API. That means only the policy files that
define the cryptographic strength are altered; then the application can be exported
to international customers. Public Key Cryptography Standards (PKCS) support
is also being finalized.

A reference implementation for the Certification Path Building and Verification API
is already under way. This will allow access to certificates (and hence, public keys)
via LDAP/JNDI. This benefits applications that need to deal with SSL, signed code,
S/MIME, and so forth.

Chapter 6

Object-Oriented Databases

6.1 Introduction

Object oriented databases emerged in the mid-80’s in response to the feeling that
relational databases were inadequate for certain classes of applications. The prob-
lem of relational databases is decribed metaphorically in the literature as impedance
mismatch. The two components whose impedance do not match are the application
and the database. The application is procedural, deals with one item at a time and
creates complex data structures. The database, conversely, is declarative, deals with
tuples in sets instead of individually and holds data in flat tables. Both approaches
have their good reasons and strengths in their respective fields, but bringing the two
paradigms together in an application that uses the database exposes this mismatch.

Roughly speaking, a database system is based on the idea that data and associated
programs are separated, and thus is very different from a typical file system. How-
ever, seeming at first glance to be a contradiction, object-oriented databases aim to
achieve integration of data and programs, but this is now achieved in an adequate
methodical framework, which borrows much from abstract data types.

The solution proposed by the supporters of object oriented databases is to bring the
type systems of application and database closer to each other, so that a data item
defined in an application can be stored in the database without being first unwound,
and to integrate the programming language of the application with the database’s
DML.

Relational databases do not normally provide us with the ability to define our own
data types. Some authors argue that this is a deficiency of current implementations
and not a prescription of the relational model. With object database we can define
arbitrarily complex data types like their programming language counterparts, pos-
sibly nested in is-a and/or has-a hierarchies. Sets, list, and bags (multisets) and
other containers are used, among other things, to represent the result of a query
which returns several objects.

177

178 CHAPTER 6. OBJECT-ORIENTED DATABASES

The number of relational database system (for example Oracle) provide an inter-
active SQL-based interface to the database as well as an embedded SQL-based
interface for an application programming interface. Embedded SQL interfaces pro-
vide a means to bridge the differences in syntax and semantics between the host
programming language and the database language, namely SQL. There are five seri-
ous problems with embedding query statements in a general-purpose programming
language:

1. The data model of the database and the type system of the programming lan-
guage do not match. For example, programming languages do not provide sets as a
basic type, and sets of objects returned by a query cannot be manipulated directly
by the programming language constructs.

2. Since there is no type system spanning the application and the query code, lim-
ited type checking can be done accross the junction.

3. Queries can be formulated only on persistent data objects, and cannot be for-
mulated against transient objects and persistent objects after they have entered the
application address space.

4. Query and programming language statements cannot be freely combined.

5. The syntax and semantics of the two languages are completely different, and the
programmer needs to learn to be aware of the differences.

One of the main motivations for the development of OODBMSs and better program-
ming environments is the impedance mismatch problem. The main bottleneck to the
productivity of the application programmer is the impedance mismatch between the
programming language and the query language. This impedance mismatch cannot
be solved by redefining the database box, but by mixing database technology and
programming language technology to build a complete system which will have the
functionalities of a DBMS and of a programming language.

A method is a piece of code associated with an object that has privileged access
to the object’s state. Checking whether an object has or does not have a property
which is derived from its state may sometimes be done more efficiently by invoking
a specially written method than by running a query on the attributes. Stored pro-
cedures (stored in the database, that is) which can be executed on the server side
were for certain aspects a precursor of this idea. Rules is a generic name for code
that is automatically activated when certain events occur. A form of constraint pro-
gramming. Finally, one of the most important features of object-oriented databases
is that the commonality between the application’s and the database’s type systems
preserves the strong typing in the communication between the two. The advantages
of the object database approach are that applications which define a rich data type
system for their data structures can carry this over to the database when these

6.1. INTRODUCTION 179

data structures are made persistent. The impedance mismatch is eliminated as the
database becomes a persistent extension to the language rather than an external
service that one has to talk to through a narrow and limited interface.

Object systems introduce pointers linking objects to each other. This in turn pro-
motes a procedural style of navigation among the data items that can be seen as a
step backwards from the higher-level declarative approach introduced by relational
systems.

Encapsulation is the technique that an object’s internal state is only accessible
through its designated methods. While encapsulation is a valuable modular tech-
nique, it presents problems with queries. For example, even if a Employee class has
an extensive set of methods for hire_employee, change_salary, fire_employee
etc.. we might still not be able to answer a simple question like “Who is the man-
ager of this employee?” unless an appropiate method has been written. There is a
tradeoff between giving up encapsulation by exposing all the object’s state through
methods or by allowing queries to violate encapsulation under certain circumstances
and severely restricting the class of possible queries.

Closure of the relational algebra (the property that operators take relations as their
arguments and give out relations as their results, thus allowing nested queries) is
an important property that is normally lost in object systems. Finally, but perhaps
most importantly, object databases do not rest on a formal mathematical base like
their relational predecessors. A powerful instrument of analysis, deduction and in-
sight is lost.

ODMG is a consortium of object database vendors led by a small focused group of
experts. Their aim is to produce an open standard for object database management
systems. The ODMG has a strong CORBA flavour, altough not derived from OMG,
ODMG is affiliated with OMG and OMG has approved ODMG-93 as a standard
interface for a Persistence Service. The ODL (Object Definition Language) is an
extension of CORBA’s IDL and as such has a C++ flavour. The OQL (Object
Definition Language) has a syntax based on SQL. The OML (Object Manipulation
Language) is a C++ language binding which provides access to database functions
and persistence of objects defined with ODL. Among other things it defines standard
container classes. An object-oriented database management system (OODBMS),
sometimes shortened to ODBMS for object database management system), is a
database management system (DBMS) that supports the modelling and creation of
data as objects. This includes some kind of support for classes of objects and the
inheritance of class properties and methods by subclasses and their objects. There
is currently no widely agreed-upon standard for what constitutes an OODBMS, and
OODBMS products are considered to be still in their infancy. In the meantime, the
object-relational database management system (ORDBMS), the idea that object-
oriented database concepts can be superimposed on relational databases, is more
commonly encountered in available products. An object-oriented database interface

180 CHAPTER 6. OBJECT-ORIENTED DATABASES

standard is being developed by an industry group, the Object Data Management
Group (ODMG). The Object Management Group (OMG) has already standardized
an object-oriented data broking interface between systems in a network. A possible
definition of an OODBMS could be:

An object-oriented database system must satisfy two criteria: it should be a DBMS,
and it should be an object-oriented system, i.e., to the extent possible, it should
be consistent with the current crop of object-oriented programming languages. The
first criterion translates into five features:

persistence

secondary storage management

concurrency

recovery

ad hoc query facility

The second criteria translates into eight features

complex objects

objects identity

encapsulation

types or classes

inheritance

overriding combined with late binding

extensibility and computational completeness

Conventional database models provide adequate support for applications where the
structure of the database tends to be fairly static once the large files of records are
set up. Such databases typically need to provide the following:

1) Persistence of data
2) Data sharing
3) Protection of data
4) Acceptable levels of performance

OODBs have to provide all the features listed above, and a lot more features
demanded by complex applications that are not currently met by conventional
database systems. The strengths of conventional databases, especially relational
DBMSs, can be summarized as follows:

1) Suitability for online transaction processing
2) Performance with large amounts of structurally regular data
3) A more or less mathematically tractable data model
4) Industry standard data definition and data manipulation languages that are more
or less adhered to
5) A large body of experience and knowledge in the data management community

6.2. OBJECT-ORIENTED PROPERTIES 181

6.2 Object-Oriented Properties

The need for the object paradigm springs from both advances in software sophisti-
cation and scope. Object orientation promises to:

(1) facilitate the development and maintenance of applications that incorporate large
amounts of small heterogenous data types (e.g. text, graphics, images, voice and
facsimiles),

(2) to enhance productivity in the long run by permitting programming pieces or
modules that can be very flexibly coupled and re-used,

(3) to empower the development of software that requires a high level of integration
and connectivity.

Remark. Graphics, images and voice are stored as Blob (binary large objects). For
example Microsoft Access sees the Blob field as an OLE object (Object-linking and
embedding). It is a locator of a large binary file outside the database. Instead of
holing the data in the database, a file reference contains a link to the data.

From a developers perspective, this implies software that is easier to create, simpler
to use, far more reliable, and less costly to maintain or evolve in increments. From
a users perspective, this implies software that has enhanced functionality.

Traditional databases incorporate two kinds of information: data and schema. The
schema is the description of the structure of the data contained in a database. It
details the set of attributes or fields that comprise the database. The bulk of the
database is simple data such as integer, string and boolean types that are arranged
into records consistent with the schema.

The architecture of a database refers to the way data models are implemented and
combined with application programming languages. Database models can be dis-
tinguished and classified by the constraints placed on the kinds of data and schema
they are permitted to contain. We distinguish four data models classes. These are:

(1) relational

(2) extended relational

(3) functional

(4) object-oriented.

182 CHAPTER 6. OBJECT-ORIENTED DATABASES

The relational model is a useful benchmark class because of its extensive documen-
tation, popularity and importance. There is only one data structure:

a table with rows and columns containing data of specified –usually simple– types
and the query language is based on a few simple operations on tables.

Extended relational models retain the basic relational table and query language but
also incorporates some concept of “object” and has the ability to store procedures
as well as data in the database. Functional data models use a data-access language
based on mathematical function notation with a declarative functional query lan-
guage to define the function values.

The object-oriented model originated with the object-oriented programming paradigm,

C++, Java and Smalltalk.

This model is based on the modularization of abstract data-type declarations into
classes. The distinguishing characteristics of this model category will be more fully
elaborated in the following.

The data model classification scheme appears somewhat tenuous because many of
the data models are being combined into hybrids that then exhibit a combination
of data and schema features. Also, the term “object-oriented” is often loosely used
to refer to systems based on all these models if they incorporate any concepts from
the object-oriented paradigm.

Databases have long been an essential part of most software packages. They are a
critical part of accounting systems and production record systems. In the earlier
developed systems, databases were an integral part of the overall package and the
schema closely tied to the programming language used to develop the package. In
recent years, the trend has been toward the use of database management systems
to store, retrieve and manipulate data. Relational systems are the most common
approach employed by current database management systems. Relational systems
involve the structuring of data in tabular form and, thus, these databases are often
referred to as “tables”.

6.3. TERMS GLOSSARY 183

6.3 Terms Glossary

Abstract class. A class that acts as a template for other classes. It is usually
used as the root of a class hierarchy. The abstract class represents a concept; classes
derived from it represent implementations of the concept.

Activation. Copying the persistent data and associated persistent form of meth-
ods into the executable address space to invoke the operation of methods on the data.

Actor. A model of concurrent computation in distributed systems. Computations
are carried out in response to communications sent to the actor system.

Application objects. Applications and their components that are managed within
an object-oriented system. Operations on such objects include open, install, move,
and remove.

Associations. Associations are constructs that logically link objects. Composite
objects are logical objects that are made out of simpler objects by connecting them
with associations. The cardinality of associations is the number of objects involved
on both sides of an association. Assocations can be categorized into four groups
according to their cardinality: 1 : 1 (one-to-one), 1 : m (one-to-many), m : 1 (many-
to-ome), n : m (many-to-many).

Atomicity. The property that ensures that an operation either changes the state
associated with all participating objects consistent with the request, or changes none
at all. If a set of operations is atomic, then multiple requests for those operations
are serializable.

Attribute. A conceptual notion employed to express an identifiable association
between the objects and some other entity or entities.

Behavior. The observable effects of performing the requested service.

Binding. The process of selecting a method to perform a requested service and
selecting the data to be accessed by the method.

Class. A specification of the behavioral rules that all possible instances must be
compliant with. It defines the data and the methods permissible within an instance
(object) grouping. Template from which objects can be created. It is used to specify
the behavior and attributes comon to all objects of the class.

Class inheritance. The process of defining a class in terms of some existing class,
by means of incremental modification.

Client object. An object making a request for a service.

184 CHAPTER 6. OBJECT-ORIENTED DATABASES

Complex objects. Complex objects, also referred to as aggregate objects, are
formed by applying object constructors to simple objects such as integers, charac-
ters, and floats that are provided by all systems. The object space can be considered
to be built on top of atomic objects of the types integer, float, character, boolean,
string etc.

Data abstraction. Viewing data objects in terms of the operations with which
they can be manipulated rather than as elements of a set. The representation of the
data object is irrelevant.

Data independence. Physical storage of data is isolated from the user’s percep-
tion of it.

Dynamic binding. Binding that is performed at run time, after the request has
been issued.

Encapsulated. Data and methods isolated from external access and indiscriminate
modification (private, protected, public).

Hypermedia. Using a computer to integrate diverse communication channels (for
example text, sound, graphics, animation and motion video) generated by the com-
puter or other devices.

Inheritance. Ability to define descendent classes that have common data or meth-
ods that can be incrementally altered to form another object class.

Instance. A specific case of occurrence in a class of objects.

Late binding. Delaying the linking of program code until the program is executing.

Metaobject. An object that represents a type, operation, class, method, or other
object model entity that describes objects.

Message. The process of invoking an operation on an object. In response to a mes-
sage, the corresponding method is executed in the object. A message to an object
specifies what should be done. A message can be sent by clients of the object-
application programs, another object, or another method within the same object.

Methods. Implementations of the operations relevant to a class of objects. The
part of an object that performs an operation is termed a method. Methods are
invoked in response to messages.

Multimedia. Using a computer to control and integrate different devices such as
videodisc, videotape, CD-audio or CD-ROM into a single project.

6.3. TERMS GLOSSARY 185

Multiple inheritance. When a class inherts from more than one base class. C++
allows multiple inheritance.

Objects. Chunks of programming code and data that can behave like things in the
real world. An object could be an animal, a shed, a stomach, or a business form.
A combination of data and the collection of operations that are implemented on
the data. Also a collection operations that share a state. The representation of a
real-world entity. An object is used to model a person, place, thing, or event from
the real world. It encapsulates data and operations that can be used to manipulate
the data and responds to requests for service.

Object identity. Each object in the real world has an existence or identity which
is independent of its actual values. A system-supported identity is maintained by
assigning a so-called object identifier to each object.

Object-oriented system. In pure form contains only objects and methods. Ob-
jects provide the nouns against which the message verbs act. Permits viewing things
as interrelationships between and among system components.

OODB. Object-oriented database.

OODBMS. Object-oriented database management system that can be used to store
and retrieve objects.

ORB. Object request broker, the facility that provides the means by which objects
make and receive requests and responses.

Persistence. The ability of data to exist beyond the scope of the program that
created it. Persistence can be visualized in two ways. Values are persistent, imply-
ing that they retain their identity and their persistence independent of who points
to them. Variables are persistent, which implies that persistence is retained only for
values pointed to be persistent variables and, perhaps, that identity is associated
more with the source of the pointer than with the destination of the pointer.

Persistent data. Data remains in storage even when DBMS software is not oper-
ating.

Polymorphism. Ability to issue the same command to different objects with the
object then determining the appropriate action.

Shared data. Ability to have multiple simultaneous use of the data.

Operator overloading. The ability of operators to be polymorphic and define
actions congruent with its usage context.

186 CHAPTER 6. OBJECT-ORIENTED DATABASES

6.4 Properties of an Object-Oriented Database

The features of object-oriented databases should be:

Support for complex objects. The ability to build objects by applying construc-
tors to basic objects. The minimum set of constructors are set, list and tuple(i.e.
record).

Object identity. An object has an existence independent of its value.

Encapsulation. A mechanism whereby the specification and the implementation
of an object can be separated. This is achieved if the data and the method imple-
mentations are hidden and only the operations are visible to the programmer.

Support for types or classes. A type summarizes the common features of a set of
objects with the same characteristics and can be used at compilation time to check
for programming errors. A class has similar functionality for run-time execution.

Class or type hierarchies. Any subclass or subtype will inherit attributes and
methods from its superclass or supertype.

Overriding, overloading and late binding. Operations should apply to objects
of different types (overloading). The implementation of an operation will depend
on the type of object it is applied to (overriding). The implementation code can’t
be referenced until run-time (late binding).

Computational completeness. The data manipulation language of the database
should allow a user to express any computable function (a contrast from SQL).

Extensibility. The system should provide facilities to define new types or classes
which can be manipulated in exactly the same manner as those built into the system.

Persistence. Data must remain after the creation and transformation processes
have terminated.

Secondary storage management. Techniques that transparently manage sec-
ondary storage to improve system performance and make the handling of large
volumes of data possible.

Concurrency. Multiple simultaneous use of objects should be permitted.

Recovery. The system should provide a mechanism to handle contingencies.

Ad hoc query facility. The database should provide a high-level, efficient, appli-
cation independent query facility but not necessarily a query language.

6.4. PROPERTIES OF AN OBJECT-ORIENTED DATABASE 187

Although other definition criteria are likely to emerge, this list provides a relatively
complete set of feature requirements for defining an object oriented database.

Object-oriented database languages are expected to fulfil the same requirements as
languages based on other data models, particular the following.

1) Universality. The language should not be designed with a view of being applied
for a specific purpose; instead it should be universally applicable.

2) Descriptivity. The language should be characterized by a high level of ab-
straction independent of implementation details, and in particular it should support
set-oriented access.

3) Optimizability. For an underlying system it must be possible to optimize ex-
pressions of the language prior to execution; therefore, appropriate optimization
rules and strategies must exist.

4) Closedness. It must be possible to describe every result of a language expres-
sion within the given data or object model; this ensures that the result of a query
can be used as input for a subsequent query.

5) Completeness. Every concept of the data model in question must have a pro-
cessing counterpart.

6) Genericity. The language should contain generic operators (for example, selec-
tion, projection and set operations) which can be applied to values depending only
on the type structure.

7) Expressive power. The language should surmount the restrictions imposed on
relational languages; that is, recursive traversing of objects sets should be possible
and Turing-completness should also be guaranteed.

8) Extensibility. The language should support both user-defined and system-
defined types.

188 CHAPTER 6. OBJECT-ORIENTED DATABASES

6.5 Example

As an example consider data related to an individual cow. The data that is to be
maintained on each cow (a record) is identified in the columns (fields) of the table.
If additional data are to be kept on a cow, more columns are added. In this case
the elementary table entity is the cow and the data items related to each cow (the
columns) are the attributes.

The rows of the table are the data for any cow. For each cow added to the database,
a row is added to the table. Each row is a record (i.e. tuple). Within the constraints
imposed by the hardware and software, the table can be as large as needed.

In the example illustrated in table 1 with cow information, the attributes of the
cow entity are fixed in nature (e.g., birth date). How is cow data handled when
the number of observations (e.g., freshening dates or milk production by milking)
can be quite variable? One approach would be to add columns to the cow record
to allow for the most extreme case. However, this is not a very effective approach
because the record structure is inefficiently used and data access and use becomes
very cumbersome. Thus, it is better to establish a new entity that has links to
the desired tracking entity, in this case the cow, for the entity that has multiple
observations. Table 2 illustrates a milking entity in which there would be multiple
observations for each cow. In this case all the desired data related to the milking
(e.g., cow I.D., date, milk production, etc.) are the attributes of the milking entity.
The link to the cow information data is the cow I.D. This database is relational in
nature because the data is expressed in tabular form. Since the data is linked, it
becomes hierarchial in nature.

For other information related to the cow, such as calving information, health data,
and so forth, additional tables or files would be created. All the tables related to a
particular topic constitute a database.

COW - INFORMATION FILE

COW_ID BARN_NAME BIRTH_DATE SIRE DAM ...

====== ========= ======== ==== =========

123 Mary 12/1/87 Q 418 88...

434 Susie 4/1/86 K 88 34...

111 Blackie 6/1/88 Q 433 106..

.........

136 Jane 6/4/88 Q 178 91...

==

Table 1. Relational Data File of Cow Information

6.5. EXAMPLE 189

To retrieve the desired information from its persistent storage location, usually sev-
eral tables or files are employed; thus to determine the total production for a partic-
ular cow in a selected lactation, the cow information file is needed to supply the code
(i.e., cow I.D.) needed for linking the data together and the lactation file would be
used to obtain the beginning and ending dates of the lactation and finally milking
information file would supply all the milking records for that cow within the dates
of the lactation selected. Relational systems can perform this type of operation
through the use of commands. However, to extract the same information from files
integrated with a unique software package, it would require the writing of special
computer codes to accomplish the task. Furthermore, each new information request
would involve writing new computer codes. Thus, one can easily see the value of
database management systems.

MILKING INFORMATION FILE

COW_ID DATE TIME MLK_MIN LBS_MLK QT_COND..

====== ======= ==== ======= ======= =========

434 11/4/91 5:16 14.1 38 13..

123 11/4/91 5:17 16.2 41 18..

111 11/4/91 5:17 17.1 32 14..

..................

123 11/4/91 18:15 15.1 41 14..

111 11/4/91 18:15 16.6 42 19..

434 11/4/91 18:16 16.4 36 21..

..................

===

Table 2. Relational Data File of Milking Information

Relational databases have become more refined through time. They have more
features and are capable of processing increasingly complex commands. With the
widening adoption of SQL as a query language for database management systems,
relational systems have become more standardized. All these trends reflect advances
with respect to data management and control. Once the data has been captured
in the database, it can be accessed and used for multiple purposes. Whereas those
tightly coupled to a software package have their data use restricted to the primary
purpose for which the software package was originally developed.

Relational systems, although they have many strengths, also have some shortcom-
ings and limitations. They tend to be rather limited in the type of data that they
can store, retrieve and manipulate. They are often limited to number and character
strings (as illustrated in Tables 1 and 2). Also, the field size is often fixed which
limits their ability to handle free form text and numbers. For example, for the
cow information file discussed earlier, if the farm keeping this type of information
is producing purebred cattle, it may be desirable to have photographic images of

190 CHAPTER 6. OBJECT-ORIENTED DATABASES

the cow as part of the database. For the milk record, it may be desirable to have
the recent pattern of conductivity measurements from the quarters stored as an es-
timable function (e.g., a spline function) which could be easily used with artificial
intelligence techniques such as neural networks to recognize an emerging mastitis
problem before it reaches a serious stage. Most of the relational systems do not
possess the capabilities to support schema containing these data types.

Finally, the data fields of relational systems are quite rigid. For example, the milk
production illustrated in Table 2 is expressed in pounds. If the data are needed
in the form of kilograms by another software package, it would need to explicitly
be converted. Most relational systems do not handle these conversions transparently.

To address the shortcomings and deficiencies of relational systems, object-oriented
databases have started to emerge. They differ from the relational systems in the
sense that the real-world or abstract entities are modeled in the database. These
entities or objects could be animals, pieces of equipment, documents, etc. Objects
can contain behavioral components as well as structured data. The behavioral di-
mension of objects is concerned with methods and encapsulation of object data.

What should the increased functionality of object-oriented databases permit? For
example, the sire selection process could be enhanced by having “Bull Books” in-
corporated into a database that could be incrementally updated and conveniently
shared and/or distributed. The user could request a visual image of a bull and his
daughters, a text or graphical illustration of pedigree and genetic profile information
showing the magnitude and precision of selected trait estimates and decision support
assistance in applying user tailored screening criteria and rules. Another applica-
tion possibility might be an animal sales catalog. In addition to text, graphics and
image display, the playback of digitized –maybe even animated!– voice messages
providing a descriptive narrative of the animal(s) can also be envisioned as being
a useful communication and, therefore, marketing tool. In more mundane –but
more typical– transactions recording, manipulating, storing and retrieving applica-
tions, having persistent facsimiles of transaction related documents in addition to
traditional data types (i.e., numbers, strings, etc.) might also be highly useful in
some instances. Finally, the frequently cited computer-aided applications realm (e.g.
computer-aided software engineering (CASE), mechanical computer- aided design
(MCAD), electronics computer-aided design (ECAD), computer-aided publishing
(CAP), etc.) contains many enhanced functionality potentials.

6.5. EXAMPLE 191

Another possible area of application of object-oriented databases (OODB) is the
task of storing and organizing the large amounts of diverse forms of information
related to a particular subject matter area. The impact on extension and teach-
ing programs could be vast. For example, in a National Pork Producers Council
publication, a set of standards regarding the definition and calculation methods
of numerous performance measures for the swine industry has been promulgated.
These standards are critical for communication in the industry. These metrics could
be objects or instances of performance measures classes in an OODB that would
contain the data and methods for calculating each performance measure, as well as,
descriptive or other related information about them.

What advantages are to be gained from handling information as objects? To address
this question, assume a knowledge-based system –one built using object-oriented
programming techniques– is being used to evaluate the production and economic
performance of an integrated swine operation. One criterion considered by the
knowledge-based system is “pigs weaned per litter.” Since the formula for calculat-
ing this value is encapsulated, the user does not need to be concerned with developing
computer codes to make this calculation. If a user of the software needs to know
more about how certain factors are calculated, or unsure of a data item used in the
analysis, or how to recognize a certain condition, the user can easily get assistance
since the context sensitive “help messager” could extract the needed information,
such as definitions or graphic images, from other objects that are part of the OODB.

Similarly, the recent report on future applications of communication technology in
Extension stresses the need of tailoring information to clients’ needs and compre-
hension skills. This implies that the old approaches (e.g., a bulletin), will likely not
be acceptable. By using “print-on-demand” technologies coupled with an OODB,
information can be extracted and tailored for each request. Again, these objects
have originated from traditional sources and are more accessible (indeed they may
be some of the same objects used to develop the knowledge based system) they can
be selectively utilized to meet each unique information request. Furthermore, since
the information is now encapsulated in a persistent database, it can be conveniently
refined and updated. Thus, the information obsolescence problem can be reduced
relative to our more traditional methods such as bulletins or video tapes.

192 CHAPTER 6. OBJECT-ORIENTED DATABASES

6.6 C++

C++ is the most popular object-oriented programming language (OOPL). It is an
object-oriented extension to C. C++ supports the OOP concepts of

objects, classes, inheritence, multiple inheritence, polymorphims, parametrized types,
abstract classes, exception handling.

The C++ class concept can be considered as the generalization of the C feature of
a struct.

C++ provides an access control mechanism for the operations on objects. The oper-
ations are called member functions. Member functions can have one of the following
three modes of access:

1) public

2) private

3) protected

Public member functions are accessible by all clients of the object.

Private member functions are accessible only by other member functions of the class.

Protected member functions are accessible only by other member functions and the
member functions of classes derived from that class.

The Standard Template Library (STL) adds a number of useful classes, for example
the container classes

vector, list, set, map

for database manipulations. It also provides algorithm for searching and sorting.

6.6. C++ 193

The model of C++ objects can be summarized in the following points.

1) Class instances are objects

2) Pointers to class instances are object names

3) Pointers reveal object identity to clients

4) Base components of derived class instances are not objects

5) Public data members correspond to special operations that return pointers

6) All function invocations are request forms, except for invocations that suppress
virtual function lookup, which are direct method invocations

7) Except for virtual functions, each function is a distinct operation

8) An overriding virtual function is a new method for one or more existing operations

9) Virtual functions are generic operations; overloaded functions are not

10) C++ values of of nonclass types are values (request parameters)

11) C++ nonclass types are types

12) Subtyping is defined between pointer types based on class derivation

13) A class whose members are pure virtual functions is an interface

14) A pointer type to an interface class is an interface type

15) Operations are values

16) A C++ function type is an operation signature

194 CHAPTER 6. OBJECT-ORIENTED DATABASES

6.7 The Object Query Language

An Object Query Language is proposed by the ODMG. The language is based on
the following principles and assumptions:

1) It uses the ODMG-93 object model.

2) OQL is a declarative and optimizable language, but not Turing-complete. There-
fore, OQL is a classical data query language, and in contrast to SQL3, it is designed
as a full programming language.

3) The syntax of OQL is similar to SQL, which means the basic query syntax is the

SELECT-FROM-WHERE

construct. The syntax of OQL is still subject to refinements and enhancements.
In particular, the integration into programming languages (including Java, C++,
Smalltalk) needs to be finalized.

4) Unlike SQL, OQL does not favour the set as its primary query medium, but
treats tuple structures or lists in the same way as sets.

5) OQL has no explicit update commands or operations, but appropiate methods
are supplied for the purpose of updating (that is, inserting, deleting or modifying)
objects.

With respect to the third point it should be noted that the syntax of OQL is neither
stable nor has it been implemented yet. In its current state Version 1.2 OQL is
closely related and based on O2SQL, the query language of O2.

The object-oriented database systems Versant

www.versant.com

and Poet (Fast-Object)

www.poet.com

include the object query language.

6.8. SQL3 OBJECT MODEL 195

6.8 SQL3 Object Model

6.8.1 Basic Concepts

We describe SQL3, a development of the relational language standard SQL, which
will reflect object-oriented properties for the first time. SQL3 may be considered
as moving towards object-relational systems. The enhancements included in SQL3
can be divided into four main areas:

relational enhancement

procedural extensions

object-oriented support

call level interface.

ANSI (X3H2) and ISO (ISO/IEC JTC1/SC21/WG3) SQL standardization commit-
tees have for some time been adding features to the SQL specification to support
object-oriented data management. The current version of SQL in progress includ-
ing these extensions is often referred to as SQL3 [ISO96a,b]. SQL3 object facilities
primarily involve extensions to SQL’s type facilities; however, extensions to SQL
table facilities can also be considered relevant. Additional facilities include control
structures to make SQL a computationally complete language for creating, man-
aging, and querying persistent object-like data structures. The added facilities are
intended to be upward compatible with the current SQL92 standard (SQL92). This
and other sections of the Features Matrix describing SQL3 concentrate primarily
on the SQL3 extensions relevant to object modeling. However, numerous other en-
hancements have been made in SQL as well. In addition, it should be noted that
SQL3 continues to undergo development, and thus the description of SQL3 in this
Features Matrix does not necessarily represent the final, approved language specifi-
cations.

The parts of SQL3 that provide the primary basis for supporting object-oriented
structures are:

user-defined types (ADTs, named row types, and distinct types)

type constructors for row types and reference types

type constructors for collection types (sets, lists, and multisets)

user-defined functions and procedures

support for large objects (BLOBs and CLOBs)

196 CHAPTER 6. OBJECT-ORIENTED DATABASES

One of the basic ideas behind the object facilities is that, in addition to the normal
built-in types defined by SQL, user-defined types may also be defined. These types
may be used in the same way as built-in types. For example, columns in relational
tables may be defined as taking values of user-defined types, as well as built-in
types. A user-defined abstract data type (ADT) definition encapsulates attributes
and operations in a single entity. In SQL3, an abstract data type (ADT) is defined
by specifying a set of declarations of the stored attributes that represent the value
of the ADT, the operations that define the equality and ordering relationships of
the ADT, and the operations that define the behavior (and any virtual attributes)
of the ADT. Operations are implemented by procedures called routines. ADTs can
also be defined as subtypes of other ADTs. A subtype inherits the structure and
behavior of its supertypes (multiple inheritance is supported). Instances of ADTs
can be persistently stored in the database only by storing them in columns of tables.

Collection types for

sets

lists

multisets

have also been defined. Using these types, columns of tables can contain sets, lists,
or multisets, in addition to individual values.

6.8. SQL3 OBJECT MODEL 197

6.8.2 Objects

One of the basic ideas behind the object extensions in SQL3 is that, in addition to
the normal built-in types defined by SQL, user-defined types may also be defined.
These types may be used in the same way as built-in types. For example, columns
in relational tables may be defined as taking values of user-defined types, as well as
built-in types. A user-defined abstract data type (ADT) definition encapsulates at-
tributes and operations in a single entity. In SQL3, an abstract data type (ADT) is
defined by specifying a set of declarations of the stored attributes that represent the
value of the ADT, the operations that define the equality and ordering relationships
of the ADT, and the operations that define the behavior (and any virtual attributes)
of the ADT. Operations are implemented by procedures called routines. ADTs can
also be defined as subtypes of other ADTs. A subtype inherits the structure and
behavior of its supertypes (multiple inheritance is supported). Instances of ADTs
can be persistently stored in the database only by storing them in columns of tables.

A row type is a sequence of field name/data type pairs resembling a table definition.
Two rows are type-equivalent if both have the same number of fields and every pair
of fields in the same position have compatible types. The row type provides a data
type that can represent the types of rows in tables, so that complete rows can be
stored in variables, passed as arguments to routines, and returned as return values
from function invocations. This facility also allows columns in tables to contain row
values. A named row type is a row type with a name assigned to it. A named
row type is effectively a user-defined data type with a non-encapsulated internal
structure (consisting of its fields). A named row type can be used to specify the
types of rows in table definitions. A named row type can also be used to define a
reference type. A value of the reference type defined for a specific row type is a
unique value which identifies a specific instance of the row type within some (top
level) database table. A reference type value can be stored in one table and used
as a direct reference (pointer) to a specific row in another table, just as an object
identifier in other object models allows one object to directly reference another ob-
ject. The same reference type value can be stored in multiple rows, thus allowing
the referenced row to be shared by those rows.

Tables have also been enhanced with a subtable facility. A table can be declared as a
subtable of one or more supertables (it is then a direct subtable of these supertables),
using an UNDER clause associated with the table definition. When a subtable is
defined, the subtable inherits every column from its supertables, and may also define
columns of its own. The subtable facility is completely independent from the ADT
subtype facility.

198 CHAPTER 6. OBJECT-ORIENTED DATABASES

6.8.3 Operations

Operations that may be invoked in SQL include defined operations on tables

SELECT, INSERT, UPDATE, DELETE

the implicitly defined functions defined for ADT attributes, and routines either ex-
plicitly associated with ADTs or defined separately.

Routines associated with ADTs are FUNCTION definitions for type-specific user-
defined behavior. The FUNCTION definitions specify the operations on the ADT
and return a single value of a defined data type. Functions may either be SQL
functions, completely defined in an SQL schema definition, or external functions,
defined in standard programming languages.

SQL functions associated with ADTs are invoked using either a functional notation
or a dot notation (the dot notation is syntactic sugar for the functional notation).
For example:

BEGIN

DECLARE r real_estate

...

SET r..area = 2540; /* same as area(r,2540)

SET ... = r..area; /* same as area(r)

...

SET ... = r..location..state; /* same as state(location(r))

SET r..location..city = ’LA’; /* same as city(location(r),’LA’)

END;

Routines (procedures and functions) that define aspects of the behavior of the ADT
may be encapsulated within the ADT definition (these routines have access to the
ADT’s PRIVATE attributes; routines may also be defined outside an ADT definition).
A number of these routines have predefined names. For example, when an ADT is
defined, a constructor function is automatically defined to create new instances of
the type. The constructor function has the same name as the type and takes zero
arguments. It returns a new instance of the type whose attributes are set to their
default values. The constructor function is PUBLIC. For every attribute, observer
and mutator functions are also automatically defined (these functions may also be
explicitly defined by the user). These functions are used to read or modify the ADT
attribute values.

EQUAL and LESS THAN functions may be defined to specify type-specific functions
for comparing ADT instances. RELATIVE and HASH functions can be specified to
control ordering of ADT instances. CAST functions can also be specified to provide
user-specified conversion functions between different ADTs.

6.8. SQL3 OBJECT MODEL 199

Other routines associated with ADTs include function definitions for type-specific
user-defined behavior. ADT function definitions return either BOOLEAN, if the result
is to be used as a truth value in a Boolean predicate, or a single value of a defined
data type, if the result is to be used as a value specification. Functions may either be
SQL functions, completely defined in an SQL schema definition, or external function
calls to functions defined in standard programming languages.

6.8.4 Methods

An SQL routine is basically a subprogram. A routine may be either a FUNCTION

or a PROCEDURE. A routine reads or updates components of an ADT instance or
accesses any other parameter declared in its parameter list. A routine is specified
by giving its name, its parameters, a RETURNS clause if it is a function, and a body.
A parameter in the parameter list consists of a parameter name, its data type, and
whether it is IN, OUT, or INOUT (for functions, the parameters are always IN; the
RETURNS clause specifies the data type of the result returned).

A routine may be either an SQL routine or an external routine. An SQL routine has
a body that is written completely in SQL. An external routine has an externally-
provided body written in some standard programming language. If the function is
an SQL routine, its body is any SQL statement, including compound statements
and control statements. A number of new statement types have been added in SQL3
in order to make SQL computationally-complete enough so that ADT behavior can
be completely specified in SQL.

SQL3 supports state in the form of the values of the various SQL3 data types. For
example, the state of an ADT instance is the ordered sequence of stored components
of an ADT instance; the state of a row is the ordered set of values of its columns;
and so on. Values can only be stored persistently by storing them in the columns
of database tables.

An ADT instance can exist in any location that an ADT name can be referenced.
However, the only way that any ADT instance can be stored persistently in the
database is to be stored as the column value of a table. For example, in order to
store instances of an employee_t ADT persistently in a database, a table would
have to be created with a column having the ADT as its data type, such as the
emp_data column in

CREATE TABLE employees

(emp_data employee_t);

200 CHAPTER 6. OBJECT-ORIENTED DATABASES

There is no facility in SQL3 to name individual instances of an ADT, and to store
them persistently in the database using only that name. Similarly, there is no central
place that all instances of a given ADT will exist (a built-in type extent), unless the
user explicitly creates such a place, i.e., by defining a table in which all instances are
stored. Thus, in SQL3 it is not necessarily possible to apply SQL query operations
to all instances of a given ADT. The instances must first be stored in one or more
tables (as column values).

A row in a table exists until it is deleted. Deletion of an ADT instance is done by
deleting the row in which it is stored.

SQL3 routines may be defined within ADT definitions, or independently of them.
SQL3 supports a generalized object model in terms of dispatching. However, there
is no concept of a generic function which groups routines with a common signature.
A routine defined within an ADT has access to that ADT’s PRIVATE members.

6.8. SQL3 OBJECT MODEL 201

6.8.5 Events

In SQL, a trigger is a named database construct that is implicitly activated when-
ever a triggering event occurs. When a trigger is activated, the specified action is
executed if the specified condition is satisfied. An example is

CREATE TRIGGER update_balance

BEFORE INSERT ON account_history /* event */

REFERENCING NEW AS ta

FOR EACH ROW

WHEN (ta.TA_type = ’W’) /* condition */

UPDATE accounts /* action */

SET balance = balance - ta.amount

WHERE account_# = ta.account_#;

Triggers can be used for a number of purposes, such as validating input data, reading
from other tables for cross-referencing purposes, or supporting alerts (e.g., through
electronic mail messages). Triggering events include

insertion, deletion, update of tables and columns.

A condition can be any SQL condition (including those that involve complex queries),
and an action can be any SQL statement (including compound statements, and those
that invoke SQL routines). The trigger can also specify whether the trigger should
be activated BEFORE the triggering SQL operation is performed, or AFTER. The con-
dition and action can refer to both old and new values of rows affected by the SQL
statement. The trigger condition and action can be executed

FOR EACH ROW

affected by the triggering statement, or only once for the whole triggering statement

FOR EACH STATEMENT

202 CHAPTER 6. OBJECT-ORIENTED DATABASES

6.8.6 Binding and Polymorphism

Different routines may have the same name. This is referred to as overloading, and
may be required, for example, to allow an ADT subtype to redefine an operation
inherited from a supertype. SQL3 implements what is sometimes known as a gener-
alized object model, meaning that the types of all arguments of a routine are taken
into consideration when determining what routine to invoke, rather than using only
a single type specified in the invocation as, for example, in C++ or Smalltalk. As
a result, the rules for determining which routine to invoke for a given invocation
can be fairly complex. The instance of the routine that is chosen for execution is
the best match given the types of the actual arguments of the invocation at run time.

Each component (attribute or function) of an ADT has an encapsulation level of
either

PUBLIC, PRIVATE, PROTECTED

PUBLIC components form the interface of the ADT and are visible to all authorized
users of the ADT.

PRIVATE components are totally encapsulated, and are visible only within the defi-
nition of the ADT that contains them.

PROTECTED components are partially encapsulated; they are visible both within their
own ADT and within the definition of all subtypes of the ADT.

SQL3 also supports encapsulation for tables to the extent that views (derived ta-
bles) are considered as providing encapsulation.

By default, testing corresponding attribute values for equality serves to test for the
equality of two ADT instances. Alternatively, the specification of an ADT supports
declaration of a function to be used to determine equality of two ADT instances.

Two values are said to be not distinct if either: both are the null value, or they
compare equal according to [the SQL3] "<comparison predicate>". Otherwise
they are distinct. Two rows (or partial rows) are distinct if at least one of their
pairs of respective values is distinct. Otherwise they are not distinct. The result of
evaluating whether or not two values or two rows are distinct is never unknown.

6.8. SQL3 OBJECT MODEL 203

6.8.7 Types and Classes

The parts of SQL3 that provide the primary basis for supporting object-oriented
structures are extensions to its type facilities, specifically:

user-defined types (ADTs, named row types, and distinct types)
type constructors for row types and reference types
type constructors for collection types (sets, lists, and multisets)
user-defined functions and procedures
support for large objects (BLOBs and CLOBs)
SQL3 also supports a number of built-in scalar types.

One of the basic ideas behind the object facilities is that, in addition to the normal
built-in types defined by SQL, user-defined types may also be defined. These types
may be used in the same way as built-in types. For example, columns in relational
tables may be defined as taking values of user-defined types, as well as built-in types.

The simplest form of user-defined type in SQL3 is the distinct type, which provides
a facility for the user to declare that two otherwise equivalent type declarations are
to be treated as separate data types. The keyword

DISTINCT

used in an declaration indicates that the resulting type is to be treated as distinct
from any other declaration of the same type. For example, if two new types are
declared as:

CREATE DISTINCT TYPE us_dollar AS DECIMAL(9,2)

CREATE DISTINCT TYPE canadian_dollar AS DECIMAL(9,2)

any attempt to treat an instance of one type as an instance of the other would result
in an error, even though each type has the same representation.

A user-defined abstract data type (ADT) definition encapsulates attributes and
operations in a single entity. In SQL3, an abstract data type (ADT) is defined by
specifying a set of declarations of the stored attributes that represent the value of
the ADT, the operations that define the equality and ordering relationships of the
ADT, and the operations that define the behavior (and any virtual attributes) of
the ADT. Operations are implemented by procedures called routines. ADTs can
also be defined as subtypes of other ADTs. A subtype inherits the structure and
behavior of its supertypes (multiple inheritance is supported). Instances of ADTs
can be persistently stored in the database only by storing them in columns of tables.

204 CHAPTER 6. OBJECT-ORIENTED DATABASES

An example ADT declaration is

CREATE TYPE employee_t

(PUBLIC

name CHAR(20),

b_address address_t,

manager employee_t,

hiredate DATE,

PRIVATE

base_salary DECIMAL(7,2),

commission DECIMAL(7,2),

PUBLIC

FUNCTION working_years (p employee_t) RETURNS INTEGER

<code to calculate number of working years>,

PUBLIC

FUNCTION working_years (p employee_t,y years) RETURNS employee_t

<code to update number of working years>,

PUBLIC

FUNCTION salary (p,employee_t) RETURNS DECIMAL

<code to calculate salary>

);

ADTs are completely encapsulated. Only attributes and functions defined as PUBLIC
are accessible from outside the ADT definition. For each attribute (such as name),
an observer and mutator function is automatically defined. Virtual attributes (such
as working_years) can also be defined. These do not have stored values; their
behavior is provided by user-defined observer and mutator functions that read and
define their values (salary is a read-only virtual attribute). ADT instances are
created by system-defined constructor functions. The instances created in this way
have their attributes initialized with their default values, and can be further initial-
ized by the user by invoking mutator functions, as in:

BEGIN

DECLARE e employee_t;

SET e..working_years = 10;

SET y = e..working_years;

SET z = e..salary;

END;

The expression e..working_years illustrates the dot notation used to invoke the
working_years function of the ADT instance denoted by e. Users can also define
specialized constructor functions which take parameters to initialize attributes.

A row type is a sequence of field name/data type pairs resembling a table definition.
Two rows are type-equivalent if both have the same number of fields and every pair

6.8. SQL3 OBJECT MODEL 205

of fields in the same position have compatible types. The row type provides a data
type that can represent the types of rows in tables, so that complete rows can be
stored in variables, passed as arguments to routines, and returned as return values
from function invocations. This facility also allows columns in tables to contain row
values. An example is:

CREATE TABLE employees

(name CHAR(40),

address ROW(street CHAR(30),

city CHAR(20),

zip ROW(original CHAR(5),

plus4 CHAR(4))));

INSERT INTO employees

VALUES(’John Wu’,(’2225 Coral Drive’,’San Jose’,(’95124’,’2347’))));

A named row type is a row type with a name assigned to it. A named row type
is effectively a user-defined data type with a non-encapsulated internal structure
(consisting of its fields). A named row type can be used to specify the types of rows
in table definitions. For example:

CREATE ROW TYPE account_t

(acctno INT,

cust REF(customer_t),

type CHAR(1),

opened DATE,

rate DOUBLE PRECISION,

balance DOUBLE PRECISION,

);

CREATE TABLE account OF account_t

(PRIMARY KEY acctno

);

A named row type can also be used to define a reference type. A value of the refer-
ence type defined for a specific row type is a unique value which identifies a specific
instance of the row type within some base (top level) database table. A reference
type value can be stored in one table and used as a direct reference (pointer) to a
specific row in another table, just as an object identifier in other object models al-
lows one object to directly reference another object. The same reference type value
can be stored in multiple rows, thus allowing the referenced row to be shared by
those rows. For example, the account_t row type defined above contains a cust

column with the reference type REF(customer_t). A value of this column identifies
a specific row of type customer_t. The value of a reference type is unique within
the database, never changes as long as the corresponding row exists in the database,

206 CHAPTER 6. OBJECT-ORIENTED DATABASES

and is never reused.

In general, the value of a reference type such as REF(customer_t) can refer to a
row in any table having rows of type customer_t. If a SCOPE clause is specified in
the definition of a table, such references are restricted to rows in a single table, as
in:

CREATE TABLE account OF account_t

(PRIMARY KEY acctno,

SCOPE FOR cust IS customer

);

In this case customer_t rows referenced in the cust column must be stored in the
customer table. Use of SCOPE does not imply any referential integrity constraint.

References can be used in path expressions (similar to those used in some other
object query languages), that permit traversal of object references to navigate from
one row to another. Such expressions can also include the invocation of functions
on ADT instances. An example is:

SELECT a.cust -> name

FROM account a

WHERE a.cust -> address..city = Hollywood

AND a.balance > 1000000;

In the SELECT statement, a.cust -> name represents:

1. the selection of the cust column’s value (an instance of type REF(customer_t))
from the row denoted by a (a row of type account_t)

2. the traversal (dereference) of that instance of type REF(customer_t) to the row
of type customer_t it refers to (-> is a dereferencing operator)

3. the selection of the name column from the referenced customer_t row.

In the WHERE clause, a.cust -> address..city represents a similar process, iden-
tifying the address column of the referenced customer_t row, and then applying
the city observer function to the ADT instance found in the address column.

Collection types for sets, lists, and multisets have also been defined. Using these
types, columns of tables can contain sets, lists, or multisets, in addition to individual
values.

6.8. SQL3 OBJECT MODEL 207

For example

CREATE TABLE employees

(id INTEGER PRIMARY KEY,

name VARCHAR(30),

address ROW(street VARCHAR(40),

city CHAR(20),

start CHAR(2),

zip INTEGER),

projects SET(INTEGER),

children LIST(person),

hobbies SET(VARCHAR(20))

);

The BLOB (Binary Large Object) and CLOB (Character Large Object) types have been
defined to support very large objects. Instances of these types are stored directly in
the database (rather than being maintained in external files). For example:

CREATE TABLE employees

(id INTEGER,

name VARCHAR(30),

salary us_dollar,

...

resume CLOB(75K),

signature BLOB(1M),

picture BLOB(12M));

LOB types are excluded from some operations, such as greater and less than oper-
ators, but are supported by other operations, such as value retrieval, and the LIKE

predicate.

208 CHAPTER 6. OBJECT-ORIENTED DATABASES

6.8.8 Inheritance and Delegation

An ADT can be defined as a subtype of one or more ADTs by defining it as UNDER
those ADTs (multiple inheritance is supported). In this case, the ADT is referred
to as a direct subtype of the ADTs specified in the

UNDER clause,

and these ADTs are direct supertypes. A type can have more than one subtype and
more than one supertype. A subtype inherits all the attributes and behavior of its
supertypes; additional attributes and behavior can also be defined. An instance of a
subtype is considered an instance of all of its supertypes. An instance of a subtype
can be used wherever an instance of any of its supertypes is expected.

Every instance is associated with a most specific type that corresponds to the lowest
subtype assigned to the instance. At any given time, an instance must have exactly
one most specific type (in some cases, multiple inheritance must be used to ensure
this is true). The most specific type of an instance need not be a leaf type in the
type hierarchy. For example, a type hierarchy might consist of a maximal supertype
person, with student and employee as subtypes. student might have two direct
subtypes undergrad and grad. An instance may be created with a most specific
type of student, even though it is not a leaf type in the hierarchy. A TYPE predicate
allows for the type of an ADT instance to be tested at run time.

A subtype definition has access to the representation of all of its direct supertypes
(but only within the ADT definition that defines the subtype of that supertype), but
it has no access to the representation of its sibling types. Effectively, components
of all direct supertype representations are copied to the subtype’s representation
with the same name and data type. To avoid name clashes, a subtype can rename
selected components of the representation inherited from its direct supertypes.

A subtype can define operations like any other ADT. A subtype can also define op-
erations which have the same name as operations defined for other types, including
its supertypes (overriding).

A table can be declared as a subtable of one or more supertables (it is then a
direct subtable of these supertables), using an UNDER clause associated with the
table definition. An example is:

CREATE TABLE person

(name CHAR(20),

sex CHAR(1),

age INTEGER);

CREATE TABLE employee UNDER person

(salary FLOAT);

6.8. SQL3 OBJECT MODEL 209

CREATE TABLE customer UNDER person

(account INTEGER);

The subtable facility is completely independent from the ADT subtype facility.
When a subtable is defined, the subtable inherits every column from its supertables,
and may also define columns of its own. A maximal supertable (a supertable that
is not a subtable of any other table) together with all its subtables (direct and indi-
rect) makes up a subtable family. A subtable family must always have exactly one
maximal supertable. Any row of a subtable must correspond to exactly one row of
each direct supertable. Any row of a supertable corresponds to at most one row of
a direct subtable.

The rules for the SQL INSERT, DELETE, and UPDATE DML statements are defined in
such a way as to keep the rows in the tables of a subtable family consistent with
each other, in accordance with the rules described above.

Specifically:

If a row is inserted into a subtable T, then a corresponding row (with the same row
identifier, and the same values as any values provided for inherited columns of T) is
inserted into each supertable of T, cascading upward in the table hierarchy. If T is
a maximal supertable, a row is inserted only into T.

If a row is updated in a supertable, then all inherited columns in all corresponding
rows of the direct and indirect subtables are correspondingly changed.

If a row is updated in a subtable, then every corresponding row is changed so that
their column values match the newly updated values.

If a row in a table that belongs to a subtable family is deleted, then every corre-
sponding row is also deleted.

The semantics maintained are those of containment; a row in a subtable is effectively
contained in its supertables. This means that, for example, a row could exist for a
person in the person table without a corresponding row in the employee table (if
the person is not also an employee). A row for a new employee, not corresponding
to any existing person, could be inserted into the employee table, and this would
automatically create a corresponding row in the person table.

210 CHAPTER 6. OBJECT-ORIENTED DATABASES

6.8.9 Noteworthy Objects

Relations (tables) can be used to define generalized n-ary relationships, as in SQL92;
referential and other integrity constraints can be defined on these tables. Columns
whose types are reference types also allow modeling of relationships in SQL3. Ref-
erences to groups of objects can be specified using rows containing (directly or
indirectly) instances of the SQL3

MULTISET(..), LIST(..), SET(..)

collection types.

There are two types of ADT attributes, stored attributes and virtual attributes. A
stored attribute is specified by giving an attribute name and a data type. The data
type of a stored attribute can be any known data type, including another ADT.
Each stored attribute implicitly declares a pair of functions to get (observer func-
tion) and set (mutator function) the attribute value.

A virtual attribute has a value that is derived or computed by a user-defined observer
function. Because ADTs are encapsulated, and because the syntax for function in-
vocation is the same for any attribute, only the type owner and subtype definers
would ever be aware of this distinction. Columns of tables can also be used to rep-
resent attributes, as in SQL92.

In SQL3, literals are used to specify non-null values. The rules for forming literals
for the various built-in types are contained in the draft standard [ISO96a]. ADTs
do not have literal values. Row type literals are formed by concatenating values for
the individual columns, as in:

CREATE TABLE employees

(name CHAR(40),

address ROW(street CHAR(30),

city CHAR(20),

zip ROW(original CHAR(5),

plus4 CHAR(4))));

INSERT INTO employees

VALUES(’John Doe’,(’2225 Coral Drive’,’San Jose’,(’95124’,’2347’))));

SQL3 supports the concept of values being contained within values (e.g., instances
of row types, or collections of such instances, can be contained in a column of a
row) or within ADTs. A form of containment semantics can also be implemented
by specifying triggers to enforce cascaded manipulations of a collection of data
structures when one of them is manipulated. This kind of containment must be
specified by the user.

6.8. SQL3 OBJECT MODEL 211

SQL3 provides row types as literal structures. Instances of row types can be used as
values in tables; row types can also be nested. A number of predefined parameterized
collection types are also defined. A collection may be specified as

SET(<type>), MULTISET(<type>), LIST(<type>) .

In each case, the <type> parameter (called the element type) can be a predefined
type, an ADT, a row type, or another collection type. For example SET(INTEGER)

and SET(LIST(INTEGER)) would both be valid declarations, as would SET(movie)

and SET(LIST(movie)), where movie is some previously defined ADT. At present,
the element type cannot be a reference type, nor can it be a named row type con-
taining a field whose type is a reference type.

A collection can be used as a simple table in queries. In this case, each element of
the collection corresponds to a row in the table. The table is treated as having a
single column whose type is defined by the type of the instances of the collection.
Since collection types are data types, they must be declared as the types of table
columns in order to store instances of collections persistently in the database.

212 CHAPTER 6. OBJECT-ORIENTED DATABASES

6.8.10 Extensibility

New tables and types (ADTs, row types, collection types, etc.) can be defined based
on existing types. Existing types may be modified to add new operations, attributes,
or constraints. Existing instances may not acquire or lose type without creating a
new instance and destroying the old one.

Limited schema evolution is possible by applying the ALTER statement to a base ta-
ble. Actions that can be taken using the ALTER statement include adding, altering,
and dropping columns, and adding and dropping supertables, and table constraints.
Data types can also be added and dropped.

SQL3 has no notion of metaclass and its semantics are not extensible.

Some metadata is maintained in SQL3 tables (this is a requirement of SQL92) and
can be read by the user.

A number of new statement types have been added in SQL3 in order to make SQL
computationally-complete enough so that object behavior can be completely speci-
fied in SQL. Some of the additional statements provided for writing SQL functions
include:

An assignment statement that allows the result of an SQL value expression to be
assigned to a free standing local variable, a column, or an attribute of an ADT.

A CALL statement that allows invocation of an SQL procedure.

A RETURNS statement that allows the result of an SQL value expression to be re-
turned as the RETURNS value of the SQL function.

A CASE statement to allow selection of an execution path based on alternative
choices.

An IF statement with THEN, ELSE, and ELSEIF alternatives to allow selection of an
execution path based on the truth value of one or more conditions.

Statements for LOOP, WHILE, and REPEAT to allow repeated execution of a block of
SQL statements. WHILE checks a search condition; before execution of the block, and
REPEAT checks it afterwards. All three statements are allowed to have a statement
label.

6.8. SQL3 OBJECT MODEL 213

Additional control facilities available include compound statements and exception
handling. A compound statement is a statement that allows a collection of SQL
statements to be grouped together into a block. A compound statement may de-
clare its own local variables and specify exception handling for an exception that
occurs during execution of any statement in the group. For exception handling, a
CONDITION declaration establishes a one-to-one correspondence between an SQL-
STATE error condition and a user-defined exception name. HANDLER declarations
associate user-defined exception handlers with specific exceptions.

The SQL92 standard defines language bindings for a number of standard languages.
A key aspect of the individual language bindings is the definitions of correspon-
dences between SQL data types and host language data types. In some cases, these
are relatively straightforward; e.g., the SQL CHARACTER data type maps to a C char.
In other cases, the mapping is not so straightforward. For example, SQL92 has a
TIMESTAMP data type, but standard programming languages do not contain a corre-
sponding built-in type. In these cases, SQL requires the use of a CAST function to
convert database TIMESTAMP data to character data in the program, and vice-versa.
In SQL92, these type correspondences are defined only at the level of elementary
scalar data types. There are no type correspondences defined for structured types,
e.g., between a row of an SQL table and a flat record or structure in a programming
language (although some such correspondences would be relatively straightforward
to define).

There are currently no bindings defined between the SQL3 ADT extensions (or
rows containing them) and object classes or types in object-oriented programming
languages such as C++, Java or Smalltalk, although these are under investigation.

214 CHAPTER 6. OBJECT-ORIENTED DATABASES

6.9 SQL3 Datatypes and Java

The datatypes commonly referred to as SQL3 types are the new datatypes being
adopted in the next version of the ANSI/ISO SQL standard. The JDBC 2.0 API
provides interfaces that represent the mapping of these SQL3 datatypes into the
Java programming language. With these new interfaces, we can work with SQL3
datatypes the same way we do other datatypes.

The new SQL3 datatypes give a relational database more flexibility in what can be
used as a type for a table column. For example, a column may now be used to store
the new type BLOB (Binary Large Object), which can store very large amounts of
data as raw bytes. A column may also be of type CLOB (Character Large Object),
which is capable of storing very large amounts of data in character format. The new
type ARRAY makes it possible to use an array as a column value. Even the new SQL
user-defined types (UDTs), structured types and distinct types, can now be stored
as column values.

The following list gives the JDBC 2.0 interfaces that map the SQL3 types. We will
discuss them in more detail later.

1.) A Blob instance maps an SQL BLOB instance

2.) A Clob instance maps an SQL CLOB instance

3.) A Array instance maps an SQL ARRAY instance

4.) A Struct instance maps an SQL structured type instance

5.) A Ref instance maps an SQL REF instance

6.9. SQL3 DATATYPES AND JAVA 215

Using SQL3 Datatypes

We retrieve, store, and update SQL3 datatypes the same way we do other datatypes.
We use either

ResultSet.getXXX

or

CallableStatement.getXXX

methods to retrieve them,

PreparedStatement.setXXX

methods to store them, and

updateXXX

to update them. Most of the operations performed on SQL3 types involve using
the getXXX, setXXX, and updateXXX methods. The following table shows which
methods to use:

SQL3 type getXXX method setXXX method updateXXX method

==

BLOB getBlob setBlob updateBlob

CLOB getClob setClob updateClob

ARRAY getArray setArray updateArray

Structured type getObject setObject updateObject

REF (structured type) getRef setRef updateRef

==

For example, the following code fragment retrieves an SQL ARRAY value. For this
example, the column SCORES in the table STUDENTS contains values of type ARRAY.
The variable stmt is a Statement object.

ResultSet rs = stmt.executeQuery(

"SELECT SCORES FROM STUDENTS WHERE ID = 2238");

rs.next();

Array scores = rs.getArray("SCORES");

The variable scores is a logical pointer to the SQL ARRAY object stored in the table
STUDENTS in the row for student 2238. If we want to store a value in the database,
we use the appropriate setXXX method. For example, the following code fragment,
in which rs is a ResultSet object, stores a Clob object:

216 CHAPTER 6. OBJECT-ORIENTED DATABASES

Clob notes = rs.getClob("NOTES");

PreparedStatement pstmt = con.prepareStatement(

"UPDATE MARKETS SET COMMENTS = ? WHERE SALES < 1000000",

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

pstmt.setClob(1,notes);

This code sets notes as the first parameter in the update statement being sent
to the database. The CLOB value designated by notes will be stored in the table
MARKETS in column COMMENTS in every row where the value in the column SALES is
less than one million.

Blob, Clob, and Array Objects

An important feature about Blob, Clob, and Array objects is that we can manip-
ulate them without having to bring all of the data from the database server to our
client machine. An instance of any of these types is actually a logical pointer to the
object in the database that the instance represents. Because an SQL BLOB, CLOB, or
ARRAY object may be very large, this feature can improve performance dramatically.

We can use SQL commands and the JDBC 1.0 and 2.0 API with Blob, Clob, and
Array objects just as if we were operating on the actual object in the database. If
we want to work with any of them as an object in the Java programming language,
however, we need to bring all their data over to the client, which we refer to as
materializing the object. For example, if we want to use an SQL ARRAY object in
an application as if it were an array in the Java programming language, we need to
materialize the ARRAY object on the client and then convert it to an array in the Java
programming language. Then we can use array methods in the Java programming
language to operate on the elements of the array. The interfaces Blob, Clob, and
Array all have methods for materializing the objects they represent. Refer to the
second edition of JDBC Database Access with Java if we want more details or
examples.

6.9. SQL3 DATATYPES AND JAVA 217

Struct and Distinct Types

SQL structured types and distinct types are the two datatypes that a user can de-
fine in SQL. They are often referred to as UDTs (user-defined types), and we create
them with an SQL CREATE TYPE statement.

An SQL structured type is similar to structured types in the Java programming
language in that it has members, called attributes, that may be of any datatype.
In fact, an attribute may itself be another structured type. Here is an example of a
simple definition creating a new SQL datatype:

CREATE TYPE PLANE_POINT

(

X FLOAT,

Y FLOAT

)

Unlike Blob, Clob, and Array objects, a Struct object contains values for each of
the attributes in the SQL structured type and is not just a logical pointer to the
object in the database. For example, suppose that a PLANE_POINT object is stored
in column POINTS of table PRICES.

ResultSet rs = stmt.executeQuery(

"SELECT POINTS FROM PRICES WHERE PRICE > 3000.00");

while (rs.next()) {

Struct point = (Struct)rs.getObject("POINTS");

// do something with point

}

If the PLANE_POINT object retrieved has an X value of 3 and a Y value of -5, the
Struct object point will contain the values 3 and -5.

We note that Struct is the only type not to have a getXXX and setXXX method with
its name as XXX. We must use getObject and setObject with Struct instances.
This means that when we retrieve a value using the method getObject, we will
get an Object in the Java programming language that we must explicitly cast to a
Struct, as was done in the previous code example.

The second SQL type that a user can define in an SQL CREATE TYPE statement is
a distinct type. An SQL distinct type is similar to a typedef in C or C++ in that
it is a new type based on an existing type.

218 CHAPTER 6. OBJECT-ORIENTED DATABASES

Here is an example of creating a distinct type

CREATE TYPE MONEY AS NUMERIC(10,2)

This definition creates the new type called MONEY, which is a number of type NUMERIC
that is always base 10 with two digits after the decimal point. MONEY is now a
datatype in the schema in which it was defined, and we can store instances of MONEY
in a table that has a column of type MONEY. An SQL distinct type is mapped to
the type in the Java programming language to which its underlying type would be
mapped. For example, NUMERIC maps to java.math.BigDecimal, so the type MONEY
maps to java.math.BigDecimal. To retrieve a MONEY object, we use

ResultSet.getBigDecimal

or

CallableStatement.getBigDecimal

to store a MONEY object, we use PreparedStatement.setBigDecimal.

Some aspects of working with SQL3 types can get quite complex. The interface
Struct is the standard mapping for an SQL structured type. If we want to make
working with an SQL structured type easier, we can map it to a class in the Java
programming language. The structured type becomes a class, and its attributes
become fields. We do not have to use a custom mapping, but it can often be more
convenient. Sometimes we may want to work with a logical pointer to an SQL
structured type rather than with all the values contained in the structured type.
This might be true, for instance, if the structured type has many attributes or if
the attributes are themselves large. To reference a structured type, we can declare
an SQL REF type that represents a particular structured type. An SQL REF object
is mapped to a Ref object in the Java programming language, and we can operate
on it as if we were operating on the structured type object that it represents.

6.10. EVALUATIONS OF OODBMSS 219

6.10 Evaluations of OODBMSs

The following are some of the technical issues that must be included in OODBMS
evaluations.

1. Pointer traversal
2. Application-DBMS coupling
3. Complex object support
4. Updates
5. Recovery
6. Path indexing
7. Long data items
8. Cluserting
9. Queries and optimization
10. Caching
11. Concurrency control
12. Relationhips
13. Versioning

A more comprehensive list of evaluation criteria is

1. Atomicity of transactions
2. Consistency in transactions
3. Encapsulation and isolation of internal state of transactions
4. Durability of transactions
5. Long transactions
6. Nested transactions
7. Shared transactions
8. Nonblocking read consistency
9. Concurrency control issues
10. Lock escaletion
11. Promotable locks
12. Locks set and release
13. Granularity of locks
14. Deadlock detection
15. Role assignment for security
16. Role authorization
17. Implicit role authorization
18. Positive and negative authorization
19. Strong and weak authorization
20. Authorization objects
21. Authorization by time and day
22. Multilevel security
23. Query language
24. Query optimization

220 CHAPTER 6. OBJECT-ORIENTED DATABASES

25. Indexing
26. Queries in programs
27. Query language completeness
28. Specification of collections
29. SQL as a query language
30. Support for views
31. Schema modification
32. Update time
33. Changes of attributes
34. Addition of attributes from a class
35. Deleting attributes from a class
36. Changing the names of an attribute
37. Changing static members of the class
38. Adding new methods to a class
39. Dropping an existing class method
40. Changing the name of a method
41. Changing the inheritance of a method
42. Adding and removing a superclass to an existing class
43. Changes to an existing class
44. Versioning schema
45. Location independence in distributed database system
46. Local autonomy at each site
47. Fragmentation and replication independence
48. Distributed query processing
49. Distributed transaction processing
50. Hardware independence
51. Operating system and network independence
52. Object model
53. Dynamic binding and polymorphism
54. Encapsulation
55. Object identity
56. Types and classes
57. Inheritance and delegation
58. Relationship and attributes
59. Literal data types
60. Multimedia objects
61. Aggregate objects
62. Composite and complex objects
63. Integrity
64. Schema extensibility
65. Extensibility of database operations
66. Language for object manipulations
67. Persistence
68. Architecture
69. Method execution location

6.10. EVALUATIONS OF OODBMSS 221

70. Multiple language interface
71. Object translation facilities
72. Backup and recovery facilities
73. Tools
74. 4GL (four generation language)
75. Change notification
76. Versioning
77. Configuration management
78. Standards
79. Rules
80. Platforms
81. Compilers
82. GUIs
83. Gateways
84. File systems

222 CHAPTER 6. OBJECT-ORIENTED DATABASES

6.11 Summary

It is evident that object-oriented databases are a natural outcome of database evo-
lutionary developments. Database systems are advancing from being just complex
file systems to architectures that provide organized mechanisms to make sense and
capture the meaning of the data. Essentially all object data management systems
are developed using an object-oriented database programming language. These
database programming languages, in turn, have been integrated with the Java,
C++, Smalltalk or other programming languages that provide support for com-
plex data structures that can transparently be made persistent. We have examples
of four levels of extensiveness and, therefore, sophistication in object data manage-
ment systems. The root system is an object manager. An object manager must
provide a repository for persistent objects – and generally provide multi-user con-
currence control – but lack a query or programming language. Extended database
managers, the next level of sophistication, incorporates a query language. Database
programming languages incorporate persistence, concurrence control and a query or
programming language that executes in the application program environment, shar-
ing the same type system and data workspace. The most lofty level of extensiveness
is a database system generator. These systems permit a designer to provide spec-
ifications for a particular application for which any of the other three object data
management systems can be routinely spawned.

Next generation DBMS applications will require a new set of services in different
areas:

1) There will be new kinds of data, probably large and internally complex. A new
type of query language might be required for large data.

2) Type management is going to be important.

3) Rules are likely to be common. They can be declarative or imperative. Rules
may include elaborate constraints that the designer wants enforced.

4) They will require new concepts not found in most applications - spatial data,
time, uncertainty.

5) Scaling up to the next order of magnitude in terms of size. Building an index
dynamically on terabytes of information is not practical. Making a dump of such a
large database might not be feasible even in case of hardware failure.

6) Ad hoc queries might take a long time to execute. Parallelism might be a solu-
tion. Users’ queries would be probably need to be executed at nearly linear speedup.

7) Tertiary storage and long-duration transactions may be necessary. Part of the
data being processed may still be in archives. Thus, query optimization will be

6.11. SUMMARY 223

critical, and movement of data between storage media will have to be minimized.

8) Support for multiple versions and configurations will be necessary.

9) Databases are likely to operate in heterogenous and distributed environments. It
may be possible to create a single worldwide database from which users can obtain
information on any topics covered by data, made available by purveyors, and on
which business can be transacted in a uniform way.

10) Uniform browsing capability that can be applied to any one of individual
databases. The ability to interrogate the structure of the database is imperative
if browsing is to be supported across several databases.

11) In a multidatabase system, the definition of data may not be consistent across
all databases, leading to answers that may not be semantically consistent. Future
interoperability of databases will require dramatic progress to be made on semantic
issues.

12) Mediators, a class of information sources that stand between the user and the
heterogenous databases, will be needed to address the problems of semantic incon-
sistencies and database merging.

13) Name services may need to be globally accessible, with mechanisms by which
items enter and leave such name servers.

14) Security, especially in a distributed and heterogenous environment, might be a
big problem. Good authentication services will be necessary for reliable identifica-
tion of subjects making database access.

15) Site scale-up issues must be addressed, and this might involve design of better
algorithms for query processing, concurrency control, and replication.

16) Transactions in a large distributed, heterogenous environment are a difficult
issue, and will have to be supported. If each local database employs a different con-
currency mechanism, integrating such systems so as to provide uniform transaction
semantics will be a problem.

224 CHAPTER 6. OBJECT-ORIENTED DATABASES

Chapter 7

Versant

7.1 Introduction

A Versant database, similar to a relational database, is just a collection of related
data managed by a database server and administered by a DBA. Obviously, on a de-
tailed level, there are many differences. Versant employs a conventional client/server
architecture. Client applications link to and communicate with a Versant manager
on the client platform through language-specific interfaces. The Versant manager
communicates with the Versant database server through TCP/IP and routes the
client’s queries to the server. The server executes the queries and provides the re-
quested objects to the clients via the Versant manager. The Versant manager con-
sists of a few software modules that perform object caching, object validation, trans-
action and session management, schema management, and checkouts and checkins.

The Versant server performs query execution, object retrieval and updating, page
caching, indexing, logging, and locking. Most RDBMSs implement a server-centric
architecture in which all the database processing functions are executed by the
database server process. Versant employs a ”balanced” client/server implementa-
tion. Some database management functions such as transaction control are per-
formed on the client, while other functions such as query execution and indexing
are performed by the server. Certain functions, such as dual caching, are performed
at both ends in an attempt to reduce network traffic.

Each Versant installation has a software root directory under which the Versant
server software executables and database management utilities are stored and a
database root directory under which all the databases are created. Each database
is created in a database directory under the database root directory.

225

226 CHAPTER 7. VERSANT

A Versant database consists of a number of storage volumes, which are files or raw
disk devices. Each database consists of one system volume, one logical log volume,
one physical log volume, and zero or more additional data volumes. The system
volume is typically located in the database root directory. It is used to store class
descriptions (metadata) and object instances (the data itself). The log volumes
are used for transaction and longer-term rollback and recovery. They are usually
located in the database root directory. The additional data volumes can be used to
increase the database’s capacity.

When we create a new Versant database, we have to make it, edit its profile, physi-
cally create it, and then (optionally) expand or move it. Making a database entails
creating a database directory, assigning the necessary access privileges, and creating
the database profiles. The Versant makedb utility can make a default database. If
we want to change any of the database’s physical characteristics, we have to edit
its profile, which is stored in a file within the database root directory. There are
lists and lists of parameters defined in the database profile, such as volume sizes
and file locations, application process parameters, and server process parameters.
The physical database is created by running the Versant createdb utility, which
creates the system and log volumes, and updates the network database identifier file
to indicate the presence of a new database. The command DBLIST provides a list of
Versant databases.

The user that created a Versant database is considered the owner and DBA of that
database. Only the DBA can perform certain administrative tasks, such as adding
and removing users, and only the DBA may remove a database. There can be many
different DBAs working on different databases in a Versant installation.

The directory structures Versant uses are not unlike those used by many rela-
tional DBMSs, but the creation of a database has an extra step to first ”make”
the database.

A Versant database models data as objects. A database object that holds data is
called an instance object. Each object has a class, which defines its structure. A
Versant database can have any number of classes, and any number of objects per
class. When we create a class, Versant creates a corresponding class object in the
database. The attributes of an object can be used to store any datatype, such as
numeric and character values, images, sounds, documents, and references to other
objects, as defined in the class. An object can contain other objects with their
own attributes, or even arrays of other objects. The object attributes are generally
defined in C++ class files or Java class files, which are then compiled and loaded
in the database, where they are stored as class objects. An object also has meth-
ods, which are executable units of program code associated with the object. The
methods are usually defined in C++ class files or Java class files, which are then
compiled and linked with the applications. Each object has a unique logical object
identifier, made up of a database identifier and an object identifier. A logical object

7.1. INTRODUCTION 227

identifier always points to the same object, and it can never change its value.

Versant keeps track of a number of states for each object. An object can be transient
or persistent, where only persistent objects are saved to the database and can be
locked to guarantee access to it. It can have a dirty state, which means it has been
changed, but not yet saved. An object can be checked out, which means that a user
has set a long-term lock to work on the object for longer than the duration of a
transaction.

We can convert an instance object to a versioned object. This instructs Versant to
keep track of the changing states of the object by keeping a graph of the versions of
the object. When updating a versioned object, the changes are automatically saved
as a new version and linked to the version of the object to which the changes were
made.

We can use the Versant Multimedia Access (VMA) module to load multimedia files
into a Versant database as text, audio, image, video, URL, or application-specific
C++ classes and Java classes. VMA includes a run-time version of the Verity
SEARCH ’97 engine, which automatically creates and maintains indexes for each
managed database. We can extend the predefined classes to create custom classes,
and we can create custom interfaces using the Verity Software Development Kit.

Object modeling can mean trouble to a relational DBA. We have to change our
way of thinking about data modeling. It is better to design the database in terms
of objects, classes, and inheritance than to find analogies for the known relational
concepts. For example, it is difficult to determine the equivalent of a referential
integrity constraint. The relationships between Versant objects are not trivial. An
object can contain other objects, it can contain structures, such as arrays of other
objects, or it can contain ”is a” (inheritance) or ”has a” (association) references to
other objects. Object versions and object states are also two powerful and useful
concepts to get used to.

Versant databases are used mostly with object-oriented programming languages that
implement classes or templates and support delegation or inheritance. Versant’s
language-specific interfaces map the capabilities of the programming language to
the object database model. Each language interface consists of several libraries and
precompiled routines.

Versant has language-specific interfaces for C++, Smalltalk, and Java, but it can
also be used with standard nonobject-oriented C. The C++/Versant interface imple-
ments the full object model. The C/Versant interface does not support messaging,
so the methods are executed as functions, and we have to use the Versant View util-
ity to view and edit class definitions. The Smalltalk/Versant programming interface
consists of a set of Smalltalk classes that maps the Smalltalk objects directly to the
Versant database objects. For example, when we retrieve an object from a Versant

228 CHAPTER 7. VERSANT

database, it is placed in the Smalltalk Image as a standard Smalltalk object. The
Java/Versant interface gives us access to the data storage primitives of the Versant
database, including schema definition and access; object creation, deletion, and up-
date; value-based and navigational query; full transaction support for distributed
databases; and object sharing with other languages. A DBA will be able to extend
the functionality of the Versant Server with user-written methods. Versant also has
a pure Java interface, which allows pure Java applications to access all of the fea-
tures of Versant’s object database via standard or user-defined transport protocols.

A Versant query starts with a group of so-called ”starting point objects,” which
may be a class of objects, a class and its subclasses, or an array of objects. After
evaluating the starting point objects, the query can examine the attribute values in
embedded and linked objects. There are basically two types of queries: dereference
queries, which load objects from their links into memory, and search queries, which
find objects and return their links. We can specify predicates in the search queries to
locate specific objects. In the C++/Versant, Smalltalk/Versant and Java/Versant
interfaces, there are quite a number functions that we can call to perform derefer-
ence and search queries. Some of the C++/Versant functions enable us to process
the object instances through a cursor.

Versant (the company) is a founding member of ODMG, and Versant (the ODBMS)
supports a subset of the ODMG 2.0 Object Query Language (OQL) released in mid-
1997; it also supports OQL bindings to C++ and Java.

Versant also has its own proprietary high-level Versant Query Language (VQL).
Queries expressed in a SQL-like syntax are assigned to strings, which are parsed
and executed using C++/Versant or C/Versant routines. VQL contains a number
of extensions to SQL that cater to object-oriented concepts. An example is the ONLY
keyword in the FROM clause to restrict the query to the class named in the clause.
Without the ONLY keyword, the class’s subclasses will also be inspected.

Queries in Versant, like objects and classes, are a lot different from those in a rela-
tional DBMS. However, although the syntax is different, cursor processing in Versant
is similar to its counterpart widely used in relational database applications. Cursors
are very useful for accessing a large volume of objects without excessive locking and
long wait times.

Versant/SQL Suite is an amazing knapsack of tools for relational DBAs (and users)
to tackle Versant databases. Versant/SQL provides a SQL-92 standard interface
to Versant databases. Versant/ISQL is an interactive tool that lets we fire SQL-92
queries interactively to a Versant database. Versant/ODBC is a client-side DLL that
accepts ODBC 2.0 calls and translates them to Versant/SQL this allows any ODBC-
compliant tool to access a Versant database. The Versant/SQL Mapper maps the
object model stored in a Versant database to a relational data model, which can be
presented to users and can be accessed using standard SQL. It can perform complex

7.1. INTRODUCTION 229

mappings, such as transforming a many-to-many relationship between two objects
to an intersection table. Similarly, it converts a multivalued attribute to a table
with a many-to-one reference to the table representing the main object.

A client can access multiple Versant databases concurrently, and the Versant server
can obviously serve multiple clients concurrently. The operations on a database
are grouped in transactions. An application has to start a session to access any
database. When an application starts a session, Versant creates various areas in
memory, such as an object cache, an object cache table, and a server page cache
for each database accessed in the session. A session starts up against a default
database, but the application can connect to other databases as well. The session
also opens up a connection to a session database, where it logs all the transaction
details. There are various types of sessions for an application, such as standard,
shared, nestable transaction, high-performance, optimistic, and custom locking.

Versant supports short and long transactions in the context of a session. Short
transactions are logical units of work under the application’s control. An appli-
cation can explicitly commit or roll back a short transaction, or set a save point
for the transaction. Whenever a session starts or a short transaction is ended, a
new short transaction is automatically started. However, we must have logging and
locking enabled for the database. If a transaction spans more than one database,
a two-phase commit is automatically invoked at commit time. Long transactions
start and end by default when the sessions start and end. However, we can join
to a previous long transaction - that is, make the long transaction continue in a
subsequent session - by specifying the long transaction’s name at session startup
time. We can use long transactions to keep track of different sets of checked out
objects. We switch between multiple long transactions by stopping and restarting
sessions.

Short locks are set at the object level for concurrency control. There are various
types of short locks, such as write locks, update locks, read locks (which can be
shared), and so-called null locks (used for dirty reads). Applications waiting for
locks can be set to time out. Single database deadlocks are immediately detected
and disallowed by Versant. It uses a timeout mechanism to detect deadlocks be-
tween multiple databases.

Versant has a very extensive set of concurrency control mechanisms from types of
locks to check-in and check-out operations in the context of multiple long transac-
tions much more extensive than any relational DBMS currently offers. This makes
it possible to tune the database server’s locking behavior very closely to any appli-
cation’s requirements. However, DBAs must know their drill before fooling around
with these lethal weapons. We really have to know our concurrency control theory
and have our lock behavior models ready when starting to tune the Versant locking
system.

230 CHAPTER 7. VERSANT

An object DBMS should also perform its tasks as fast as possible. Although perfor-
mance is evaluated based on the application requirements, most users have expedi-
tious performance requirements. Versant has a number of mechanisms for tuning its
performance. Versant uses indexes to filter objects so that query routines only fetch
the objects of interest from disk. Create and update routines also use indexes to
enforce uniqueness constraints on object attributes. An index is defined on a single
attribute of a class and indexes the specified attribute of all the objects of that
class. We can have B-tree or hash indexes, where B-tree indexes are good for range
queries and sufficient for direct key queries, and hash indexes are good for direct key
queries. However, there are many restrictions and peculiarities about indexes that
make them very different from their relational counterparts. Indexes do not have
names. An index only applies to a single attribute. An attribute can only have two
indexes - one B-tree and one hash. An index only applies to a specific class and it
is not inherited, so we have to define corresponding indexes for all the subclasses
where it is required. Some complex attributes, such as fixed arrays and fixed length
structures, cannot be indexed.

Versant has many memory-management facilities that application developers and
DBAs can use to improve the applications’ performance. For example, its various
caches can be configured, and objects can be pinned in their respective caches. Sim-
ilarly, log files can be configured, and objects can be located on multiple disks, even
on raw disk devices, to improve performance. This compares well with the facili-
ties provided by the more tunable relational DBMSs. A DBA must be skilled in
the Versant-specific techniques to be able to use them advantageously. Obviously,
database and application design, as in a relational database application system, play
the biggest roles in achieving good database and application performance.

Versant provides two different mechanisms to cater for disasters. The DBA can
make online or online incremental backups of the database. An online backup can
only be used to restore a crashed database to a specific previous correct state, when
the backup was taken. An incremental backup has an associated rollforward log,
which keeps track of all database activity that occurs between backup operations.
We can use this log to restore the database to the point of the last committed
transaction. We can use the Versant Fault Tolerant Server, which is a synchronous
replicator, to maintain hot standby databases. The contents of one database can be
mirrored to another local or remote database to form a so-called replica pair. When
one database becomes unavailable, Versant will continue to use the remaining one.
When the crashed database returns to an operational state, Versant will automat-
ically resynchronize the two databases. There are some limitations to synchronous
replication. Each database can only have a single replica. Cursor queries and event
notification only work on a single database and are therefore not transferred to the
standby database. We cannot set and undo savepoints or use nested transactions
when we use synchronous replication. Schema changes have to be performed while
both databases are available. However, if we can live with these limitations, syn-
chronous replication is excellent for maintaining a hot standby database. Alterna-

7.1. INTRODUCTION 231

tively, we can implement asynchronous replication using Versant’s event-notification
mechanisms.

Versant is a powerful, tunable DBMS with all the necessary facilities to run large-
scale production systems. The Versant ODBMS gives DBAs more than enough
capabilities to tune the database server’s behavior - more than many RDBMSs
do. Versant also has extensive distributed database capabilities. Any relational
DBA would need to be retrained in managing objects and methods and many other
product-specific idiosyncrasies. A skilled DBA with experience in managing com-
plex and tunable systems will appreciate the extensive facilities provided by Versant.

Versant has a pure Java interface and extensive Java support. A DBA will be able
to extend the functionality of the Versant Server with user-written methods, which
brings it straight into the firing line with the extendible object/relational database
servers, or so-called universal servers.

For more details we refer to the web site of Versant

http://www.versant.com/

232 CHAPTER 7. VERSANT

Chapter 8

FastObjects

8.1 Introduction

FastObjects from Poet is a object database technology for Java and C++ applica-
tions. FastObject is available for Windows NT 4.0, Windows 2000, Linux, HP-UX,
and Solaris development enviroments. There are three different products:

1) FastObjects j2 for embedded real-time Java applications

2) FastObjects e7 for embedded C++ and Java applications

3) FastObjects t7 the multi-user database optimized for C++ and Java.

FastObjects is purely object-oriented. It maps objects that we created in Java or
C++ onto objects in the database. Our object network is simply mapped 1:1 from
main memory to the database. This kind of direct mapping enables the database
schema to be generated automatically. When we implement a class in our program-
ming language, we are therefore also defining the database schema for this class at
the same time. The database knows what an object is and also recognizes the rela-
tionships (references, pointers) between objects. These are simply stored together
with the objects themselves, and are therefore reproduced without doing anything
next time the data is read out of the database.

For more details we refer to the web site of FastObjects:

http://www.fastobjects.com/

233

234 CHAPTER 8. FASTOBJECTS

Chapter 9

Data Mining

9.1 Introduction

There are several definitions for data mining (sometimes called data or knowledge
discovery). For example ”search for valuable information in large volumes of data”
or ”exploration and analysis, by automatic or semi-automatic means, of large quan-
tities of data in order to discover meaningful patterns and rules. Thus, generally,
data mining is the process of analyzing data from different perspectives and summa-
rizing it into useful information - information that can be used to increase revenue,
cuts costs, or both. For example, data mining makes it possible to analyze routine
business transactions and glean a significant amount of information about individ-
uals buying habits and preferences. Data mining is the search for relationships and
global patterns that exist in large databases, but are hidden among the vast amount
of data, such as relationship between patient data and their medical diagnosis.

Data mining is not data warehousing. In data warehousing we create stores of
informational data – data that is extracted from the operational data and then
transformed for end-user decision making. For example, a data warehousing tool
might copy all the sales data from the operational database, perform calculations
to summarize the data, and write the summarized data to a separate database from
the operational data. End-users can query the separate database (the warehouse)
without impacting the operational databases.

Data mining software is one of a number of analytical tools for analyzing data. It
allows users to analyze data from many different dimensions or angles, categorize it,
and summarize the relationships identified. Technically, data mining is the process of
finding correlations or patterns among dozens of fields in large relational databases.

235

236 CHAPTER 9. DATA MINING

Many models of reality are probabilistic. For example, not everyone orders crips
with their beer, but a certain percentage does. Inferring such probabilistic knowl-
edge from databases is one of the major challenges for data mining. An example
of this class is: ”what is the probability that a given policy-holder will file a claim
with the insurance company in the next year”. A risk-profile is then a description
of a group of insurants that have the same probability for filing a claim.

Although data mining is a relatively new term, the technology is not. Companies
have used powerful computers to sift through volumes of supermarket scanner data
and analyze market research reports for years. However, continuous innovations in
computer processing power, disk storage, and statistical software are dramatically
increasing the accuracy of analysis while driving down the cost.

For example, one Midwest grocery chain used the data mining capacity of Oracle
software to analyze local buying patterns. They discovered that when men bought
diapers on Thursdays and Saturdays, they also tended to buy beer. Further analysis
showed that these shoppers typically did their weekly grocery shopping on Satur-
days. On Thursdays, however, they only bought a few items. The retailer concluded
that they purchased the beer to have it available for the upcoming weekend. The
grocery chain could use this newly discovered information in various ways to increase
revenue. For example, they could move the beer display closer to the diaper display.
And, they could make sure beer and diapers were sold at full price on Thursdays.

Data are any facts, numbers, or text that can be processed by a computer. To-
day, organizations are accumulating vast and growing amounts of data in different
formats and different databases. This includes:
a) operational or transactional data such as, sales, cost, inventory, payroll, and
accounting
b) nonoperational data, such as industry sales, forecast data, and macro economic
data
meta data - data about the data itself, such as logical database design or data dic-
tionary definitions

The patterns, associations, or relationships among all this data can provide infor-
mation. For example, analysis of retail point of sale transaction data can yield
information on which products are selling and when.

Information can be converted into knowledge about historical patterns and future
trends. For example, summary information on retail supermarket sales can be an-
alyzed in light of promotional efforts to provide knowledge of consumer buying
behavior. Thus, a manufacturer or retailer could determine which items are most
susceptible to promotional efforts.

Dramatic advances in data capture, processing power, data transmission, and stor-
age capabilities are enabling organizations to integrate their various databases into

9.1. INTRODUCTION 237

data warehouses. Data warehousing is defined as a process of centralized data man-
agement and retrieval. Data warehousing, like data mining, is a relatively new term
although the concept itself has been around for years. Data warehousing repre-
sents an ideal vision of maintaining a central repository of all organizational data.
Centralization of data is needed to maximize user access and analysis. Dramatic
technological advances are making this vision a reality for many companies. And,
equally dramatic advances in data analysis software are allowing users to access this
data freely. The data analysis software is what supports data mining.

Data mining is primarily used today by companies with a strong consumer focus
- retail, financial, communication, and marketing organizations. It enables these
companies to determine relationships among internal factors such as price, product
positioning, or staff skills, and external factors such as economic indicators, compe-
tition, and customer demographics. And, it enables them to determine the impact
on sales, customer satisfaction, and corporate profits. Finally, it enables them to
drill down into summary information to view detail transactional data.

With data mining, a retailer could use point-of-sale records of customer purchases
to send targeted promotions based on an individual’s purchase history. By mining
demographic data from comment or warranty cards, the retailer could develop prod-
ucts and promotions to appeal to specific customer segments.

For example, Blockbuster Entertainment mines its video rental history database to
recommend rentals to individual customers. American Express can suggest products
to its cardholders based on analysis of their monthly expenditures.

WalMart is pioneering massive data mining to transform its supplier relationships.
WalMart captures point-of-sale transactions from over 2,900 stores in 6 countries
and continuously transmits this data to its massive 7.5 terabyte Teradata data ware-
house. WalMart allows more than 3,500 suppliers, to access data on their products
and perform data analyses. These suppliers use this data to identify customer buy-
ing patterns at the store display level. They use this information to manage local
store inventory and identify new merchandising opportunities. In 1995, WalMart
computers processed over 1 million complex data queries.

The National Basketball Association (NBA) is exploring a data mining application
that can be used in conjunction with image recordings of basketball games. The
Advanced Scout software analyzes the movements of players to help coaches orches-
trate plays and strategies.

While large-scale information technology has been evolving separate transaction
and analytical systems, data mining provides the link between the two. Data min-
ing software analyzes relationships and patterns in stored transaction data based on
open-ended user queries. Several types of analytical software are available: statisti-
cal, machine learning, neural networks, genetic algorithm and genetic programming.

238 CHAPTER 9. DATA MINING

Generally, any of four types of relationships are sought:

a) Classes: Stored data is used to locate data in predetermined groups. For ex-
ample, a restaurant chain could mine customer purchase data to determine when
customers visit and what they typically order. This information could be used to
increase traffic by having daily specials.

b) Clusters: Data items are grouped according to logical relationships or consumer
preferences. For example, data can be mined to identify market segments or con-
sumer affinities.

c) Associations: Data can be mined to identify associations. The beer-diaper ex-
ample is an example of associative mining.

d) Sequential patterns: Data is mined to anticipate behavior patterns and trends.
For example, an outdoor equipment retailer could predict the likelihood of a back-
pack being purchased based on a consumer’s purchase of sleeping bags and hiking
shoes.

Data mining consists of five major elements:

1. Extract, transform, and load transaction data onto the data warehouse system.

2. Store and manage the data in a multidimensional database system.

3. Provide data access to business analysts and information technology professionals.

4. Analyze the data by application software.

5. Present the data in a useful format, such as a graph or table.

6. Different levels of analysis are available:

9.1. INTRODUCTION 239

Artificial neural networks: Non-linear predictive models that learn through training
and resemble biological neural networks in structure.

Genetic algorithms, Genetic programming and Genetic expression programing: Op-
timization techniques that use processes such as genetic combination, mutation, and
natural selection in a design based on the concepts of natural evolution.

Decision trees: Tree-shaped structures that represent sets of decisions. These deci-
sions generate rules for the classification of a dataset. Specific decision tree methods
include Classification and Regression Trees (CART) and Chi Square Automatic In-
teraction Detection (CHAID). CART and CHAID are decision tree techniques used
for classification of a dataset. They provide a set of rules that we can apply to a new
(unclassified) dataset to predict which records will have a given outcome. CART
segments a dataset by creating 2-way splits while CHAID segments using chi square
tests to create multi-way splits. CART typically requires less data preparation than
CHAID.

Nearest neighbor method: A technique that classifies each record in a dataset based
on a combination of the classes of the k record(s) most similar to it in a historical
dataset. Sometimes called the k-nearest neighbor technique.

Rule induction: The extraction of useful if-then rules from data based on statistical
significance.

Data visualization: The visual interpretation of complex relationships in multidi-
mensional data. Graphics tools are used to illustrate data relationships.

240 CHAPTER 9. DATA MINING

For example newer SQL implementations include beside the aggregate functions

AVG average

COUNT count how many items

COUNT(DISTINCT) count of the number of different non-null values

MAX maximum value

MIN minimum value

SUM add the values

now also

STD, STDDEV sample standard deviation

VAR, VARP sample variance

For example, given the table data

number value

====== =====

0 0.50

1 0.75

2 0.40

==============

Using the command in mySQL

SELECT avg(value), std(value) FROM data;

we find

avg(value) std(value)

=========== ==========

0.55 0.1472

========================

9.1. INTRODUCTION 241

Today, data mining applications are available on all size systems for mainframe,
client/server, and PC platforms. System prices range from several thousand dollars
for the smallest applications up to 1 million a terabyte for the largest. Enterprise-
wide applications generally range in size from 10 gigabytes to over 11 terabytes.
NCR has the capacity to deliver applications exceeding 100 terabytes. There are
two critical technological drivers:

Size of the database: the more data being processed and maintained, the more pow-
erful the system required.

Query complexity: the more complex the queries and the greater the number of
queries being processed, the more powerful the system required.

Relational database storage and management technology is adequate for many data
mining applications less than 50 gigabytes. However, this infrastructure needs to be
significantly enhanced to support larger applications. Some vendors have added
extensive indexing capabilities to improve query performance. Others use new
hardware architectures such as Massively Parallel Processors to achieve order-of-
magnitude improvements in query time. For example, Massively Parallel Processors
systems from NCR link hundreds of high-speed Pentium processors to achieve per-
formance levels exceeding those of the largest supercomputers.

242 CHAPTER 9. DATA MINING

9.2 Example

Your friend opens a shop where he sells liqueur, cigarettes, milk, mineral water,
cheese, cold meat and coffee. On the first day he had 20 customers. He writes
down in a table what each customer buys and also takes into account whether the
customer is male or female. The table looks like this (the customers are numbered
from 0 to 19)

customer sex liqueur cigarettes milk water cheese meat coffee

======= === ======= ========== ==== ===== ====== ==== ======

0 m yes yes no no no no no

1 f no no yes no yes yes yes

2 f no yes no yes no no yes

3 f yes yes no no no no yes

4 f no yes yes yes no yes yes

5 m yes no no no yes yes yes

6 m yes yes no no yes no no

7 f yes no no no no yes yes

8 f no no yes yes yes no no

9 f yes yes no no no no no

10 f no yes yes yes no no no

11 m no yes yes yes yes yes no

12 f yes no no no no no yes

13 f no yes no no no no yes

14 m yes yes no no yes yes no

15 f yes no no yes no no yes

16 f no yes yes yes yes yes no

17 f no yes yes no no no yes

18 m no yes no no yes yes no

19 m yes no no no yes yes no

======= === ====== ========== ==== ===== ====== ==== =====

Ihr Freund fraegt Sie als den fuehrenden Datenbank Experten um Rat welche
Schlussfolgerung aus der Tablelle gezogen werden kann. Diskutiere.

Your friend asks you, as the leading expert in databases, for advice as to the con-
clusions he can draw from this table. Discuss!

Bibliography

[1] Lockmann David, Teach Yourself Oracle8 Database Development in 21 Days,
SAMS Publishing, Indianapolis, 1997

[2] Tan Kiat Shi, Willi-Hans Steeb and Yorick Hardy, SymbolicC++: An Intro-
duction to Computer Algebra Using Object-Oriented Programming, 2nd edition
Springer-Verlag, London, 2000

243

Index

DISTINCT, 203
TreeMap, 14
notify(), 131
repaint, 120
run, 117
synchronized, 126
wait(), 131

Access operator, 66
ACID, 103
Associative arrays, 16
Atomicity, 103

Bookmark, 74

Cartesian product, 33
Consistency, 103
Cursor, 102

Deadlock, 104
Deadlocking, 109
Dirty read, 104
Durability, 103
Dynamic cursor, 74

Encapsulation, 179
Entity, 3, 84

Foreign key, 62
Foreign keys, 92
Full outer join, 70
Functional dependency, 34

Impedance mismatch, 177
Impedance mismatch problem, 178
Inner join, 68
Isolation, 103

Join, 66

Leaves, 31

Lock, 108

Multitasking, 117
Multithreading, 117

Normalization, 88

Outer join, 69
Owners, 92

Parentless child, 92
Phantom read, 104
Primary key, 38, 62
Priority, 123
Private member functions, 192
Protected member functions, 192
Public member functions, 192

Read locks, 108
Referential integrity, 38, 62, 66, 92
Result set, 102
Root, 31
Row lock, 108

Savepoints, 102
Serializability, 103
SQL, 35
Static cursors, 74
Stored procedure, 71
Subquery clause, 44
Synchronization problem, 131

Table lock, 108
Thread, 117
Transaction, 101
Transitive dependency, 90
Transitively, 90

View, 60

Write locks, 108
244

