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Chapter 1

Numerical methods for
initial-value problems

The basic idea behind solving an initial-value problem (IVP) such as

y0 = f (x; y) y (x0) = y0 (1.1)

numerically is to discretize the interval into nodes, usually equispaced; to replace

the ordinary di¤erential equation (ODE) with a di¤erence equation; and to solve

this di¤erence equation at each node. Naturally, we require that the di¤erence

equation is a good approximation to the ODE. The quality of a such a numer-

ical method is determined by approximation error, stability and computational

e¢ ciency, with accuracy and stability always taking precedence over e¢ ciency.

One of the most widely-used methods is the Runge-Kutta method, which is the

subject of these notes.
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Chapter 2

The Taylor method

Consider the Taylor method of order z for solving an IVP:

y0 = �

y (xi+1) � y (xi) + h
�
y0 (xi; y (xi)) +

h

2
y00 (xi; y (xi)) + : : :+

hz�1

z!
y(z) (xi; y (xi))

�
Here, y0 is the initial value of y(x), the interval of integration has been discretized

with the nodes denoted by xi, and the node separation is h. The quantity in the

square brackets is simply a truncated Taylor series, the residual term of which

is O(hz+1), which is the local error of the method.

Note that

y0 = f

y00 =
df

dx
= fx + ffy:

Furthermore, y000 will require evaluation of fxx; fxy and fyy; and, in general, higher

derivatives of y will require evaluation of higher partial derivatives of f . This

implies considerable computational complexity, particularly for high-order im-

plementations of Taylor�s method.
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Chapter 3

Runge-Kutta methods

Runge-Kutta (RK) methods were developed in the late 1800s and early 1900s by

Runge, Heun and Kutta. They came into their own in the 1960s after signi�cant

work by Butcher, and since then have grown into probably the most widely-used

numerical methods for solving IVPs. In this section, we will provide a general

de�nition of RK methods, and give a few examples of types of RK methods.

3.1 General de�nition

The most general de�nition of a Runge-Kutta method is

kp = f

�
xi + cph;wi + h

mP
q=1

apqkq

�
p = 1; 2; :::;m

wi+1 = wi + h
mP
p=1

bpkp

(3.1)

Such a method is said to have m stages (the k�s). We note that if apq = 0 for all

p 6 q; then the method is said to be explicit ; otherwise, it is known as an implicit
RK method. The number of stages is related to the order of the method. The

symbol w is used here and throughout to indicate the approximate numerical

solution, whereas the symbol y will denote the true solution.

As an example, consider the case with m = 2 :

k1 = f (xi + c1h;wi + ha11k1 + ha12k2)

k2 = f (xi + c2h;wi + ha21k1 + ha22k2)

wi+1 = wi + h (b1k1 + b2k2) :

3



3. Runge-Kutta methods 4

If a11 = a12 = a22 = 0; we have

k1 = f (xi + c1h;wi)

k2 = f (xi + c2h;wi + ha21k1)

wi+1 = wi + h (b1k1 + b2k2) :

which is an explicit method. Very often in explicit methods we also have c1 = 0;

so that k1 = f (xi; wi) :

The di¤erence between the two methods is clear: in the explicit method, we

can evaluate the stages sequentially, whereas for the implicit method the stages

are determined by solving a nonlinear system. Explicit methods are particularly

easy to implement computationally, whereas implicit methods possess desirable

stability properties that are absent in explicit methods.

It is clear that RK methods involve only evaluations of f (x; y) ; and not of

partial derivatives of f:

3.2 Order of Runge-Kutta methods

We say that an RK method is of order z if its global error is O (hz) : An RK

method of order z has a local error of order z + 1. The concepts of local and

global error will be de�ned later in the section on error propagation in RK

methods. There is a relationship between the number of stages in a method and

its order; for current purposes it is su¢ cient to present the so-called Butcher

barriers regarding the order of explicit RK methods:

Stages 2 3 4 5 6 m 6 7 8 6 m 6 9 10 6 m
Best global error O(h2) O(h3) O(h4) O(hm�1) O(hm�2) O(hm�3)

Furthermore, it is known that for any positive integer z; an explicit RK

method exists with order z and m stages, where

m =

(
3z2�10z+24

8
; z even

3z2�4z+9
8

; z odd

Do not misunderstand the information presented here - the table shows the best

order that can be attained for a given number of stages, whereas the formula



3. Runge-Kutta methods 5

gives the number of stages in a method of given order. Additionally, the number

of stages given by the formula is not optimal; there may exist a method of the

given order with fewer stages, but certainly a method of order z and m stages

(as given by the formula) is guaranteed to exist. For example, the table suggests

that a method of order six must have at least seven stages (although an order six

method with exactly seven stages may not actually exist), whereas the formula

guarantees the existence of a method of order six with exactly nine stages. In

fact, there does exist an order six method with eight stages. As regards implicit

methods, we often �nd that the order is higher than the number of stages.

More detail regarding order will be given in the later section on the order

conditions.

3.3 Butcher tableaux

Any RK method can be represented in a tabular format, known as a Butcher

tableau. The general method has the tableau

c1 a11 a12 � � � a1m

c2 a21 a22
...

...
...

. . .
...

cm am;1 am;2 � � � am;m

b1 b2 � � � bm

(3.2)

The left column contains the c�s for each stage, the right part contains the

a�s for each stage, and the b�s are shown in the last line. Note that sometimes

when indicating an explicit method that has c1 = 0; the stage k1 is not explicitly

shown in the tableau, since it always has the Euler form. Some well-known RK

methods are shown in the following tableaux:

1 1
1
2

1
2

(3.3)

1
2

1
2

3
4

0 3
4

2
9

3
9

4
9
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The �rst of these is a two-stage method (2nd order), and the second a three-stage

method (3rd order). Both are explicit with c1 = 0: An example of an implicit

method is the Kuntzmann-Butcher method

1
2
�

p
15
10

5
36

8
36
�

p
15
15

5
36
�

p
15
30

1
2

5
36
+

p
15
24

8
36

5
36
�

p
15
24

1
2
+

p
15
10

5
36
+

p
15
30

8
36
+

p
15
15

5
36

5
18

8
18

5
18

which has three stages.

3.4 Embedded methods

An interesting class of RK methods are the embedded methods. One of the most

famous is the Runge-Kutta-Fehlberg method, with tableau

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

�7200
2197

7296
2197

1 439
216

�8 3680
513

� 845
4104

1
2
� 8
27

2 �3544
2565

1859
4104

�11
40

25
216

0 1408
2565

2197
4104

�1
5

0

16
135

0 6656
12825

28561
56430

� 9
50

2
55

(3.4)

The �rst row of b�s is a fourth-order method, while the second row of b�s is a �fth-

order method. In other words, a �fth-order method is embedded in the stages

that are used to give the fourth-order method. This simply means that two

solutions can be computed without the need to evaluate any additional stages,

which has positive implications regarding computational e¢ ciency. We will see

later that certain error control algorithms require the evaluation of two methods

of di¤erent order, and so embedded methods are potentially very useful.

Although the RKF45 method above is explicit, embedded methods can also

be implicit.
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3.5 Re�ected methods

A re�ected RK method allows wi to be determined, given (xi+1; wi+1) : In other

words, a re�ected method integrates in the negative x-direction - �backwards�,

so to speak.

Given any RK method (3.2), the associated re�ected method has the tableau

c1 �
mP
i=1

bi a11 � b1 a12 � b2 � � � a1m � bm

c2 �
mP
i=1

bi a21 � b1 a22 � b2
...

...
...

. . .
...

cm �
mP
i=1

bi am;1 � b1 am;2 � b2 � � � am;m � bm

�b1 �b2 � � � �bm

(3.5)

For such a method we have

wi = wi+1 + h
mX
p=1

(�bp) kp

= wi+1 � h
mX
p=1

bpkp

This can be rearranged to give

wi+1 = wi + h
mX
p=1

bpkp

which has the tableau

�c1 +
mP
i=1

bi �a11 + b1 �a12 + b2 � � � �a1m + bm

�c2 +
mP
i=1

bi �a21 + b1 �a22 + b2
...

...
...

. . .
...

�cm +
mP
i=1

bi �am;1 + b1 �am;2 + b2 � � � �am;m + bm

b1 b2 � � � bm

(3.6)

which is just the re�ected method with all signs reversed. Clearly, this method

is, in general, not the same as the original method (3.2). To regain the original
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method, we must apply the re�ection algorithm (3.5) to the re�ected method

itself. The method (3.6) is the positive x-direction version of (3.5).

As an example, consider the method (3.3), which we present here with all

coe¢ cients present:
0 0 0

1 1 0
1
2

1
2

The re�ected form is
�1 �1

2
�1
2

0 1
2
�1
2

�1
2
�1
2

and the �forward�form is
1 1

2
1
2

0 �1
2

1
2

1
2

1
2

This is an implicit method; the question of whether or not it is a second-order

method will be discussed in a later section.



Chapter 4

Construction of Runge-Kutta
methods using Taylor series

Constructing an RK method requires determining the coe¢ cients fa; b; cg in
(3.2). This is done by expanding the RK solution in a Taylor series, and then

demanding equivalence with the Taylor method up to some prescribed order.

Equating coe¢ cients of the various terms in the two series yields a set of nonlinear

equations - known as the order conditions - that must be solved to yield the

coe¢ cients.

4.1 The explicit second-order method

We illustrate the process by means of the explicit second-order method, with

w0 = y0;

k1 = hf(x0; y0)

k2 = hf(x0 + c2h; y0 + a21k1)

w1 = y0 + b1k1 + b2k2

9>=>; (4.1)

We note that the term k1 represents the Euler approximation. The term b2k2
may thus be regarded as an attempt to improve this approximation. The four

unknowns b1; b2; c2 and a21 are obtained by requiring that (4.1) agrees with a

9



4. Construction of Runge-Kutta methods using Taylor series 10

Taylor expansion of second order:

w1 � y(x1) = y(x0 + h)

= y(x0) + hy
0 (x0) +

1

2!
h2y00 (x0) + : : :

= y(x0) + hf(x0; y0) +
1

2
h2 [fx + fyf ](x0;y0) + : : : (4.2)

where we have used

y00 =
df (x; y)

dx
=
@f

@x
+
@f

@y

dy

dx
= fx + fyf:

Equation (4.1) is also expanded to second order:

w1 = y0 + b1hf(x0; y0) + b2hf(x0 + c2h; y0 + a21k1)

= y0 + b1hf(x0; y0) + b2h [f(x0; y0 + a21k1) + c2hfx(x0; y0 + a21k1) + : : :]

= y0 + b1hf(x0; y0)

+ b2h [ff(x0; y0) + a21k1fy(x0; y0) + : : :g+ c2h ffx(x0; y0) + : : :g]
= y0 + (b1 + b2)hf(x0; y0) + h

2 [a21b2fyf + c2b2fx](x0;y0) + : : : (4.3)

Equating (4.2) and (4.3), term for term, yields the order conditions

b1 + b2 = 1 c2b2 =
1
2

a21b2 =
1
2
:

The last two of these order conditions give

c2 = a21:

Hence, there are e¤ectively only two order conditions

b1 + b2 = 1 c2b2 =
1
2

and the RK method has the tableau

c2 c2

1� 1
2c2

1
2c2

which represents a one-parameter family of methods. Choosing c2 = 1 yields

(3.3). Of course, any value of c2 is allowed, but we generally choose the values

of any free parameters so that the b�s are all positive.
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4.2 The re�ected second-order method

The forward version of the re�ected second-order method studied earlier can be

written as

k1 = f (xi+1; wi+1)

k2 = f (xi+1 � h;wi+1 � hk1)

wi+1 = wi +
h

2
(k1 + k2)

as shown in the Supplementary Notes.

Using the expression for wi+1; we have

k1 = f

�
xi + h;wi + h

�
k1
2
+
k2
2

��
k2 = f

�
xi; wi + h

�
�k1
2
+
k2
2

��
which gives the implicit tableau

1 1
2

1
2

0 �1
2

1
2

1
2

1
2

4.3 The classical explicit fourth-order method

The classical explicit fourth-order method has the tableau

c2 c2

c3 0 c3

c4 0 0 c4

b1 b2 b3 b4

(4.4)

Note the very speci�c structure of the tableau. The derivation of the order con-

ditions, using Taylor series equivalence, is shown in the Supplementary Notes.

It is clear that the derivation is complicated, and one appreciates that for a

general RK method, deriving the order conditions through Taylor series equiva-

lence, particularly for high order methods, is destined to be both complex and

cumbersome.



Chapter 5

Construction of Runge-Kutta
methods using rooted trees

Determining the order conditions by direct comparison of Taylor series is destined

to be an arduous task, particularly for methods of high order. One expects,

however, that the clearly de�ned structure of the RK methods should result in

a similarly structured Taylor expansion, so that some underlying pattern should

exist. This pattern has been identi�ed, and has led to the use of rooted trees

as a means of determining the order conditions, without explicitly forming the

relevant Taylor series.

5.1 Rooted trees for Runge-Kutta methods

A rooted tree of order z is a graph with z vertices connected in a certain way.

In such a graph, the lines joining pairs of vertices are known as edges. To draw

such a rooted tree for an RK method, we follow a simple set of rules:

1. One vertex is placed at the lowest point in the graph. This vertex is known

as the root.

2. The remaining z � 1 vertices are drawn above the root.

3. These vertices are connected to each other and to the root by means of

edges, such that no edges cross, only one edge joins any pair of vertices,

there are no loops (closed portions) in the graph, and all edges are drawn

in a �generally upward�direction (not horizontal or downwards).

12



5. Construction of Runge-Kutta methods using rooted trees 13

4. The resulting graph is fully connected (any vertex can be reached from any

other vertex by tracing a path along the edges).

5. All possible combinations of such fully connected graphs must be drawn.

The higher the value of z, the more such graphs exist. All possible rooted

trees up to order four are shown in the �gure below. The �generally upward�

character of these graphs is evident.

trees

1:pdf

1 2 3

4

3

1 2 3 6

444

4 8 12 24

Order

γ

Order

γ

Root

Root

6. The next task is to label the vertices. Label the root i. Then label all

other vertices fj; k; l; : : :g : Each vertex must have a unique label.

7. Now label each edge apq; where p and q are the labels of the vertices at

each end of the edge, with p being the vertex closest to the root. Note that

p; q 2 fi; j; k; l; : : :g :

8. Form the product

�a � bi
Y

all edges

apq:

9. Now identify those vertices, other than the root, that only have one edge

attached. These vertices are called leaves. If a leaf is at the end of the edge

apq; replace apq in the above product with cp; to form

�c � bi
Y

all �internal�
edges

apq
Y

all leaves

cp:

These products will form one side of the order conditions.
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10. We now assign an integer to each vertex. Count the number of vertices

that can be reached from a particular vertex v, by tracing upwards from v.

The integer assigned, nv, is this number plus one. The �generally upward�

depiction of the trees is vitally important for this step. Obviously, the

integer assigned to the root vertex will be z.

11. Determine

 =
Y

vertices

nv:

12. The order conditions are now given byX
fi;j;k;l;:::g

�a =
1


(5.1)

X
fi;j;k;l;:::g

�c =
1


(5.2)

where each element of fi; j; k; l; : : :g has the values f1; 2; : : : ;mg ; where m
is the number of stages in the method. Note that each graph will yield two

order conditions.

5.2 The explicit second-order method

For this method we must �nd the order conditions for rooted trees of order one

and two only. Hence, X
bi = 1X

biaij =
1

2X
bici =

1

2

with i = f1; 2g ; j = f1; 2g : These give

b1 + b2 = 1

b1 (a11 + a12) + b2 (a21 + a22) =
1

2

b1c1 + b2c2 =
1

2
:
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However, form the structure imposed on the method, we have a11 = a12 = a22 =

c1 = 0; and so

b1 + b2 = 1

b2a21 =
1

2

b2c2 =
1

2

exactly as obtained by equivalence of Taylor series.

5.3 The explicit third-order method

The explicit third-order method

c2 a21

c3 a31 a32

b1 b2 b3

has the order conditionsP
bi = 1

P
biaij =

1
2

P
bici =

1
2P

biaijaik =
1
3

P
bic

2
i =

1
3P

biaijajk =
1
6

P
biaijcj =

1
6

with i = f1; 2; 3g ; j = f1; 2; 3g ; k = f1; 2; 3g : These arise from the rooted trees
of orders one, two and three.

The explicit third-order method has a11 = a12 = a13 = a22 = a23 = a33 =

c1 = 0; and so

b1 + b2 + b3 = 1

b2c2 + b3c3 =
1

2

b2c
2
2 + b3c

2
3 =

1

3
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b2a21 + b3 (a31 + a32) =
1

2

b2a21a21 + b3(a31a31 + a31a32 + a32a31 + a32a32)| {z }
(a31+a32)

2

=
1

3

b3a32c2 =
1

6

b3a32a21 =
1

6

From the last two of these conditions, we have

c2 = a21:

From the second and the fourth equations, we have

c3 = a31 + a32

and so the third and �fth equations are consistent.

All this gives the order conditions for the explicit third-order method as

b1 + b2 + b3 = 1 b2c2 + b3c3 =
1

2

b2c
2
2 + b3c

2
3 =

1

3

b3a32c2 =
1

6

c2 = a21

c3 = a31 + a32:

Note that the c�s are the sums of the a�s on the corresponding rows of the tableau.

This is, in fact, a general result and is summarized by

cp =
mX
q=1

apq p = 1; 2; : : : ;m: (5.3)

These relationships are entirely consistent with the order conditions derived from

the rooted trees. Usually, we give the order conditions as (5.2) and (5.3). We

usually omit (5.1) because they are implied by (5.2) and (5.3). The conditions

(5.3) also hold for implicit methods.
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5.4 The explicit fourth-order method

The explicit fourth-order method

c2 a21

c3 a31 a32

c4 a41 a42 a43

b1 b2 b3 b4

has the order conditions (from the rooted trees of orders one to four)

b1 + b2 + b3 + b4 = 1 b3a32c2 + b4a42c2 + b4a43c3 =
1
6

b2c2 + b3c3 + b4c4 =
1
2

b3a32c2c3 + b4a42c2c4 + b4a43c3c4 =
1
8

b2c
2
2 + b3c

2
3 + b4c

2
4 =

1
3

b3a32c
2
2 + b4a42c

2
2 + b4a43c

2
3 =

1
12

b2c
3
2 + b3c

3
3 + b4c

3
4 =

1
4

b4a32a43c2 =
1
24

together with, from (5.3),
4X
q=1

apq = cp p = 2; 3; 4 (5.4)

which gives

c2 = a21

c3 = a31 + a32

c4 = a41 + a42 + a43:

The order conditions for the explicit fourth-order method are given in detail in

the Supplementary Notes.

It is a simple matter to determine the order conditions for the classic fourth-

order method, using the conditions above. Moreover, we see from (4.4) that the

structure of the method re�ects the conditions (5.4).

5.5 The re�ected second-order method

We now consider the order of the method

1 1
2

1
2

0 �1
2

1
2

1
2

1
2

(5.5)
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which is the �forward�form of the re�ection of the explicit second-order method.

The �rst- and second-order conditions for the implicit method

c1 a11 a12

c2 a21 a22

b1 b2

are

b1 + b2 = 1

b1c1 + b2c2 =
1

2

c1 = a11 + a12

c2 = a21 + a22

and clearly the coe¢ cients in (5.5) satisfy these conditions. Hence, (5.5) is at

least second order. The relevant third-order conditions are

b1c
2
1 + b2c

2
2 =

1

3

b1a11c1 + b1a12c2 + b2a21c1 + b2a22c2 =
1

6

but these are not satis�ed by the coe¢ cients in (5.5). Hence, (5.5) is a second-

order implicit method. We have presented this example because it should not be

assumed that an implicit method with m stages is automatically an mth-order

method. Some implicit methods have order greater than their number of stages,

although that is not the case in this particular example.



Chapter 6

Consistency, convergence and
stability

Consistency refers to the ability of the method to faithfully reproduce the original

di¤erential equation, in the limit h! 0: Convergence refers to the fact that the

numerical solution tends to the exact solution, as h! 0: A stable method is one

for which the numerical solution does not diverge �dramatically�from the exact

solution under iteration.

6.1 Consistency

We demonstrate consistency for the general RK method (3.1), which we repro-

duce here for convenience.

kp = f

�
xi + cph;wi + h

mP
q=1

apqkq

�
p = 1; 2; :::;m

wi+1 = wi + h
mP
p=1

bpkp

Manipulating the last line of this de�nition gives

wi+1 � wi
h

=
mX
p=1

bpkp: (6.1)

Taking the limit h! 0 gives

lim
h!0

kp = f (xi; yi)

lim
h!0

wi+1 � wi
h

= lim
h!0

yi+1 � yi +O (hz)
h

= y0 (xi)

19
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where we have assumed that a global error of O (hz) exists in wi and wi+1: Hence,

from (6.1) we have

y0 (xi) =
mX
p=1

bpf (xi; yi) = f (xi; yi)
mX
p=1

bp = f (xi; yi)

and so the original di¤erential equation is obtained.

6.2 Convergence

An RK method of order z has a global error O (hz) : Obviously, this error must

tend to zero as h ! 0; implying convergence. It is worth noting that all RK

methods have a global error O (hz) for z at least equal to one, and so all RK

methods are convergent. We will study the global error in more detail in a later

section.

6.3 Stability

Say the method has an error of the form

�i = [p (h)]
i : (6.2)

where i indicates the iteration count, and p (h) is a polynomial in h. The presence

of such a term indicates potential instability. If

jp (h)ji !1

under iteration (i!1), then, no matter how small h is made, the error grows
without bound. Nevertheless, we often �nd that there exists a critical value of h,

such that for stepsizes on one side of this critical value, jp (h)ji !1 as i!1;
but for stepsizes on the other side of the critical value, jp (h)ji ! 0 as i ! 1;
which corresponds to stable behaviour. In a later section, we will consider RK

methods applied to sti¤ di¤erential equations, and instability/stability in the

sense described here will be demonstrated. Su¢ ce it to say at this juncture, an

unstable method cannot be convergent.



Chapter 7

Implementation for systems

To solve the d-dimensional system

y0 = f (x;y) y (x0) = y0 x0 6 x 6 L (7.1)

using an RK method, we consider the de�nition of an RK method in vector form

kp = f

�
xi + cph;wi + h

mP
q=1

apqkq

�
p = 1; 2; :::;m

wi+1 = wi + h
mP
p=1

bpkp

wherein each stage kp is a d � 1 vector. Each stage vector contains d entries,
and so there are md entries that must be computed at each step. However, each

stage equation is a vector equation with d components, and so there are md

equations for the md stage vector entries. For an explicit method, the stages

are computed sequentially; for an implicit method, a nonlinear solver such as

Newton�s method would have to be used.

7.1 A two-dimensional system

As an example, consider the solution of

y0 �
"
y01
y02

#
=

"
f1 (x; y1; y2)

f2 (x; y1; y2)

#
� f (x;y)

21
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using the two-stage RK method

c1 a11 a12

c2 a21 a22

b1 b2

We have

k1 = f (xi + c1h;wi + ha11k1 + ha12k2)

k2 = f (xi + c2h;wi + ha21k1 + ha22k2)

or, more explicitly,

k1 =

"
k11

k12

#
=

"
f1 (xi + c1h;wi1 + ha11k11 + ha12k21; wi2 + ha11k12 + ha12k22)

f2 (xi + c1h;wi1 + ha11k11 + ha12k21; wi2 + ha11k12 + ha12k22)

#

k2 =

"
k21

k22

#
=

"
f1 (xi + c2h;wi1 + ha21k11 + ha22k21; wi2 + ha21k12 + ha22k22)

f2 (xi + c2h;wi1 + ha21k11 + ha22k21; wi2 + ha21k12 + ha22k22)

#
which gives four nonlinear equations for the unknowns k11; k12; k21 and k22: Using

Newton�s method to solve the system266664
g1

g2

g3

g4

377775 �
266664
k11 � f1 (xi + c1h;wi1 + ha11k11 + ha12k21; wi2 + ha11k12 + ha12k22)
k12 � f2 (xi + c1h;wi1 + ha11k11 + ha12k21; wi2 + ha11k12 + ha12k22)
k21 � f1 (xi + c2h;wi1 + ha21k11 + ha22k21; wi2 + ha21k12 + ha22k22)
k22 � f2 (xi + c2h;wi1 + ha21k11 + ha22k21; wi2 + ha21k12 + ha22k22)

377775 =
266664
0

0

0

0

377775
involves the Jacobian 266664

@g1
@k11

@g1
@k12

@g1
@k21

@g1
@k22

@g2
@k11

@g2
@k12

@g2
@k21

@g2
@k22

@g3
@k11

@g3
@k12

@g3
@k21

@g3
@k22

@g4
@k11

@g4
@k12

@g4
@k21

@g4
@k22

377775
and, of course, Newton�s method would have to used at each step.

In the explicit case, we have c1 = a11 = a12 = a22 = 0; which gives

k1 =

"
k11

k12

#
=

"
f1 (xi; wi1; wi2)

f2 (xi; wi1; wi2)

#

k2 =

"
k21

k22

#
=

"
f1 (xi + c2h;wi1 + ha21k11; wi2 + ha21k12)

f2 (xi + c2h;wi1 + ha21k11; wi2 + ha21k12)

#
and so the stages can be computed sequentially.



Chapter 8

Error propagation in
Runge-Kutta methods

We now de�ne local and global errors in RK methods formally, and study the

propagation of local error in the implementation of an explicit RK method. We

will also �nd the relationship between local and global error.

In this section, boldface type, as in v, indicates a d� 1 vector, and boldface
type with caret, as incM; denotes a d�d matrix. Also, we will denote an explicit
RK method for solving the d-dimensional system (7.1) by

wi+1 = wi + hF (xi;wi)

where wi denotes the numerical approximation to y (xi) and F (x;y) is a func-

tion associated with the particular RK method. Indeed, F is simply the linear

combination of the stages
mX
p=1

bpkp:

8.1 Local and global errors

We de�ne the global error in a numerical solution at xi+1 by

�i+1 � wi+1 � yi+1;

and the local error at xi+1 by

"i+1 � [yi + hF (xi;yi)]� yi+1: (8.1)

23
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In the above, yi denotes the true solution y (xi) ; and similarly for yi+1: Note

the use of the exact value yi in the bracketed term in (8.1).

8.2 Error propagation in explicit methods

For the sake of generality we will assume an error �0 exists in the initial value,

although in most practical cases �0 = 0: We have

w1 = y0 +�0 + hF (x0;y0 +�0)

) �1 = [ y0 + hF (x0;y0)� y1] +
h bI+ hbFy (x0; �0)i�0

= "1 + b�0�0

where b�0 has been implicitly de�ned. In the above we use the symbol �0
in bFy (x0; �0)�0 simply to denote an appropriate set of constants such thatbFy (x0; �0)�0 is the residual term in the �rst-order Taylor expansion ofF (x0;y0 +�0) :

Moreover, bFy is the Jacobian
bFy =

2664
@F1
@y1

� � � @F1
@yd

...
. . .

...
@Fd
@y1

� � � @Fd
@yd

3775
where fF1; F2; : : : ; Fdg are the components of F: The matrix bI is the identity
matrix.

For �2 we have

w2 = w1 + hF (x1;w1)

) y2 +�2 = [ y1 +�1] + hF (x1;y1 +�1)

= [ y1 +�1] + hF (x1;y1) + hbFy (x1; �1)�1

) �2 = [ y1 + hF (x1;y1)� y2] +
h bI+ hbFy (x1; �1)i�1

= "2 + b�1�1

= "2 + b�1"1 + b�1b�0�0:

It is easy to show that

�3 = "3 + b�2"2 + b�2b�1"1 + b�2b�1b�0�0

�4 = "4 + b�3"3 + b�3b�2"2 + b�3b�2b�1"1 + b�3b�2b�1b�0�0
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and, in general,

�n = "n + b�n�1"n�1 + : : :+ b�n�1b�n�2 � � � b�2b�1"1
+ b�n�1b�n�2 � � � b�2b�1b�0�0

where b�k = bI+ hbFy (xk; �k)
in which, for each k, �k is an appropriate set of constants (as explained above).

If
hbFy (xk; �k) is small then b�k � bI; and so

�n ��0 +
nX
i=1

"i

but this is generally not expected to be the case, particularly if bFy (xk; �k) has
large norm. Furthermore, if the b��s have norm greater than one, then the term

in "1 (or �0 if �0 is nonzero) could make the most signi�cant contribution to

the global error.

If the local errors have the form

"i = �ih
z+1

we have

�n =
�
�n + b�n�1�n�1 + : : :+ b�n�1b�n�2 � � � b�2b�1�1�hz+1
+ b�n�1b�n�2 � � � b�2b�1b�0�0

=

nX
i=1

�ih
z+1 + �0�0

where the �i are appropriate coe¢ cients, comprised of the b��s and the ��s.
Hence, the global error �n is, in a sense, a linear accumulation of these local

errors. Furthermore, we have

�n =

nX
i=1

�ih
z+1 + �0�0

=

 
1

n

nX
i=1

�i

!
(nh)hz + �0�0

= � (L� x0)hz + �0�0 (8.2)
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where � is the vector of the average values of the �i on [x0; xn], and we have

used nh = L� x0: We see that �n is O (hz) if �0 is small.

We included the initial error �0 simply to indicate the fact that, if the b��s
have large magnitude, then this initial error could make a substantial contribu-

tion to the global error. In other words, the contribution of this initial error

does not necessarily tend to zero as we iterate the method. This initial error

could represent roundo¤ error in the initial-value, although a proper treatment

of roundo¤ requires that we replace each local error "i by "i+�i in the foregoing

analysis, where �i is the roundo¤ error incurred at xi.



Chapter 9

Error control

The importance of being able to control the approximation error in the imple-

mentation of any numerical method cannot be overstated. In this section we will

study several techniques for estimating and controlling both local and global

errors in RK methods.

9.1 Error estimation: Local extrapolation

Consider two RK methods of order z and z+1. Let wzi+1 denote the approximate

solution at xi+1 obtained with the order z method, and similarly for wz+1i+1 : Let

the local error at xi+1 in the order z method be denoted by "zi+1 = �
z
i+1h

z+1; and

similarly for "z+1i+1 = �
z+1
i+1h

z+2: Hence, with wzi ; w
z+1
i = yi; we have

wzi+1 � wz+1i+1 = "
z
i+1 � "z+1i+1 = �

z
i+1h

z+1 � �z+1i+1h
z+2

� �zi+1hz+1

if h is su¢ ciently small. This gives

�zi+1 �
wzi+1 � wz+1i+1

hz+1
: (9.1)

27
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9.2 Error estimation: Richardson extrapolation

Here, we use the order z method only. We �nd approximate solutions at xi + h
2

and xi+1; so that

wzi+1 (h)� wzi+1
�
h

2

�
� �zi+1hz+1 � 2�zi+1

�
h

2

�z+1
(9.2)

= �zi+1
�
1� 2�z

�
hz+1

which gives

�zi+1 �
wzi+1 (h)� wzi+1

�
h
2

�
(1� 2�z)hz+1 : (9.3)

A justi�cation for the factor of 2�zi+1 in (9.2) is given in the Supplementary

Notes.

9.3 Local error control

Once we have estimated the local error, we can perform error control. Assume

that we require that the local error at each step must be less than a user-de�ned

tolerance �: Moreover, assume that, using stepsize h, we �nd��"zi+1�� = ���zi+1hz+1�� > �:
In other words, the magnitude of the local error "zi+1 exceeds the desired toler-

ance. We remedy the situation by determining a new stepsize h� from

���zi+1 (h�)z+1�� = � ) h� =

 
����zi+1��
! 1

z+1

(9.4)

and we repeat the RK computation with this new stepsize. This, of course, gives

xi+1 = xi + h
�:

This procedure is then carried out on the next step, and so on. Such form of

error control is known as absolute error control. If the estimated error does not

exceed the tolerance, then no stepsize adjustment is necessary, and we proceed

to the next step.

Often, we introduce a so-called �safety factor��; as in

h� = �

 
����zi+1��
! 1

z+1
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where � < 1; so that the new stepsize is slightly smaller than that given by

(9.4). This is an attempt to cater for the possibility that �zi+1 may have been

underestimated, due to the assumptions made in deriving (9.1) and (9.3). The

choice of the value of � is subjective, although a representative value is 0:8:

Additionally, we generally implement relative local error control, in the sense

that we demand that ��"zi+1����wzi+1�� 6 �R ) ��"zi+1�� 6 �R ��wzi+1�� :
However, if

��wzi+1�� ' 0 we implement absolute error control, by demanding that��"zi+1�� 6 �A:
To cater for both of these cases, we modify (9.4) to give

h� =

 
max

�
�A; �R

��wzi+1��	���zi+1��
! 1

z+1

:

Thus, if
��wzi+1�� ' 0 the error is most likely subjected to the tolerance �A; other-

wise the tolerance is most likely �R
��wzi+1�� : Usually, we use �A = �R:

Note that because this error control algorithm is applied on each step, we

could �nd that over the interval of integration we have stepsizes of varying

lengths. For this reason, it is appropriate to make the replacement

h! hi

where hi � xi+1 � xi in the de�nition of RK methods (3.1).

9.3.1 Propagation of the higher-order solution

There is a very important point that must be discussed. Our methods for de-

termining �zi+1 hinged on the requirement w
z
i ; w

z+1
i = yi: However, we only have

the exact solution at the initial point x0; at all subsequent nodes, the solution is

approximate. How do we meet the requirement wzi ; w
z+1
i = yi?

In the case of local extrapolation, the answer is simple: simply use the higher-

order solution wz+1i as input to generate both wzi+1 (with the order z method),

and wz+1i+1 (with the order z + 1 method). In other words, we are assuming

that wz+1i is accurate enough, relative to wzi ; to be regarded as the exact value,
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an assumption entirely consistent with the assumption made in deriving (9.1).

This means that we determine the higher-order solution at each node, and this

solution is used as input for both methods in computing solutions at the next

node. The question of whether or not the global error that accumulates in the

higher-order solution a¤ects the calculation of �zi+1 in (9.1) is addressed in the

Supplementary Notes.

For Richardson extrapolation, the requirement wzi ; w
z+1
i = yi is not actually

necessary, also shown in the Supplementary Notes.

9.4 Reintegration

Controlling the global error requires a reintegration process. This means that

we estimate the maximum global error in the numerical solution on the entire

interval of integration (obtained using an order z method with stepsize h), impose

the condition

GA (h
�)z 6 �

where GA is the coe¢ cient of the maximum absolute global error, determine a

new stepsize h�; and then repeat the entire calculation using this new stepsize

(hence the term �reintegration�). We assume, for simplicity, that the nodes are

equispaced on the interval of integration.

Estimation of the global error is most easily achieved by obtaining a higher-

order (z+1, for example) solution, using the stepsize h, in addition to the order

z solution. Hence,

GA =
max
i

��wzi � wz+1i

��
hz

:

We have assumed that the global error in the higher-order solution can be ne-

glected, relative to the lower-order solution, in similar fashion to what was done

in the local extrapolation procedure described earlier. For relative global error

control we have

GR =

max
i

���� wzi�w
z+1
i

maxf�A;�Rjwzi jg

����
hz

h� =

�
1

GR

� 1
z

:
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Here, GR is the coe¢ cient of the maximum relative global error, taking into

account the possibility jwzi j ' 0:
Because of the need to obtain three numerical solutions, the reintegration

procedure is generally regarded as ine¢ cient, and local error control is usually

preferred over global error control.

9.4.1 The possibility of bounded global error via local
error control

Of course, controlling the global error may desirable in many applications, and if

e¢ ciency concerns are not important, then reintegration must be used. However,

it is worth investigating the e¤ect on the global error if local error control, via

local extrapolation, is implemented.

Consider the expression obtained previously for the global error at xn

�n = "n + b�n�1"n�1 + : : :+ b�n�1b�n�2 � � � b�2b�1"1
= "n + b�n�1�n�1: (9.5)

We consider the scalar case, and we assume �0 = 0: If we have the exact value

yi at each node, then we have

�i+1 = "i+1

at each node, so that the global error is equal to the local error. If the local error

has been controlled (subject to tolerance �); we have

j�i+1j 6 �

which means that the global error satis�es the tolerance �: However, as discussed

previously, we do not have yi at each node; rather, in the case of local extrap-

olation, where we have a higher-order solution available, and we propagate this
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higher-order solution, we have, from (9.5),

�z
i+1 = "

z
i+1 + b�zi�z+1

i

= "zi+1 +
�
1 + hF zy (�i)

� �
"z+1i + b�z+1i�1 "

z+1
i�1 + : : :+ b�z+1i�1 b�z+1i�2 � � � b�z+11 "z+11

�
= "zi+1 +

iX
j=1

"z+1j +O
�
hz+3

�
.
��"zi+1��+ iX

j=1

�z+2
���z+1j

��hz+2
= �z+1

���zi+1��hz+1 + �z+2 �����z+1 (xi � x0)���hz+1
where �i is an appropriate constant, h is assumed to be the stepsize determined

from (9.4) and we have included the safety factor � explicitly. In the second

last line, we assume that, since
��"zi+1�� 6 � and

��"z+1j

�� � ��"zj �� (the fundamental
assumption in local extrapolation), we must have

��"z+1j

�� 6 �: In the last line, ��z+1
denotes an average value, and we have used the same analysis as in deriving (8.2).

Now, assuming
�����z+1 (xi � x0)���hz+1 < � (see the Supplementary Notes), we have
���z

i+1

�� � �z+1� + �z+2 �����z+1 (xi � x0)���hz+1
6 �z+1� + �z+2�
=
�
�z+1 + �z+2

�
�:

It is easily con�rmed that for � = 0:8; we have(�z+1 + �z+2) < 1 for z > 2: This
means that ���z

i+1

�� < �
for these values of � and z; which suggests that the global error, like the local

error, satis�es the user-de�ned tolerance. In other words, propagation of the

higher-order solution in local error control via local extrapolation, has resulted

in control of the global error, although the signi�cance of the safety factor in

deriving this result should be clear. More importantly, the above result holds

only if the various assumptions made here are true; if they are not, then
���z

i+1

�� is
probably greater than �: For this reason, we say that the global error is possibly

bounded, but this is not guaranteed. We should appreciate that such a bounding

of the global error is a bene�cial by-product of local error control, and is not the

designated objective.
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9.5 Error control in systems

For a system, error control di¤ers only in the calculation of the stepsize. If there

are d components in the numerical solution, then an error coe¢ cient can be

determined for each component, as in

�z;i+1;j �
wzi+1;j � wz+1i+1;j

hz

where j = 1; 2; : : : ; d is the component index. We then determine h� from

h� = min
j

24 max��A; �R ��wzi+1;j��	���zi+1;j��
! 1

z+1

35 :
E¤ectively, we determine a new stepsize for each component of the system, and

choose the smallest. The procedure is similar for global error control via reinte-

gration.
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Sti¤ di¤erential equations

We now study the use the use of RK methods in solving sti¤ di¤erential equa-

tions. The concept of stability, brie�y mentioned in a previous section, is par-

ticularly important in this context.

10.1 De�nition of sti¤ di¤erential equations

Consider the d-dimensional system

y0 = f (x;y) y (x0) = y0 x0 6 x 6 L: (10.1)

If the Jacobian

bfy =
2664

@f1
@y1

� � � @f1
@yd

...
. . .

...
@fd
@y1

� � � @fd
@yd

3775 (10.2)

has at least one eigenvalue in the left half of the complex plane, then the system

is said to be sti¤ .

It must be appreciated that bfy = bfy (x;y (x)) ; so that the degree of sti¤ness
of a system can vary with x:

10.2 First-order approximation of a system

Let � (x) be a solution of (10.1). De�ne

Y � y � �

34
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and consider

y0 = f (x;y) = f (x;� +Y) = f (x;�) +Ybfy (x;�) + : : :
= �0 +Ybfy (x;�) + : : :

) y0 � �0 = Y0 = Ybfy (x;�) + : : :
Also, � is not a function of y; so thatbfy (x;�) = bfY (x;�)�

df

dy
=
df

dY

dY

dy
=
df

dY

�
and we have

Y0 = bfYY (10.3)

as a �rst-order approximation to (10.1).

The solution to (10.3) in scalar form is

Y (x) = Ke�x ) y (x) = Ke�x + � (x)

� = fY (x; �)

K = e��x0 (y0 � �0) :

Note that the �sti¤ness constant�� is a constant in the sense that it is independent

of y. We see that if � < 0 then the term Ke�x is a decreasing function of x, and

if the magnitude of � is large, then this term decreases rapidly towards zero.

10.3 The Dahlquist equation

The Dahlquist problem is

y0 = �y

y (0) = 1; � < 0

and has the solution

y (x) = e�x:

Clearly, this equation has the same form as (10.3), so that we may suppose that

any IVP �subsumes�the Dahlquist equation. The signi�cance of this is that, if

we wish to study the application of an RK method to a sti¤ problem, then it is

su¢ cient to simply consider the application of that RK method to the Dahlquist

equation. This greatly simpli�es the analysis of RK methods applied to sti¤

systems.
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10.4 Instability, stability and stability regions

It is easy to verify that applying Euler�s method to the Dahlquist problem gives

wi = (1 + h�)
i :

If j1 + h�j > 1; then jwij ! 1 as i!1: However, since � < 0; we expect that
jwij should approach zero under iteration. Certainly, if jwij ! 1; we have an
unstable solution. Hence, we must impose the condition

j1 + h�j < 1) h <
2

j�j : (10.4)

If the stepsize satis�es this condition, the solution will be stable and will exhibit

the expected decreasing behaviour; if h violates this condition the numerical

solution will increase without bound, quite the opposite to what is expected. In

other words, we see that the stability of the method depends critically on the

value of h.

Generally, for an explicit RK method applied to the Dahlquist problem, we

have

wi = R (h�)
i

where R is known as the stability function, and is a polynomial in h�: The

stability functions for explicit RK methods of order one to four are

R (h�) =

8>>>><>>>>:
1 + h� 1st order

1 + h�+ (h�)2

2
2nd order

1 + h�+ (h�)2

2
+ (h�)3

6
3rd order

1 + h�+ (h�)2

2
+ (h�)3

6
+ (h�)4

24
4th order

(10.5)

and for stability, we require

jR (h�)j < 1:

This condition de�nes a region in the complex plane, the boundary of which is

the locus of the points that satisfy

R (h�) = ei�:

This equation can be solved for h�; each of these roots is parameterized by

�. For � 2 [0; 2�] ; each root races out a segment(s) of the boundary of the

stability region, and the union of these segments gives the complete boundary

of the stability region. Stability regions corresponding to the stability functions

in (10.5) are shown in the �gure below.
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stability regions
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For stability, we must choose h such that h� lies within the appropriate stability

region, for any and all � that lie in the left half of the complex plane. Recall that

� represents the eigenvalues of the Jacobian (10.2) of the system (10.1), and can

certainly be complex. If none of the eigenvalues lie in the left half of the complex

plane, then the system is not sti¤, or nonsti¤ , and the analysis presented here

does not apply. Indeed, for � in the right half of the complex plane, we expect

that the solution will increase exponentially with x.

10.4.1 Interpretation of R (h�)

We have

wi = [R (h�)]
i

yi = e
�xi = e�ih =

�
e�h
�i

so that the stability function is an approximation to the exponential function.

Indeed, we see in (10.5) that each stability function is a truncated Taylor series

for the exponential function e�h:



10. Sti¤ di¤erential equations 38

10.4.2 Unstable term in the error expression

Let us derive an error expression consistent with (6.2), one that explicitly shows

the unbounded growth of error in an unstable solution. For Euler�s method we

have

R (h�) = 1 + h� � e�h

) R (h�)� E = e�h

where E is an error term. For the global error after i iterations

�i = R
i � eih� =

�
e�h + E

�i � eih�:
Now, �

e�h + E
�i � eih� = eih� �1 + e��hE�i � eih�

� eih�
�
e��hE

�i � eih�
= eih�

��
e��hE

�i � 1�
� Ei

where we have assumed that, because � < 0; ��h is large positive, so that
e��hE � 1: For the error E we have

E = 1 + h�� e�h

= �(h�)
2

2
� (h�)

3

6
� (h�)

4

24
� : : :

and so

�i =

 
�(h�)

2

2
� (h�)

3

6
� (h�)

4

24
� : : :

!i
:

Hence, the global error is polynomial in h and exponential in i, as described in

(6.2). Thus, if h is too large, the error will grow without bound.

10.5 Stepsize selection

How do we �nd a stepsize that guarantees stability? We will describe the process

for the explicit fourth-order method; it is similar for other explicit methods.
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To begin with, consider

R4 (h�) � 1 + h�+
(h�)2

2
+
(h�)3

6
+
(h�)4

24
: (10.6)

Now, say we wish to use the fourth-order method with suitable stepsize h to

�nd an approximate solutionw1 to (10.1) at the node x1 = x0+h: The procedure

for �nding such a stepsize is as follows:

1. Find the eigenvalues of the Jacobian (10.2) at (x0;w0) ; and select only

those that lie in the left half of the complex plane. Call this set f�jg :

2. For each �j; roughly estimate the stepsize as

hj =
2:8

j�jj
:

This amounts to approximating the stability region with a semicircle of

radius 2:8.

3. Determine

jR4 (hj�j)j :

4. For each �j for which

jR4 (hj�j)j > 1

use a numerical solver, such as the Bisection method (see the Supplemen-

tary Notes), to �nd h�j such that��R4 �h�j�j��� = 1:
5. From the set fhjg[

�
h�j
	
; �nd h � min

�
fhjg [

�
h�j
		
: Use this value for

the stepsize to carry out the RK calculation, to generate a stable w1 at

x1 = x0 + h:

In Step 2, the numerator 2:8 is the extent of the boundary of the stability

region for RK4 (see the �gure) along the real axis. For our purposes, we will

refer to this number as the sti¤ness limit for the given RK method. Sti¤ness

limits for the methods in the �gure are given in the table below.

RK1 RK2 RK3 RK4

Sti¤ness limit 2 2 2:5 2:8
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It is clear that the stepsize selection process described here is both local and

predictive. By contrast, stepsize adjustment in local error control is retrodictive.

It is important to ensure that, in the case of local error control via local extrapo-

lation, the higher order method has a larger stability region than the lower order

method. There is no point in using an unstable high order solution to estimate

the error in the low order solution; we have already made the point that unstable

methods are not convergent, so that unstable solutions are probably very inac-

curate - quite the opposite property to what is required in local extrapolation.

10.6 Implicit methods and A-stability

The obvious drawback of using explicit RK methods to solve sti¤ systems is

that, if the system is very sti¤ (eigenvalues with very large magnitude), then

the appropriate stepsizes would be very small. This would mean a very large

number of steps/nodes would be required on the interval of integration, with

adverse consequences for computational e¢ ciency.

An implicit RK method with tableau

c1 a11 a12 � � � a1m

c2 a21 a22
...

...
...

. . .
...

cm am;1 am;2 � � � am;m

b1 b2 � � � bm

has a stability function given by

R (h�) = 1 + h�B(bIm � h�bA)�11m
where

bA =

266664
a11 a12 � � � a1m

a21 a22
...

...
. . .

...

am;1 am;2 � � � am;m

377775 B= [b1 b2 : : : bm] 1m =

266664
1

1
...

1

377775
9>>>>=>>>>;m times

In fact, this expression holds for any RK method, including explicit methods.
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Consider the method
1 1

2
1
2

0 �1
2

1
2

1
2

1
2

encountered previously. For this implicit method, we have

R (h�) =
1

(h�)2

2
� h�+ 1

:

This is an example of a so-called Padé approximation to eh�; and it is known

to have magnitude less than one on the left half of the complex plane. In other

words, this stability function satis�es

jR (h�)j < 1

for all � in the left half of the complex plane, irrespective of the value of h. An RK

method with such a stability function is said to be A-stable. For such methods,

no control of the stepsize is necessary, as far as stability with regard to sti¤

di¤erential equations is concerned. Not all implicit methods are A-stable, but

only implicit methods can be A-stable. There are no A-stable explicit methods.

If an A-stable method is used to solve a sti¤ problem, particularly a very sti¤

problem, it would require fewer nodes, simply because the only restriction on h

that could be present would be that relating to local error control. Consequently,

such a method could very well be more e¢ cient than an explicit method, even

with the extra computational burden of using Netwon�s method at each step.

An example of stability in a two-dimensional system is given in the Supple-

mentary Notes.



Chapter 11

Supplementary Notes

11.1 The re�ected second-order method

Here we construct the re�ected second-order method formally, using the equiv-

alence of the two relevant Taylor series. We have

y (x0) = y (x1 � h) = y (x1)� hy0 (x1) +
h2

2
y00 (x1) + : : :

= y (x1)� h [f ]1 +
h2

2
[fx + ffy]1 + : : : (11.1)

where [f ]1 indicates that f is evaluated at (x1; y (x1)) ; and similarly for [fx + ffy]1 :

Here, we have used

y0 = f ) y00 = fx + ffy:

Rearranging (11.1) gives

y (x1) = y (x0) + h [f ]1 �
h2

2
[fx + ffy]1 + : : : : (11.2)

Assume that forward form of the re�ected method has the form

k1 = f (x1; y (x1))

k2 = f (x1 + h; y (x1) + �hk1)

y (x1) = y (x0) + �k1 + �k2

where ; �; � and � are parameters to be determined. Hence, we have

y (x1) = y (x0) + �f (x1; y (x1)) + �f (x1 + h; y (x1) + �hk1)

= y (x0) + (� + �) [f ]1 + h [�fx + ��ffy]1 + : : : (11.3)

42
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after suitable expansion in a Taylor series.

Equating coe¢ cients in (11.2) and (11.3) gives

� + � = h

� = �h
2

�� = �h
2
:

Choosing � = h
2
gives

� =
h

2
;  = �1; � = �1:

11.2 The classic explicit fourth-order method

The structure of the classical explicit fourth-order RK method is

k1 = hf(x; y)

k2 = hf (x+ c2h; y + c2k1)

k3 = hf (x+ c3h; y + c3k2)

k4 = hf (x+ c4h; y + c4k3)

y (x+ h)� y(x) = b1k1 + b2k2 + b3k3 + b4k4:

We seek values of c2; c3; c4; b1; b2; b3 and b4 such that b1k1 + b2k2 + b3k3 + b4k4
agrees with the Taylor expansion of y (x+ h)�y(x) up to the fourth-order term.
If we de�ne

F1 � fx + ffy
F2 � fxx + 2ffxy + f 2fyy
F3 � fxxx + 3ffxxy + 3f 2fxyy + f 3fyyy

where fx � @f
@x
; fxy � @2f

@x@y
and so on, then by di¤erentiating y0 = f(x; y) we

obtain

y(2) = F1

y(3) = F2 + fyF1

y(4) = F3 + fyF2 + 3F1 (fxy + ffyy) + f
2
yF1
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so that the Taylor expansion is

y (x+ h)� y(x) = hf + h
2

2
F1 +

h3

6
(F2 + fyF1)

+
h4

24
(F3 + fyF2 + 3 (fxy + ffyy)F1)

+
h4

24
f 2yF1 +O(h

5): (11.4)

Expanding the k�s in Taylor series yields

k1 =hf

k2 =h

�
f + c2hF1 +

1

2
c22h

2F2 +
1

6
c32h

3F3 + : : :

�
k3 =h

�
f + c3hF1 +

1

2
h2
�
c23F2 + 2c2c3fyF1

�
+
1

6
h3
�
c33F3 + 3c

2
2c3fyF2 + 6c

2
2c3 (fxy + ffyy)F1

�
+ : : :

�
k4 =h

�
f + c4hF1 +

1

2
h2
�
c24F2 + 2c3c4fyF1

�
+
1

6
h3
�
c34F3 + 3c

2
3c4fyF2 + 6c

2
3c4 (fxy + ffyy)F1

�
+h36c2c3c4f

2
yF1 + : : :

�
and so

y (x+ h)� y(x) = b1k1 + b2k2 + b3k3 + b4k4
= (b1 + b2 + b3 + b4)hf + (b2c2 + b3c3 + b4p)h

2F1

+
1

2

�
b2c

2
2 + b3c

2
3 + b4c

2
4

�
h3F2 +

1

6

�
b2c

3
2 + b3c

3
3 + b4c

3
4

�
h4F3

+ (b3c2c3 + b4c3c4)h
3fyF1 +

1

2

�
b3c2c

2
3 + b4c3c

2
4

�
h4fyF2

+
�
b3c

2
2c3 + b4c

2
3c4
�
h4 (fxy + ffyy)F1

+ b4c2c3c4h
4f 2yF1 +O

�
h5
�
: (11.5)

Comparing (11.4) and (11.5) gives the order conditions

b1 + b2 + b3 + b4 = 1 b3c2c3 + b4c3c4 =
1
6

b2c2 + b3c3 + b4c4 =
1
2

b3c2c
2
3 + b4c3c

2
4 =

1
8

b2c
2
2 + b3c

2
3 + b4c

2
4 =

1
3

b3c
2
2c3 + b4c

2
3c4 =

1
12

b2c
3
2 + b3c

3
3 + b4c

3
4 =

1
4

b4c2c3c4 =
1
24
:
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11.3 Order conditions for the explicit fourth-

order method

The complete set of order conditions for the explicit fourth-order method is

b1 + b2 + b3 + b4 = 1 b3a32c2 + b4a42c2 + b4a43c3 =
1
6

b2c2 + b3c3 + b4c4 =
1
2

b3a32c2c3 + b4a42c2c4 + b4a43c3c4 =
1
8

b2c
2
2 + b3c

2
3 + b4c

2
4 =

1
3

b3a32c
2
2 + b4a42c

2
2 + b4a43c

2
3 =

1
12

b2c
3
2 + b3c

3
3 + b4c

3
4 =

1
4

b4a32a43c2 =
1
24

b2a21 + b3a31 + b3a32 + b4a41 + b4a42 + b4a43 =
1

2

b2a21a21 + b3a31a31 + b3a31a32 + b3a32a31 + b3a32a32

+ b4a41a41 + b4a41a42 + b4a41a43 + b4a42a41 + b4a42a42

+ b4a42a43 + b4a43a41 + b4a43a42 + b4a43a43 =
1

3

b3a32a21 + b4a42a21 + b4a43a31 + b4a43a32 =
1

6

b2a21a21a21 + b3a31a31a31 + b3a31a31a32 + b3a31a32a32

+ b3a32a32a32 + b3a32a32a31 + b3a32a31a31 + b3a31a32a31

+ b3a32a31a32 + b4a41a41a41 + b4a41a41a42 + b4a41a42a41

+ b4a41a42a42 + b4a41a41a43 + b4a41a43a41 + b4a41a43a43

+ b4a41a42a43 + b4a41a43a42 + b4a42a41a41 + b4a42a41a42

+ b4a42a42a41 + b4a42a42a42 + b4a42a41a43 + b4a42a43a41

+ b4a42a43a43 + b4a42a42a43 + b4a42a43a42 + b4a43a41a41

+ b4a43a41a42 + b4a43a42a41 + b4a43a42a42 + b4a43a41a43

+ b4a43a43a41 + b4a43a43a43 + b4a43a42a43 + b4a43a43a42 =
1

4

b3a32a21a31 + b3a32a21a32 + b4a42a21a41

+ b4a42a21a42 + b4a42a21a43 + b4a41a43a31

+ b4a42a43a31 + b4a43a43a31 + b4a43a32a41

+ b4a43a32a42 + b4a43a32a43 =
1

8
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b3a32a21a21 + b4a42a21a21 + b4a43a31a31

+ b4a43a31a32 + b4a43a32a31 + b4a43a32a32 =
1

12

b4a43a32a21 =
1

24

It is easy to show that the conditions

c2 = a21

c3 = a31 + a32

c4 = a41 + a42 + a43

follow from and are consistent with the order conditions above.

11.4 The factor of 2�zi+1 in Richardson extrapo-

lation

We note that, since an RK method of order z is equivalent to a Taylor method

of order z, we will take the local error in the Taylor method as the local error in

the RK method. Hence,

�zi+1h
z+1 =

y(z)
�
�i+1

�
(z + 1)!

hz+1

=
y(z) (xi)

(z + 1)!
hz+1 +

y(z+1) (� i)

(z + 2)!
hz+2

� y(z) (xi)

(z + 1)!
hz+1

if h is small, and where �i+1 and � i are appropriate constants.

Now, wzi+1 (h) is the solution at xi+1 obtained with stepsize h. We have

�i+1 (h) = �
z
i+1h

z+1 +
�
1 + hF zy (�1)

�
�i

� y(z) (xi)

(z + 1)!
hz+1 +�i + hF

z
y (�1)�i

where �1 is an appropriate constant. The solution at xi +
h
2
; denoted wz

i+ 1
2

�
h
2

�
;

has

�i+ 1
2

�
h

2

�
� y(z) (xi)

(z + 1)!

�
h

2

�z+1
+

�
1 +

h

2
F zy (�2)

�
�i



11. Supplementary Notes 47

where �2 is an appropriate constant. If we use w
z
i+ 1

2

�
h
2

�
to compute a solution

at xi+1; which we denote wzi+1
�
h
2

�
; we have

�i+1

�
h

2

�
�
y(z)

�
xi +

h
2

�
(z + 1)!

�
h

2

�z+1
+

�
1 +

h

2
F zy (�3)

�
y(z) (xi)

(z + 1)!

�
h

2

�z+1
+

�
1 +

h

2
F zy (�3)

��
1 +

h

2
F zy (�2)

�
�i

where �3 is an appropriate constant. Expanding the �rst term gives

y(z)
�
xi +

h
2

�
(z + 1)!

�
h

2

�z+1
=
y(z) (xi)

(z + 1)!

�
h

2

�z+1
+
y(z+1) (xi)

(z + 1)!

�
h

2

�z+2
+ : : :

� y(z) (xi)

(z + 1)!

�
h

2

�z+1
for small h. Hence,

�i+1

�
h

2

�
� y

(z) (xi)

(z + 1)!

�
h

2

�z+1
+
y(z) (xi)

(z + 1)!

�
h

2

�z+1
+
y(z) (xi)F

z
y (�3)

(z + 1)!

�
h

2

�z+2
+�i +

h

2
F zy (�3)�i +

h

2
F zy (�2)�i +

h2

4
F zy (�3)F

z
y (�2)�i

� 2�zi+1
�
h

2

�z+1
+�i +

h

2
F zy (�3)�i +

h

2
F zy (�2)�i

and so

�i+1 (h)��i+1

�
h

2

�
� �zi+1hz+1 +�i + hF

z
y (�1)�i

� 2�zi+1
�
h

2

�z+1
��i �

h

2
F zy (�3)�i �

h

2
F zy (�2)�i

= �zi+1h
z+1 � 2�zi+1

�
h

2

�z+1
+

�
F zy (�1)�

F zy (�3)

2
�
F zy (�2)

2

�
h�i: (11.6)

Now, assume

�2 = �1 + �2h

�3 = �1 + �3h

where �2 and �3 are suitable constants. These give

F zy (�2) = F
z
y (�1 + �2h) = F

z
y (�1) + �2hF

z
yy (�1) + : : :

F zy (�3) = F
z
y (�1 + �3h) = F

z
y (�1) + �3hF

z
yy (�1) + : : :
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so that

F zy (�1)�
F zy (�3)

2
�
F zy (�2)

2
=

�
�2F

z
yy (�1) + �3F

z
yy (�1) + : : :

2

�
h

which means that the third term in (11.6) is O (hz+2) and so is neglected. Hence,

�i+1 (h)��i+1

�
h

2

�
� �zi+1hz+1 � 2�zi+1

�
h

2

�z+1
:

Note that in the derivation of this result, we have not assumed wzi ; w
z+1
i = yi:

11.5 E¤ect of higher-order global error in local

extrapolation

We assume that wz+1i is used to generate wzi+1 and w
z+1
i+1 : Let �

z+1
i denote the

global error in wz+1i : Hence, we have

�z
i+1 = �

z
i+1h

z+1 +
�
1 + hF zy (�1)

�
�z+1
i

= �zi+1h
z+1 +�z+1

i + hF zy (�1)�
z+1
i

�z+1
i+1 = �

z+1
i+1h

z+2 +
�
1 + hF z+1y (�2)

�
�z+1
i

= �z+1i+1h
z+2 +�z+1

i + hF z+1y (�2)�
z+1
i

where �1 and �2 are appropriate constants.

Hence,

wzi+1 � wz+1i+1 = �
z
i+1h

z+1 +�z+1
i + hF zy (�1)�

z+1
i

� �z+1i+1h
z+2 ��z+1

i � hF z+1y (�2)�
z+1
i

= �zi+1h
z+1 � �z+1i+1h

z+2 +
�
F zy (�1)� F z+1y (�2)

�
h�z+1

i

� �zi+1hz+1

for small h, because h�z+1
i = O (hz+2) : We see that the presence of global error

in the higher-order solution does not a¤ect the expression for �zi+1 obtained under

the assumption wzi ; w
z+1
i = yi: However, if one is not convinced that the O (hz+2)

term can always be assumed to be negligible in relation to the O (hz+1) terms,

then one could always use a method of order greater than z + 1.



11. Supplementary Notes 49

11.6 The assumption
�����z+1 (xi � x0)���hz+1 < �

The underlying premise of local extrapolation is the assumption���zi+1��hz+1 � ���z+1i+1

��hz+2
which implies ���zi+1��hz+1 =M ���z+1i+1

��hz+2; (11.7)

whereM � 1 is a large number. Assuming that �z+1i+1 is a slowly varying function

of x; we can replace �z+1i+1 with its average value ��
z+1
; and so we may write���zi+1��hz+1 > i �����z+1���hz+2 = �����z+1 (xi � x0)���hz+1;

assuming that i is not too large. Hence,���zi+1��hz+1 < � ) �����z+1 (xi � x0)���hz+1 < �:
Of course, if i is such that���zi+1��hz+1 < i �����z+1���hz+2

then our analysis fails, and the global error will not be bounded by �, even

though the local error is bounded.

11.7 The Bisection method for stepsize adjust-

ment in a sti¤ problem

If

jR4 (hj�j)j > 1

then we implement the Bisection method to �nd the root �j of

jR4 (�jhj�j)j � 1 = 0

with

[�; 1]

as the starting interval.
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To �nd �; we determine ����R4�hj�j2n
������ 1

for successive values of n (n = 1; 2; : : :) ; until we �nd����R4�hj�j2n
������ 1 < 0:

Say this occurs at n = nC : We then take

� =
1

2nC
:

Hence,

jR4 (�hj�j)j � 1 < 0

and �j = 1 gives

jR4 (hj�j)j � 1 > 0

so that the root certainly lies on [�; 1] : Once we have found �j; we de�ne

h�j = 0:95�jhj:

where the 0:95 is a safety factor.

11.8 Stability in a sti¤ two-dimensional system

We investigate stability in the two-dimensional system

y0 =

"
y01
y02

#
= f (x;y) =

"
f1 (x; y1; y2)

f2 (x; y1; y2)

#

with bfy = " @f1
@y1

@f1
@y2

@f2
@y1

@f2
@y2

#
�
"
A B

C D

#
:

The eigenvalues of bfy are
�1 =

A+D

2
+

p
A2 � 2AD +D2 + 4BC

2

�2 =
A+D

2
�
p
A2 � 2AD +D2 + 4BC

2
:
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Now assume that

A+D < 0

A2 � 2AD +D2 + 4BC < 0

so that

�1 =
A+D

2
+

 p
� (A2 � 2AD +D2 + 4BC)

2

!
i

�2 =
A+D

2
�
 p

� (A2 � 2AD +D2 + 4BC)

2

!
i:

In this case,

j�1j = j�2j =

q
(A+D)2 � (A2 � 2AD +D2 + 4BC)

2
=
p
AD �BC:

Hence, the condition for stability is

h <
2p

AD �BC

if we were to use Euler�s method to solve the problem; see (10.4). From the plot

of stability regions it seems reasonable to use a numerator of 2:5 if we were going

to use RK3 or RK4 to solve the problem, i.e.

h <
2:5p

AD �BC
:

Strictly speaking, the numerators used here (our so-called sti¤ness limits), while

reasonable, are not entirely correct. To properly determine the stepsize, we

should use the algorithm described earlier which takes into account the complex

nature of the eigenvalue(s).

Note that if
p
AD �BC is small, then the condition on h is not stringent, so

that the use of an explicit method would probably be acceptable. Furthermore,

the eigenvalues will certainly have small magnitude if the entries in bfy are small.
Since the largest of these entries (in magnitude) serves as a Lipschitz constant

for the problem, we infer that sti¤ systems with small Lipschitz constants will

very likely be only slightly or moderately sti¤, so that an explicit method is

suitable. If, on the other hand, the Lipschitz constant is large, then the system,

if it is sti¤, is probably very sti¤, and an implicit method must be used.


