Characterization of stratified L-topological spaces by convergence of stratified L-filters

D. Orpen* and G. Jäger
Rhodes University
g04o0341@ru.ac.za, g.jager@ru.ac.za

SAMS Subject Classification: Topology

L-sets over a base set X are generalizations of classical sets where subsets are not specified by characteristic functions from X to $\{0,1\}$ but rather by functions from X to a lattice L. For an L-set $a \in L^X$ and an element $x \in X$, $a(x)$ is interpreted as the grade of membership of x in a. Stratified L-topological spaces are generalizations of topological spaces to the L-set case [1]. In [2], stratified L-generalized convergence spaces (analogous to classical convergence spaces) are defined, with the underlying lattice (L, \leq, \wedge) being a frame. The resulting category SL-GCS is topological over Set and is Cartesian-closed [2]. SL-TOP, the category of stratified L-topological spaces, is isomorphic to a reflective subcategory of SL-GCS [2]. In [3] various subcategories of SL-GCS are investigated. The results of [2] and [3] are now extended to more general enriched lattices $(L, \leq, *, \otimes)$. Finally axiom schemes for L-topological spaces based on L-filters (which lead to isomorphic categories in the frame case [4]) are investigated in the more general case and conditions for isomorphism between their categories are explored.

References