
Scientific Computing
and
Programming Problems

by
Willi-Hans Steeb
International School for Scientific Computing
at
University of Johannesburg, South Africa

Yorick Hardy
Department of Mathematical Sciences
at
University of South Africa, South Africa

George Dori Anescu
email: george.anescu@gmail.com

Preface

The purpose of this book is to supply a collection of problems in matrix calculus.

Prescribed books for problems.

1) Matrix Calculus and Kronecker Product with Applications and C++ Pro-
grams

by Willi-Hans Steeb
World Scientific Publishing, Singapore 1997
ISBN 981 023 2411
http://www.worldscibooks.com/mathematics/3572.html

2) Problems and Solutions in Introductory and Advanced Matrix Calculus

by Willi-Hans Steeb
World Scientific Publishing, Singapore 2006
ISBN 981 256 916 2
http://www.worldscibooks.com/mathematics/6202.html

3) Continous Symmetries, Lie Algebras, Differential Equations and Computer
Algebra, second edition

by Willi-Hans Steeb
World Scientific Publishing, Singapore 2007
ISBN 981-256-916-2
http://www.worldscibooks.com/physics/6515.html

4) Problems and Solutions in Quantum Computing and Quantum Information,
second edition

by Willi-Hans Steeb and Yorick Hardy
World Scientific, Singapore, 2006
ISBN 981-256-916-2
http://www.worldscibooks.com/physics/6077.html

v

http://www.worldscibooks.com/mathematics/3572.html
http://www.worldscibooks.com/mathematics/6202.html
http://www.worldscibooks.com/physics/6515.html
http://www.worldscibooks.com/physics/6077.html

The International School for Scientific Computing (ISSC) provides certificate
courses for this subject. Please contact the author if you want to do this course
or other courses of the ISSC.

e-mail addresses of the author:

steebwilli@gmail.com
steeb_wh@yahoo.com

Home page of the author:

http://issc.uj.ac.za

vi

vii

Contents

Preface v

Notation x

1 Quickies 1

2 Bitwise Operations 16

3 Maps and Functions 23

4 Number Manipulations 32

5 Combinatorical Problems 52

6 Matrix Calculus 65

7 Recursion 87

8 Numerical Techniques 100

9 Random Numbers 119

10 Optimization Problems 121

11 String Manipulations 123

12 Programming Problems 129

13 Applications of STL in C++ 143

14 Particle Swarm Optimization 155

Bibliography 174

Index 175

viii

x

Notation

:= is defined as
∈ belongs to (a set)
/∈ does not belong to (a set)
∩ intersection of sets
∪ union of sets
∅ empty set
N set of natural numbers
Z set of integers
Q set of rational numbers
R set of real numbers
R+ set of nonnegative real numbers
C set of complex numbers
Rn n-dimensional Euclidean space

space of column vectors with n real components
Cn n-dimensional complex linear space

space of column vectors with n complex components
H Hilbert space
i

√
−1

<z real part of the complex number z
=z imaginary part of the complex number z
|z| modulus of complex number z

|x+ iy| = (x2 + y2)1/2, x, y ∈ R
T ⊂ S subset T of set S
S ∩ T the intersection of the sets S and T
S ∪ T the union of the sets S and T
f(S) image of set S under mapping f
f ◦ g composition of two mappings (f ◦ g)(x) = f(g(x))
x column vector in Cn
xT transpose of x (row vector)
0 zero (column) vector
‖ . ‖ norm
x · y ≡ x∗y scalar product (inner product) in Cn
x× y vector product in R3

A,B,C m× n matrices
det(A) determinant of a square matrix A
tr(A) trace of a square matrix A
rank(A) rank of matrix A
AT transpose of matrix A
A conjugate of matrix A

xi

A∗ conjugate transpose of matrix A
A† conjugate transpose of matrix A

(notation used in physics)
A−1 inverse of square matrix A (if it exists)
In n× n unit matrix
I unit operator
0n n× n zero matrix
AB matrix product of m× n matrix A

and n× p matrix B
A •B Hadamard product (entry-wise product)

of m× n matrices A and B
[A,B] := AB −BA commutator for square matrices A and B
[A,B]+ := AB +BA anticommutator for square matrices A and B
A⊗B Kronecker product of matrices A and B
A⊕B Direct sum of matrices A and B
δjk Kronecker delta with δjk = 1 for j = k

and δjk = 0 for j 6= k
λ eigenvalue
ε real parameter
t time variable
Ĥ Hamilton operator

The Pauli spin matrices are used extensively in the book. They are given by

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

In some cases we will also use σx, σy and σz to denote σ1, σ2 and σ3.

Chapter 1

Quickies

Problem 1. Can the expression
√

3− 2
√

2 be simplified for computation?
Hint. Let a > 0 and b > 0. Calculate (

√
a− b)(

√
a− b) and compare coefficients.

Solution 1. We have

(
√
a− b)(

√
a− b) = a+ b2 − 2b

√
a.

Thus we find a = 2 and b = 1 and the simplified expression is
√

2− 1.

Problem 2. Let n be a positive integer and x, y ∈ R. Can the calculation of

n∑
k=0

(
n

k

)
xn−kyk

be simplified for computation?

Solution 2. We have the identity (Binomial theorem)

n∑
k=0

(
n

k

)
xn−kyk ≡ (x+ y)n.

Problem 3. Let n ∈ N. How can the calculation of

x(e−x + e−2x + · · ·+ e−nx)

1

2 Problems and Solutions

be simplified for n large?

Solution 3. We can use the identity

x(e−x + e−2x + · · ·+ e−nx) ≡ x

ex − 1
(1− e−nx).

Problem 4. Let Z be the integer numbers. Let N0 be the natural numbers
including 0. Find a 1− 1 map

f : Z× Z× Z→ N0

with f(0, 0, 0) = 0 and f(1, 0, 0) = 1. The number of nearest neighbours are 6.
Let (j1, j2, j3) ∈ Z× Z× Z. Then the six nearest neighbours are

(j1 + 1, j2, j3), (j1, j2 + 1, j3), (j1, j2, j3 + 1)

(j1 − 1, j2, j3), (j1, j2 − 1, j3), (j1, j2, j3 − 1).

Give a C++ implementation using the Verylong class of SymbolicC++. Give
a Java implementation using the BigInteger class.

Solution 4.

Problem 5. (i) Let ε ∈ R and ε > 0. Let v be a nonzero vector in Rn. Assume
that ‖v‖ � ε. Show that √

vTv ± ε ≈ ‖v‖ ± ε

2vTv
.

(ii) Let x, ` ≥ 0 and x� `. Show that√
`2 + x2 − ` ≈ x2

2`
.

Solution 5.

Problem 6. (i) Let N1, N2 be given positive integers. Let n1 = 0, 1, . . . , N1−1,
n2 = 0, 1, . . . , N2− 1. There are N1 ·N2 points. The points (n1, n2) are a subset
of N0 × N0 and can be mapped one-to-one onto a subset of N0

j(n1, n2) = n1N2 + n2

where j = 0, 1, . . . , N1 ·N2 − 1. Find the inverse of this map. Consider first the
case N1 = N2 = 2.
(ii) Give a C++ implementation of the map and the inverse.

Quickies 3

Solution 6. (S) (i) Let x ∈ R. Let bxc denote the integer which is not greater
than x. For N1 = N2 = 2 we have the map

(0, 0)↔ 0, (0, 1)↔ 1, (1, 0)↔ 2, (1, 1)↔ 3.

The inverse map is given by

n1 =
⌊
j

2

⌋
, n2 = j − 2

⌊
j

2

⌋
.

For general N1 and N2 we have

n1 =
⌊
j

N2

⌋
, n2 = j −N2

⌊
j

N2

⌋
.

(ii) Utilizing integer division in C++ the implementation is

// OneTwoInverse.cpp

#include <iostream>

using namespace std;

int main(void)

{

int N1, N2; N1 = 8; N2 = 5;

int n1, n2; n1 = 0; n2 = 0;

int j = 0;

for(n1=0;n1 < N1;n1++)

for(n2=0;n2 < N2;n2++)

{

j = n1*N2 + n2;

cout << j << "(" << n1 << "," << n2 << ")" << endl;

}

cout << endl;

// inverse

int np = N1*N2;

for(j=0;j < np;j++)

{

n1 = j/N2; // j/N2 is integer division

n2 = j-N2*(j/N2); // j/N2 is integer division

cout << j << "(" << n1 << "," << n2 << ")" << endl;

}

return 0;

}

Problem 7. Let n ∈ N. The map f : [0, 2n] → [0, 2n] on the integers defined
by

f(0) = n

4 Problems and Solutions

f(k) = 2n+ 1− k for 0 < k ≤ n
f(k) = 2n− k for n < k ≤ 2n

plays a role for the converse of Sarkovskii’s theorem.
(i) Let n = 2. Starting with 1 find

f(1), f(f(1)), f(f(f(1))), f(f(f(f(1)))), f(f(f(f(f(1))))).

Discuss.
(ii) Give a C++ implementation of this map. The user provides the n.

Solution 7. (i) We have

f(1) = 4, f(4) = 0, f(0) = 2, f(2) = 3, f(3) = 1.

Thus we have periodic orbit.

=

Problem 8. Show that

1
a+ n− k + 1

(
1

a− b+ 1
+

1
n− k + b

)
=

1
(a− b+ 1)(n− k + b)

.

Solution 8.

Problem 9. Given a vector of length n. Write a C++ program that checks
whether all entries are pairwise different.

Solution 9.

// pairwisedifferent.cpp

#include <iostream>

using namespace std;

bool pairwise(double* v,int n)

{

for(int i=0;i<n;i++)

for(int j=i+1;j<n;j++) if(v[i]==v[j]) return false;

return true;

}

int main(void)

{

Quickies 5

int n = 6;

double* v; v = new double[n];

v[0] = 1.2; v[1] = 1.7; v[2] = 2.1;

v[3] = 1.1; v[4] = 1.5; v[5] = 1.9;

bool b = pairwise(v,n);

cout << "b = " << b << endl;

delete[] v;

return 0;

}

Problem 10. The sinc function f : R→ R

f(x) =
sin(πx)
πx

can be evaluated using the series expansion

f(x) = 1− 1
3!

(πx)2 +
1
5!

(πx)4 − · · ·

However the sinc function could also be evaluated from

f(x) =
∞∏
k=1

(
1− x2

k2

)
.

Compare the two methods.

Solution 10.

Problem 11. The quadratic equation x2 = x+ 1 has the solutions

τ =
1
2

(1 +
√

5), σ =
1
2

(1−
√

5)

(golden mean numbers). Let k ∈ Z. Can the expressions

τk−1 + τk−2, σk−1 + σk−2

be simplified?

Solution 11. We have the identities

τk = τk−1 + τk−2, σk = σk−1 + σk−2.

Problem 12. How would one calculate more efficiently (i.e. minimizing the
number of multiplications) the analytic function f : R→ R

f(x) = x+ 2x2 + 3x3

6 Problems and Solutions

for a given x.

Solution 12. We have

f(x) = x(1 + 2x+ 3x2) = x(1 + x(2 + 3x))

i.e. we have 3 multiplications and 2 additions, whereas for x+2x2 +3x3 we have
five multiplications and two additions.

Problem 13. Consider the analytic function f : R→ R

f(x) =
x

1 + x2
.

Simplify the calculation of the integral∫ 2

−1

f(x)dx.

Hint. First show that f(x) = −f(−x).

Solution 13. Since f(x) = −f(−x) we have∫ 2

−1

f(x)dx =
∫ 1

−1

f(x)dx+
∫ 2

1

f(x)dx =
∫ 2

1

f(x)dx.

Problem 14. (S) Solve the quadratic equation ω2 + ω+ 1 = 0 by multiplying
this equation with ω and inserting the quadratic equation and then solving the
resulting cubic equation. Select the solutions from the cubic equation which are
also solutions of the quadratic equation. Note that 1 ≡ exp(i2π).

Solution 14. Multiplying the quadratic equation with ω and inserting then
the quadratic equation yields ω3 = 1. This equation has the three solutions
ω1 = 1, ω2 = ei2π/3, ω3 = ei4π/3. Obviously ω2 and ω3 are the solution to the
quadratic equation, whereas ω1 is not a solution of the quadratic equation.

Problem 15. Find numerically solutions of the transcendental equation

e−x +
x

5
− 1 = 0

for x ≥ 0.

Solution 15. Let f(x) = e−x + x/5 − 1. For x = 0 we have f(0) = 1/5 > 0.
For x = 5 we have e−5 > 0. x ≈ 4.96.

Quickies 7

Problem 16. Let n0, n1, n2 ∈ N0. Implement the function

f(n0, n1, n2) =
(n0 + n1 + n2)!

n0!n1!n2!

in SymbolicC++ utilizing the Verylong class and Rational class.

Solution 16.

Problem 17. Calculate efficiently∫ 7

0

sin(x)dx,
∫ 7

0

cos(x)dx.

Solution 17.
=

Problem 18. (S) Let i, j, k ∈ N0. Find all solutions of i+ j + k = 3. Give the
solution in lexicographical order.

Solution 18. There are 10 solutions given in lexicographical order

003, 012, 021, 030, 102, 111, 120, 201, 210, 300.

Problem 19. The number π can be calculated from the expansion

π =
∞∑
j=0

(j!)22j+1

(2j + 1)!
.

Let n be positive integer. Give an implementation of the sum

s =
n∑
j=0

(j!)22j+1

(2j + 1)!

with SymbolicC++ using the Verylong and Rational class and so find an ap-
proximation of π.

Solution 19.

Problem 20. Let N0 be the set of natural numbers including 0. Let n1, n2, n3 ∈
N0. An invertible function f : N0 × N0 × N0 7→ N0 is defined as follows. Let

8 Problems and Solutions

n = n1 + n2 + n3. For a fixed n we have f(n) < f(n+ 1) and within a fixed n a
lexicographical ordering is assumed. For the first ten elements one has

(0, 0, 0)→ 0, (0, 0, 1)→ 1, (0, 1, 0)→ 2, (1, 0, 0)→ 3,

(0, 0, 2)→ 4, (0, 1, 1)→ 5, (1, 0, 1)→ 7, (1, 1, 0)→ 8, (2, 0, 0)→ 9

Give a C++ implementation of the function f and its inverse f−1 using tem-
plates so that the Verylong class of SymbolicC++ can be used. Give a Java
implementation using the BigInteger class.

Solution 20.

Problem 21. Let f ∈ L2(R). Poisson’s summation formula in one dimension
is given by

+∞∑
n=−∞

f(n) =
+∞∑
q=−∞

∫ +∞

−∞
f(x)e−2πiqxdx.

Show that if f is an even function of x, then the summation formula can be
written as

+∞∑
n=1

f(n) = −1
2
f(0) +

∫ +∞

0

f(x)dx+ 2
+∞∑
q=1

∫ +∞

0

f(x) cos(2πqx)dx.

Apply it to the function f(x) = e−|x|.

Solution 21.

Problem 22. The Catalan constant is defined as

G = 1− 3−2 + 5−2 − 7−2 + · · ·

Give a SymbolicC++ implementation using the Verylong and Rational class
to find an approximation of the constant.

Solution 22.

Problem 23. Let n ∈ Z. Simplify sin(nπ), cos(2nπ), cos((2n+ 1)π).

Solution 23. We have sin(nπ) = 0, cos(2nπ) = 1, cos((2n+ 1)π) = −1.

Problem 24. Consider the normalized vectors

nj :=

 sin(θj) cos(φj)
sin(θj) sin(φj)

cos(θj)

 , nk :=

 sin(θk) cos(φk)
sin(θk) sin(φk)

cos(θk)

Quickies 9

in R3. Find the scalar product
nj · nk

and simplify it. The scalar product is the angle between the two vectors.

Solution 24. We obtain (check)

nj · nk = cos(θj) cos(θk) + sin(θj) sin(θk) cos(φj − φk).

Problem 25. (i) Let u, v be (column) vectors in the Euclidean space Rn.
Now uT , vT are the corresponding row vectors (T denotes transpose) and thus
uTv is the scalar product of u and v. What does

A :=
√
|(uTu)(vTv)− (uTv)2|

calculate?
(ii) Consider R4 and the vectors

u =

1
1
1
1

 , v =

1
0
0
1

 .

Calculate A.

Solution 25. (i) The quantity A is the area spanned by the vectors u and v.
(ii) For the given example we find A = 2.

Problem 26. (S) (i) Let u, v be column vectors in Cn and thus u∗, v∗

(transpose and complex conjugate) are row vectors. Calculate efficiently

tr(uu∗vv∗).

Note that uu∗vv∗ is an n×n matrix. Could one utilize that matrix multiplica-
tion is associative? Discuss. Is

tr(uu∗vv∗) ≥ 0 ?

Prove or disprove.
(ii) Let A be a 2× 2 matrix. Calculate efficiently tr(A2).

Solution 26.

Problem 27. Consider the 2× 2 matrices

C =
(

0 1
1 0

)
, A =

(
a11 a12

a12 a11

)
, a11, a12 ∈ R.

10 Problems and Solutions

Can the expression
A3 + 3AC(A+ C) + C3

be simplified for computation?

Solution 27. Since AC = CA we can write the expression as (A+ C)3.

Problem 28. Given two invertible n× n matrices A and B.
(i) How can we calculate B−1A−1 more efficiently?
(ii) Let ⊗ be the Kronecker product. How can we calculate B−1 ⊗ A−1 more
efficiently?

Solution 28. (i) We can utilize the identity

(AB)−1 ≡ B−1A−1.

(ii) We can utilize the identity

(B ⊗A)−1 ≡ B−1 ⊗A−1.

Problem 29. (i) Let x1

x2

x3

 ,

 y1

y2

y3

 ∈ R3.

What does
1
2

det

 1 x1 y1

1 x2 y2

1 x3 y3

calculate?
(ii) Consider the coordinates

p1 = (x1, y1, z1)T , p2 = (x2, y2, z2)T , p3 = (x3, y3, z3)T

with p1 6= p2, p2 6= p3, p3 6= p1. We form the vectors

v21 =

x2 − x1

y2 − y1

z2 − z1

 , v31 =

x3 − x1

y3 − y1

z3 − z1

 .

Let × be the vector product. What does

1
2
|v21 × v31|

calculate? Apply it to p1 = (0, 0, 0)T , p2 = (1, 0, 1)T , p3 = (1, 1, 1)T .

Quickies 11

Solution 29.

Problem 30. What is the output of the following C++ program

// whileloop.cpp

#include <iostream>

using namespace std;

int main(void)

{

int x = 0; int t = 0; int p = 0;

while(t < 100) {

if(p==0) x = x + 2;

if(p==1) x = x - 1;

p = 1 - p;

t++;

} // end while

cout << "x = " << x << endl;

cout << "p = " << p << endl;

cout << "t = " << t << endl;

return 0;

}

Solution 30.

Problem 31. The surface area of a torus with inner radius a and outer radius
b is a given by

A = π2(b2 − a2).

The formula for the volume of a torus is given by

V =
π2

4
(a+ b)(b− a)2.

Simplify the calculation of V given A.

Solution 31. Since (check)

V =
π2

4
(a+ b)(b− a)2 ≡ π2

4
(b2 − a2)(b− a).

Thus
V =

1
4
A(b− a).

Problem 32. Let a, b be non-negative integers.

12 Problems and Solutions

(i) Simplify the expression

E1 =
√
a+
√
−b+

√
a−
√
−b.

(ii) Simplify the expression

E2 =
√
a+
√
−b−

√
a−
√
−b.

Solution 32. (i) We set

c :=
1
2

(
√
a2 + b+ a).

Then E1 can be written as E1 = 2
√
c, i.e. E1 is a real number.

(ii) We set

d :=
1
2

(
√
a2 + b− a).

Then E2 can be written as E1 = 2
√
−d.

Problem 33. Let x ∈ [−1, 1]. Simplify arcsin(x) + arccos(x).

Solution 33. One has

arcsin(x) + arccos(x) =
π

2
.

Problem 34. Simplify

f(α, β, γ) = sin(α+ β − γ) + sin(β + γ − α) + sin(γ + α− β)− sin(α+ β + γ).

Solution 34. We have

f(α, β, γ) = 4 sin(α) sin(β) sin(γ).

Problem 35. Let f : R → R be an analytic function. Consider the central
difference operator δ defined by

δ(f(x)) := f(x+
1
2
h)− f(x− 1

2
h)

where h > 0 is the step length. The operator δ is linear. Find δ(δ(f(x)).

Quickies 13

Solution 35. We have

δ(δ(f(x)) = δ(f(x+
1
2
h)− f(x− 1

2
h))

= δ(f(x+
1
2
h))− δ(f(x− 1

2
h))

= f(x+ h)− f(x)− f(x) + f(x− h)
= f(x+ h)− 2f(x) + f(x− h).

Problem 36. Consider the coordinates in R3

p1 = (x1, y1, z1), p2 = (x2, y2, z2), p3 = (x3, y3, z3)

with p1 6= p2, p2 6= p3, p3 6= p1. We form the two vectors

v = p2 − p1, w = p3 − p1.

What does 1
2 |v ×w| calculate?

Solution 36.

Problem 37. Let n be a positive integer. Give a C++ implementation of sum

n∑
k=0

n∑
`=0

(
k

`

)
using templates so that the Verylong class of SymbolicC++ can be used.

Solution 37.

Problem 38. Let x ∈ R. Show that

1
e−x + 1

≡ 1− 1
ex + 1

.

Solution 38.

Problem 39. Find a good approximation of
√

29 utilizing

29 ≡ 36
(

1− 7
36

)
≡ 62

(
1− 7

36

)
and an expansion.

Solution 39. SCandPP

14 Problems and Solutions

Problem 40. Let n ∈ Z. Show that

cos((n+ 1)α) + cos((n− 1)α) ≡ 2 cos(α) cos(nα)
sin((n+ 1)α) + sin((n− 1)α) ≡ 2 cos(α) sin(nα).

Solution 40.

Problem 41. Let f : R → R be a continuous function. Assume that f(x) =
−f(−x). Let a < 0 and b > 0. Simplify the calculation of∫ b

a

f(x)dx.

Solution 41.

Problem 42. Calulate approximative (72)1/6 utilizing the expression

(72)1/6 = 2
(

1 +
1
8

)1/6

.

Problem 43. (i) Calculate
√

2 utilizing

√
2 =

7
5

(
1− 1

50

)−1/2

.

(ii) Calculate 1
2 (1 +

√
5) utilizing

1
2

(
1 +
√

5
)

=
1
2

+
(

1− 1
5

)−1/2

.

(iii) Calculate ln(2) utilizing the hypergeometric representation of x−1 ln(1− x)
for x = 1/2.

Solution 43.

Problem 44. Show that
1

ex − 1
≡ − 1

e−x − 1
− 1.

Solution 44. We have

1
ex − 1

=
1

ex − 1
e−x

e−x
=

e−x

1− e−x

Quickies 15

=− e−x

e−x − 1

=− 1
e−x − 1

− 1.

Problem 45. Let q,q1,q2,x ∈ Rn and ε ∈ R. Simplify the expression

‖q− ε

2
x− q1‖2 + ‖q +

ε

2
x− q2‖2

where ‖ . ‖ denotes the Euclidean norm in Rn. Apply the scalar product in Rn.

Solution 45. We obtain

‖q− ε
2
x−q1‖2 +‖q+

ε

2
x−q2‖2 = ‖q−q1‖2 +‖q−q2‖2 +

ε2

2
‖x‖2 +εx ·(q1−q2).

Problem 46. Let u, v, w be vectors in R3. Show that

u× (v ×w) ≡ (u ·w)v − (u · v)w.

Solution 46.

Problem 47. Show that

1
2

(1 + cos(θ)) ≡ cos2(θ/2),
1
2

(1− cos(θ)) ≡ sin2(θ/2).

Solution 47.

Chapter 2

Bitwise Operations

Problem 1. A boolean function f : {0, 1}n → {0, 1} (xj ∈ {0, 1}, j = 1, . . . , n)
can be transformed from the domain {0, 1} into the spectral domain by a linear
transformation

Ty = s

where T is a 2n × 2n orthogonal matrix, y = (y0, y1, . . . , y2n−1)T is the two-
valued ({+1,−1} with 0↔ 1, 1↔ −1) truth table of the boolean function and
spectral coefficients sj . Since T is invertible we have

T−1s = y.

For T we select the Hadamard matrix. The (n+ 1)× (n+ 1) Hadamad matrix
is recursively defined as

H(n) =
(
H(n− 1) H(n− 1)
H(n− 1) −H(n− 1)

)
, n = 1, 2, . . .

with H(0) = (1) ((1× 1) matrix). The inverse of H(n) is given by

H(n)−1 =
1
2n
H(n).

Now any boolean function can be expanded as the arithmetical polynomial

f(x1, . . . , xn) =
1

2n+1
(2n−s0−s1(−1)xn−s2(−1)xn−1−· · ·−s2n−1(−1)x1⊕x2⊕···⊕xn

where ⊕ denotes the modulo-2 addition and the

(s0, s1, . . . , s2n−1) = s

16

Bitwise Operations 17

are the spectral coefficients. Consider the boolean function f : { 0, 1 }3 → { 0, 1 }

f(x1, x2, x3) = x̄1 · x̄2 · x̄3 + x̄1 · x2 · x̄3 + x1 · x2 · x̄3.

Find the truth table, the vector y and then using H(3) calculate the spectral
coefficients sj (j = 0, 1, . . . , 7).

Solution 1. The truth table is given by

x_1 x_2 x_3 f(x_1,x_2,x_3) y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

where we used the map 0 → 1 and 1 → −1 to find the vector y. Now the
Hadamard matrix H(3) is the 8× 8 matrix (calculate)

H(3) =

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

.

Problem 2. Analogously to the Hamming distance for finite sequences, a
metric can be used to compute distances between infinite u(j) and v(j), where
j ∈ Z

d(u, v) :=
∑
j∈Z

|u(j)− v(j)|
2|j|

.

Consider the infinite alternating sequences

...010101010... = u

...101010101... = v
^
|
0

Find the distance between u and v.

18 Problems and Solutions

Solution 2.

Problem 3. Let x, y ∈ {0, 1} and · the AND operation. Is the circuit

x′ = x, y′ = x · y

a reversible gate?

Solution 3. The truth table is
Thus is gate is not reversible.

Problem 4. Consider the truth table

(0, 0, 0) 7→ 1, (0, 0, 1) 7→ 0
(0, 1, 0) 7→ 0, (0, 1, 1) 7→ 0
(1, 0, 0) 7→ 0, (1, 0, 1) 7→ 0
(1, 1, 0) 7→ 0, (1, 1, 1) 7→ 1.

Find the boolean expression.

Solution 4.
=

Problem 5. Let x0, y0 ∈ {0, 1}. Solve the system of boolean equations

xt+1 = xt ⊕ yt, yt+1 = xt · yt

where x0 = 0, y0 = 1 and t = 0, 1, Here ⊕ denotes the XOR operation and
· denotes the AND operation. First find the fixed points, i.e. solve x ⊕ y = x,
x · y = y. Does the sequence xt, yt tend to a fixed point?

Solution 5. Testing the combinations (0, 0), (0, 1), 1, 0), (1, 1) we obtain the
fixed points (0, 0) and (1, 0). We obtain

x1 = x0 ⊕ x0 = 0⊕ 1 = 1, y1 = x0 · y0 = 0.

Thus we reach the fixed point (1, 0).

Problem 6. (i) Let s1(0), s2(0), s3(0) ∈ {+1,−1}. Study the time-evolution
(t = 0, 1, 2, . . .) of the coupled system of equations

s1(t+ 1) = s2(t)s3(t)
s2(t+ 1) = s1(t)s3(t)
s3(t+ 1) = s1(t)s2(t)

Bitwise Operations 19

for the eight possible initial conditions, i.e. (i) s1(0) = s2(0) = s3(0) = 1, (ii)
s1(0) = 1, s2(0) = 1, s3(0) = −1, (iii) s1(0) = 1, s2(0) = −1, s3(0) = 1, (iv)
s1(0) = −1, s2(0) = 1, s3(0) = 1, (v) s1(0) = 1, s2(0) = −1, s3(0) = −1, (vi)
s1(0) = −1, s2(0) = 1, s3(0) = −1, (vii) s1(0) = −1, s2(0) = −1, s3(0) = 1,
(viii) s1(0) = −1, s2(0) = −1, s3(0) = −1. Which of these initial conditions are
fixed points?
(ii) Let s1(0), s2(0), s3(0) ∈ {+1,−1}. Study the time-evolution (t = 0, 1, 2, . . .)
of the coupled system of equations

s1(t+ 1) = s2(t)s3(t)
s2(t+ 1) = s1(t)s2(t)s3(t)
s3(t+ 1) = s1(t)s2(t)

for the eight possible initial conditions, i.e. (i) s1(0) = s2(0) = s3(0) = 1, (ii)
s1(0) = 1, s2(0) = 1, s3(0) = −1, (iii) s1(0) = 1, s2(0) = −1, s3(0) = 1, (iv)
s1(0) = −1, s2(0) = 1, s3(0) = 1, (v) s1(0) = 1, s2(0) = −1, s3(0) = −1, (vi)
s1(0) = −1, s2(0) = 1, s3(0) = −1, (vii) s1(0) = −1, s2(0) = −1, s3(0) = 1,
(viii) s1(0) = −1, s2(0) = −1, s3(0) = −1. Which of these initial conditions are
fixed points?

Solution 6.
=

Problem 7. Let x1(0), x2(0), x3(0) ∈ {0, 1} and let ⊕ be the XOR-operation.
Study the time-evolution (t = 01, 2, . . .) of the coupled system of equations

x1(t+ 1) = x2(t)⊕ x3(t)
x2(t+ 1) = x1(t)⊕ x3(t)
x3(t+ 1) = x1(t)⊕ x2(t)

for the eight possible initial conditions, i.e. (i) x1(0) = x2(0) = x3(0) = 0, (ii)
x1(0) = 0, x2(0) = 0, x3(0) = 1, (iii) x1(0) = 0, x2(0) = 1, x3(0) = 0, (iv)
x1(0) = 1, x2(0) = 0, x3(0) = 0, (v) x1(0) = 0, x2(0) = 1, x3(0) = 1, (vi)
x1(0) = 1, x2(0) = 0, x3(0) = 1, (vii) x1(0) = 1, x2(0) = 1, x3(0) = 0, (viii)
x1(0) = 1, x2(0) = 1, x3(0) = 1. Which of these initial conditions are fixed
points?

Solution 7.
=

Problem 8. Show that one Fredkin gate is sufficient to implement the XOR
gate.

20 Problems and Solutions

Solution 8. (i) Choosing b = NOTc (equivalently c = NOTb) we find that
the Fredkin gate yields

(a, b, c)→ (a, ORANDNOTabANDaNOTb, ORANDNOTacANDaNOTc) ≡ (a, a⊕b, a⊕c).

Thus we can apply the Fredkin gate to (a, b,NOTb) and use the second bit to
obtain a⊕ b or equivalently apply the Fredkin gate to (a,NOTc, c) and use the
third bit to obtain a ⊕ c. The question did not state that we can assume that
NOTb or NOTc are available, which is required to obtain this result.

Problem 9. Show that a · b = a + b using (i) truth tables and (ii) properties
of boolean algebra (with a+ 1 = 1).

Solution 9. The complement NOTa · b is defined by

(NOTa · b) · (a · b) = 0

and
(NOTa · b) + (a · b) = 1.

We prove each of these properties for NOTa+NOTb.

(NOTa+NOTb) ·(a ·b) = (NOTa ·a) ·b+a ·(NOTb ·b) = 0 ·b+a ·0 = 0+0 = 0.

Thus the first property holds. For the second property we have

(NOTa+NOTb) + (a · b) =NOTa · (b+NOTb) +NOTb+ a · b
=NOTa · b+ a · b+NOTb+NOTa ·NOTb
= (NOTa+ a) · b+NOTb+NOTa ·NOTb
= (b+NOTb) + (NOTa ·NOTb)
= 1 + (NOTa ·NOTb).

We know that a+ 1 = 1 (given, exercises) so that

(NOTa+NOTb) + (a · b) = 1 + (NOTa ·NOTb) = 1

as required. Consequently

NOTa · b = NOTa+NOTb.

Problem 10. Let t = 0, 1, 2, . . . and xt, yt, zt ∈ {0, 1}. Solve

xt+1 = yt · zt
yt+1 = zt + xt

zt+1 = xt ⊕ yt

Bitwise Operations 21

with the initial condition x0 = y0 = z0 = 1. Discuss. Here · denotes the AND-
operation, + the OR-operation and ⊕ the XOR-operation. First find the fixed
points of the map.

Solution 10.

Problem 11. A boolean function f : { 0, 1 }n → { 0, 1 } can be written as

f(x) = xj · fxj (x) + xj · fxj (x)

where j = 1, . . . , n, fxj denotes setting the variable xj to 1 in f and fxj denotes
setting the variable xj to 0 in f . Apply this decomposition to f(x1, x2) = x1⊕x2.

Problem 12. Consider a bitstring of length 4 with two 0’s and two 1’s,
for example 0110. How many distinct permutations can be formed for such
bitstrings? Order these bitstrings from smallest to largest. Recall that the least
significant bit is on the right-hand side and counting starts from 0.

Solution 12.

Problem 13. Let x1,t, x2,t ∈ {0, 1} and t = 0, 1, 2, Consider the map

x1,t+1 = x1,t + x2,t, x2,t+1 = x1,t ⊕ x2,t

where + is the OR-operation and ⊕ is the XOR-operation. Find the fixed points
of the map. Let x1,0 = x2,0 = 1. Does (x1,t, x2,t) tend to a fixed point?

Solution 13.

Problem 14. Consider a bitstring of length 4 with two 0’s and two 1’s,
for example 0110. How many distinct permutations can be formed for such
bitstrings? Order these bitstrings from smallest to largest. Recall that the least
significant bit is on the right-hand side and counting starts from 0.

Solution 14.

Problem 15. The boolean function f : {0, 1}3 → {0, 1}

f(x1, x2, x3) = x1 · x2 · x3 + x1 · x2 · x3 + x1 · x2 · x3

is in sum-of-product form. Can the boolean function be reduced to

f(x1, x2, x3) = x2 · (x3 + x1) ?

Prove or disprove.

22 Problems and Solutions

Solution 15.

Chapter 3

Maps and Functions

Problem 1. The straight line Hough transform maps a line in R2 into a point
in the Hough transform space. The polar definition of the Hough transform is
based on the representation of the lines by the parameters (ρ, θ) via the equation

ρ = xj cos(θ) + yj sin(θ).

with ρ ≥ 0 and θ ∈ [0, 2π). All points (xj , yj) of a given line correspond to a point
(ρ, θ) in the Hough transform space. Any point (xj , yj) is mapped to a sinusoidal
curve in the Hough transform space. Consider the two points (x0, y0) = (1, 0)
and (x1, y1) = (0, 1) on a line. Find ρ, θ.

Solution 1. For the two points (x0, y0) and (x1, y1) we find the two equations

ρ = cos(θ), ρ = sin(θ).

Since ρ = 1 we find 1 = tan θ and therefore θ = π/4. This means θ = 45◦. It
follows that ρ = cos(π/4) = sin(π/4) = 1/

√
2. Consequently

(ρ, θ) = (1/
√

2, π/4).

Thus ρ is the shortest distance between the straight line and the origin (0, 0).
The angle θ is the angle between the distance vector and the positive x-direction.

Problem 2. Let f, g : R→ R be analytic functions and n ≥ 1. Then∫ b

a

f (n)gdx = f (n−1)g
∣∣∣b
a
− f (n−2)g′

∣∣∣b
a

+ f (n−3)g′′
∣∣∣b
a
− · · · (−1)n

∫ b

a

fg(n)dx.

23

24 Problems and Solutions

Here f (n) denotes the n-th derivative. This identity is called generalized inte-
gration by parts. Let ε > 0. Find ∫ 1

0

eεxxndx

using generalized integration by parts.

Solution 2.

Problem 3. Find a polynomial

p(x) = ax4 + bx3 + cx2 + dx+ e

which satisfies the conditions

p(0) = 0, p(1) = 0, p(1/2) = 0

p(1/4) = 1, p(3/4) = 1/2.

Solution 3. From p(0) = 0 we obtain e = 0. From the other four conditions
we find the system of four linear equations with four unkowns

0 = a+ b+ c+ d

0 =
a

16
+
b

8
+
c

4
+
d

2

1 =
a

256
+

b

64
+

c

16
+
d

4
1
2

=
81a
256

+
27b
64

+
9c
16

+
3d
4
.

The solution is
a =, b =, c =, d = .

Problem 4. Let A, B and C be arbitrary non-empty sets and let f : A→ B
and g : B → C. The composite function of f and g is the function

g ◦ f : A→ C, (g ◦ f)(x) = g(f(x)).

Notice that g ◦ f reads from right to left; it means first apply f , then apply g to
the result. Note that function composition is associative.
(i) Let f : R → R, f(x) = x2, and g : R → R, g(x) = 3x − 1. Find g ◦ f and
f ◦ g.
(ii) Write a C++ program which implements these compositions with x of data
type double.

Maps and Functions 25

Solution 4. (i) The function g ◦ f is found as follows g ◦ f : R→ R,

(g ◦ f)(x) = g(f(x)) = g(x2) = 3x2 − 1.

The function f ◦ g is obtained in a similar manner f ◦ g : R→ R,

(f ◦ g)(x) = f(g(x)) = f(3x− 1) = (3x− 1)2.

(ii) The C++ program is as follows.

// composition.cpp

#include <iostream>

using namespace std;

double f1(double x) { return x*x; }

double g1(double (*f)(double),double x) { return 3.0*f(x) - 1.0; }

double f2(double x) { return 3.0*x - 1.0; }

double g2(double (*f)(double),double x) { return f(x)*f(x); }

int main(void)

{

double x;

for(x=0.0;x<=2.0;x+=0.1)

{ cout << "g1(" << x << ") = " << g1(f1,x) << endl; }

double y;

for(y=0.0;y<=2.0;y+=0.1)

{ cout << "g2(" << y << ") = " << g2(f2,y) << endl; }

return 0;

}

Problem 5. Let f1, f2 be continuous functions over an interval [a, b]. Then
we have the identities

min(f1, f2)≡ 1
2

(f1 + f2 − |f1 − f2|)

max(f1, f2)≡ 1
2

(f1 + f2 + |f1 − f2|).

Write a C++ program that finds the min and max for two given continuous
functions f1 and f2 using the function

void minmax(double (*f1)(double),double (*f2)(double),

double x,double& min,double& max)

26 Problems and Solutions

where x is the function parameter. Apply it to the sine function and cosine
funtion in the interval [0, 2].

Solution 5.

// minmax.cpp

#include <iostream>

#include <cmath>

using namespace std;

void minmax(double (*f1)(double),double (*f2)(double),

double x,double& min,double& max)

{

double t1 = f1(x) + f2(x);

double t2 = fabs(f1(x)-f2(x));

min = 0.5*(t1-t2); max = 0.5*(t1+t2);

}

int main(void)

{

double min, max;

for(double x=0.0;x<=2.0;x=x+0.1)

{

minmax(sin,cos,x,min,max);

cout << "x = " << x << " " << "min = " << min << endl;

cout << "x = " << x << " " << "max = " << max << endl;

}

return 0;

}

Problem 6. Consider the two membership functions f : R → [0, 1], g : R →
[0, 1] in fuzzy logic

f(x) = e−x
2/2, g(x) = 1/(1 + e−x).

Write a C++ program that finds the algebraic sum (page 524, Nonlinear Work-
book 5th edition).

Solution 6.

Problem 7. What is the output of the following C++ program

// fcomposition.cpp

#include <iostream>

#include <cmath>

Maps and Functions 27

using namespace std;

double f(double x) { return x*x; }

double g(double x) { return 3.0*x-1.0; }

double comp(double (*f)(double),double (*g)(double),double x)

{ f(g(x)); }

int main(void)

{

double x = 2.5;

cout << "f(" << x << ") = " << f(x) << endl;

cout << "g(" << x << ") = " << g(x) << endl;

cout << comp(f,g,x) << endl;

return 0;

}

Solution 7.

Problem 8. Let N0 be the set of natural numbers including 0. The Cantor
pairing function f : N0 × N0 → N0 is defined by

f(x, y) = y +
1
2

(x+ y)(x+ y + 1).

(i) Find the inverse function, i.e. given s = f(x, y) find x and y. Set

a := x+ y, b :=
1
2

(a2 + a).

(ii) Give a C++ implementation utilizing Verylong of SymbolicC++.

Solution 8. (i) We have s = b+ y. Solving the quadratic equation a2 + a = b
yields

a =
1
2

(
√

8b+ 1− 1).

Since
b ≤ s = b+ y < b+ (a+ 1) =

1
2

((a+ 1)2 + (a+ 1))

we obtain

a = b
√

8s+ 1− 1
2

c.

This means we find x, y via

y = s− 1
2

(a2 + a), x = a− y.

(ii) The C++ implementation is

28 Problems and Solutions

// CantorPairing.cpp

#include <iostream>

#include <cmath>

using namespace std;

int main(void)

{

int s = 8;

int h1 = 8*s + 1;

double h2 = (double) h1;

double h3 = sqrt(h2);

double h4 = (h3-1.0)/2.0;

double h5 = floor(h4);

int a = (int) h5;

int y = s - (a*a+a)/2;

int x = a - y;

cout << "x = " << x << endl;

cout << "y = " << y << endl;

return 0;

}

// CantorPairing.cpp

#include <iostream>

#include <cmath>

using namespace std;

int f(int x,int y)

{

return ((x+y)*(x+y+1))/2 + y;

}

void fI(int z,int* p)

{

int w = floor(((sqrt(8.0*z+1.0)-1.0))/2.0);

int t = (w*w+w)/2;

p[1] = z-t;

p[0] = w-p[1];

}

int main(void)

{

int x = 3; int y = 5;

int r = f(x,y);

cout << "r = " << r << endl;

int* p = new int[2];

int z = 23;

Maps and Functions 29

fI(z,p);

cout << "p[0] = " << "x = " << p[0] << endl;

cout << "p[1] = " << "y = " << p[1] << endl;

delete[] p;

return 0;

}

Problem 9. Consider the mathematical expression

sin(b) + a ∗ b +︸︷︷︸ c ∗ d+ (a− b).

Write this mathematical expression as a binary tree with the root indicated by
the brace. Then evaluate this binary tree from bottom to top with the values
a = 2, b = π/2, c = 4, d = 1.

voluntary. An alternative to represent a mathematical expression as tree is mul-
tiexpression programming (see next page). Use multiexpression programming
to evaluate the expression.

Solution 9.

Problem 10. (i) Let r > 0 (fixed) and x > 0. Consider the map

fr(x) =
1
2

(
x+

r

x

)
or written as difference equation

xt+1 =
1
2

(
xt +

r

xt

)
, t = 0, 1, 2, . . . x0 > 0.

Find the fixed points of fr. Are the fixed points stable?
(ii) Let r = 3 and x0 = 1. Find limt→∞ xt. Discuss.

Solution 10. (i) From fr(x∗) = x∗ we find the only fixed point x∗ =
√
r. Now

dfr(x)
dx

=
1
2
− 1

2
r

x2
.

Thus dfr(x = x∗) = 0. Thus the fixed point x∗ is stable.
(ii) Obviously xt tends to

√
3.

Problem 11. Let A be a given 3 × 3 matrix over R with det(A) 6= 0. Is the
transformation

x′(x, y) =
a11x+ a12y + a13

a31x+ a32y + a33

y′(x, y) =
a21x+ a22y + a23

a31x+ a32y + a33

30 Problems and Solutions

invertible? If so find the inverse.

Solution 11.

Problem 12. Let N1, N2, N3 be positive integers. Let n1 = 0, 1, . . . , N1 − 1,
n2 = 0, 1, . . . , N2−1, n3 = 0, 1, . . . , N3−1. There are N1 ·N2 ·N3 points and the
points (n1, n2, n3) are a subset of N0 × N0 × N0 and can be mapped one-to-one
onto a subset of N0

j(n1, n2, n3) = (n1N2 + n2)N3 + n3

where j = 0, 1, . . . , N1 ·N2 ·N3 − 1. Consider first the case N1 = N2 = N3 = 2.

Solution 12. For N1 = N2 = N3 = 2 we have

(0, 0, 0)↔ 0, (0, 0, 1)↔ 1, (0, 1, 0)↔ 2, (0, 1, 1)↔ 3

(1, 0, 0)↔ 4, (1, 0, 1)↔ 5, (1, 1, 0)↔ 6, (1, 1, 1)↔ 7.

For general N1, N2, N3 the inverse map is given by

n1 =
⌊
t

N2

⌋
, n2 = t−N2

⌊
t

N2

⌋
, n3 = j −N3

⌊
j

N3

⌋
where t = bj/N3c.

Problem 13. Give an implementation of the function

δi1i2...ikj1j2...jk
:=

1
k!

∑
π∈Sk

sgn(π)δiπ(1)
j1

δ
iπ(2)
j2
· · · δiπ(k)

jk
.

For example

δijk` =
1
2

(δikδ
j
` − δ

i
`δ
j
k).

Solution 13.

Problem 14. Let i0, i1, . . . , ik−1 ∈ N0. Given a vector (i0, i1, . . . , ik−1). Give
an implementation of the function

ζi0,i1,...,ik−1 =

−1 for i0 > i1 > · · · > ik−1

1 for i0 < i1 < · · · < ik−1

0 otherwise

Solution 14.
=

Maps and Functions 31

Problem 15. Let n1, n2, n3 ∈ N. Consider the equation

1
n1

+
1
n2

+
1
n3

=
1
2
.

Write a SymbolicC++ program utilizing the class Rational and Verylong to test
whether there are solutions for n1, n2, n3 ∈ {1, 2, . . . , 50}.

Solution 15. We find the six solutions

(3, 7, 42), (3, 8, 24), (3, 9, 18), (3, 10, 15), (4, 5, 20), (4, 6, 12).

Problem 16. Let N1, N2 be nonnegative integers and N = N1 +N2. Consider
the function

f(N1, N) =
N !

N1!N2!
≡ N !
N1!(N −N1)!

Let N = 10. Find the minima and maxima of the function f(N1, 10).

Solution 16.

Problem 17. Consider the alphabet

Σ :=< x1, x2 >

and the morphism (map)

σ(x1) = x2, σ(x2) = x1x2.

For example starting with x2x1x1x2x2x1x1x1 we obtain

x1x2x2x2x1x2x1x2x2x2x2.

Write a C++ program that implements this map. Describe the connection with
the Fibonacci numbers given by the recursion relation

yn+2 = yn+1 + yn, n = 0, 1, 2, . . .

and y0 = y1 = 1,

Solution 17.

Problem 18. Show that the (2, 2) Padé approximant of the cosine function is
given by

cos(x) ≈ 12− 5x2

12 + x2
.

Solution 18. SCandPP analysis

Chapter 4

Number Manipulations

Problem 1. Apply the Chinese remainder theorem to solve the set of equations

x≡ 7 (mod 8)
x≡ 2 (mod 9)
x≡−1 (mod 5).

Chinese remainder theorem. Suppose that the positive integers m1, m2, . . . , mt

are relatively prime in pairs; that is, gcd(mi,mj) = 1 if i 6= j, 1 ≤ i, j ≤ t. Let
b1, b2, . . . , bt be arbitrary integers. Then the congruences

x≡ b1 (modm1)
x≡ b2 (modm2)

...
x≡ bt (modmt)

have a simultaneous solution. Moreover, the simultaneous solution is unique
modulom1m2 · · ·mt. That is, if y is another solution, then x ≡ y (modm1m2 · · ·mt).

To find x we write it in the form

x = y1b1 + · · ·+ ytbt

where y1 ≡ 1 (modm1 and y1 ≡ 0 (modmi (2 ≤ i ≤ t), y2 ≡ 1 (modm2)
and y2 ≡ 0 (modmi) (i = 1, 3, 4, . . . , t) and similarly for y3, . . . , yt. To have
y1 ≡ 0 (modmi) (2 ≤ i ≤ t) we must have m2m3 · · ·mt|y1, since the mi are

32

Number Manipulations 33

relative prime in pairs. Thus, in general, set

m′i =
m1m2 · · ·mt

mi
.

Then gcd(mi,m
′
i) = 1 since m1, m2, . . . , mt are relatively prime in pairs. Thus

m′i has an arithmetic inverse m′∗i modmi, i.e.

m′∗i m
′
i = 1 (modmi).

We set yi = m′∗i m
′
i and correspondingly set

x = m′∗1 m
′
1b1 + · · ·+m′∗t m

′
tbt.

We have x ≡ b1 (modm1) since for 2 ≤ i ≤ t we have m1|m′i so that m′∗i m
′
ibi ≡

0 (modm1) for 2 ≤ i ≤ t. We also have m′∗1 m
′
1 ≡ 1 (modm1) so that m′∗1 m

′
1b1 ≡

b1 (modm1). Thus

x ≡ b1 + 0 + · · ·+ 0 ≡ b1 (modm1).

It follows similarly that x = bi (modmi) for all i, 1 ≤ i ≤ t.

Solution 1. We have b1 = 7, b2 = 2, b3 = −1 and m1 = 8, m2 = 9, m3 = 5.
Thus

m′1 = 9 · 5 = 45, m′2 = 8 · 5 = 40, m′3 = 8 · 9 = 72.

Therefore

45m′∗1 ≡ 1 (mod 8), 40m′∗2 ≡ 1 (mod 9), 72m′∗3 ≡ 1 (mod 5)

so that

m′∗1 ≡ 5 (mod 8), m′∗2 ≡ −2 (mod 9), m′∗3 ≡ 3 (mod 5).

We therefore find

x = 5 · 45 · 7 + (−2) · 40 · 2 + 3 · 72 · (−1) = 1199 ≡ 119 (mod 360)

where 360 = 8 · 9 · 5. Thus x = 119 satisfies the congruences.

Problem 2. Let p and q be prime numbers with p, q ≥ 3 and p 6= q. Let
n = pq. Assume that d, e ∈ N be two integer numbers with the properties

3< e < (p− 1)(q − 1)
de= 1 mod (p− 1)(q − 1)

gcd(e, n) = gcd(e, (p− 1)(q − 1)) = 1.

With these properties we can prove that for M ∈ { 0, 1, 2, . . . , n− 1 } the defini-
tion

C := Me modn

34 Problems and Solutions

yields M = Cd modn. Consequently

C = Ced modn

(i) Let s ∈ N such that C = Ced modn. Show that

M = Cs modn.

(ii) Show how the order r of C under modulo n arithmetic can be used to obtain
a linear diophantine equation for s.
(iii) Let p = 3, q = 17, e = 5 and M = 10. Find s and d.

Solution 2. (i) We have

Cs ≡ (Me)s ≡ ((Cd)e)s ≡ (Ces)d ≡ Cd ≡M modn.

(ii) We note that
Ces−1 ≡ 1 modn.

If gcd(C, n) 6= 1, then s = p or s = q. If gcd(C, n) = 1 we find that es − 1 is a
multiple of the order r of C under modulo n arithmetic. Then we obtain r from
the periodicity of the sequence

C0 = 1, C1, C2, . . . Cr ≡ 1, Cr+1 ≡ C, C2, . . . modn.

Since es − 1 is a multiple of r we have es − 1 = kr for some k ∈ Z, or es −
kr = 1 which is a linear diophantine equation. This equation can be solved in
polynomial time for non-negative s. If the algorithm yields negative s we simply
use the relation

e(s+ r)− (k + e)r = 1

i.e., we add r to s until we find a positive result.
(iii) We have n = pq = 51. Thus we find

C := 105 mod 51 = 10 (100 mod 51)2 mod 51
= 10 (49)2 mod 51 = 40

and

C2 mod 51 = 19 C3 mod 51 = 46
C4 mod 51 = 4 C5 mod 51 = 7
C6 mod 51 = 25 C7 mod 51 = 31
C8 mod 51 = 16 C9 mod 51 = 28
C10 mod 51 = 49 C11 mod 51 = 22
C12 mod 51 = 13 C13 mod 51 = 10
C14 mod 51 = 43 C15 mod 51 = 37
C16 mod 51 = 1.

Number Manipulations 35

Thus r = 16. Consequently we need to solve the linear diophantine equation

5s− 16k = 1.

Obviously a solution is given by s = −3 and k = −1. By translation we find a
second solution s = 13 and k = 4. It is simple to verify that 413 mod 51 = 10.
To find d we solve the linear diophantine equation

de− k2(p− 1)(q − 1) = 1

i.e. 5d− 32k2 = 1, to obtain d = 13 and k2 = 2. Thus we find in this case d = s.

Problem 3. Let F be a field (F = R,C). Consider polynomials. The division
algorithm is as follows. Let g be a nonzero polynomial in F[x]. Then every p in
F[x] can be written as

p = qg + r

where q anbd r are in F[x], and either r = 0 or deg(r) < deg(g). Furthermore q
and r are unique and can be found by the following algorithm

input: p, g

output: q, r

q := 0; r := p

while(r <> 0) and LT(g) divides LT(r)) do

q := q + LT(r)/LT(g)

r := r - (LT(r)/LT(g))

where LT is the leading term, i.e. the term with the highest degree. Apply the
division algorithm to

p(x) = x4 − 1, g(x) = x3 − x2 + x− 1.

Write a C++ program using SymbolicC++ that implements the algorithm.

Solution 3. We have
=

Problem 4. Consider the bijective spiral map on page 79 (problem 19). Can
we find an explicit expression for f? Could a polynomial ansatz work

f(x, y) =
N∑

i,j=0

cijx
iyj , (x, y) ∈ Z× Z.

Solution 4.

Problem 5. What is the output of the following C++ program

36 Problems and Solutions

// successor.cpp

#include <iostream>

using namespace std;

template<int n> class number

{

private:

number<n-1> predecessor;

public:

number<n+1> successor(void)

{ return number<n+1>(); }

ostream& output(ostream& o)

{ o << "{" << predecessor << "}"; return o; }

}; // end class number

class number<0>

{

public:

number<1> successor(void)

{ return number<1>(); }

}; // end class number<0>

template <int n> ostream& operator << (ostream& o,number<n> n)

{ return n.output(o); }

ostream& operator << (ostream& o,number<0> n)

{ o << "{ }"; return o; }

int main(void)

{

number<0> zero;

cout << zero << endl;

cout << zero.successor() << endl;

cout << zero.successor().successor() << endl;

return 0;

}

Solution 5. The output is

{ }

{{ }}

{{{ }}}

Problem 6. The following program uses the Verylong class of SymbolicC++.
What is the program doing?

Number Manipulations 37

// wormell.cpp

#include <iostream>

#include "verylong.h"

using namespace std;

int main(void)

{

Verylong two("2");

for(Verylong x("3");x<=Verylong("100");x+=2)

{

Verylong p("1");

Verylong t = x/two;

for(Verylong a("2");a<=t;a++)

{ for(Verylong b("2");b<=t;b++) { p = p*(x-a*b); } }

cout << "x = " << x << " " << "p = " << p << endl;

} // end x for loop

return 0;

}

Solution 6. The program implements Wormell’s formula, i.e.

B(x) =
x∏
a=2

x∏
b=2

(x− ab)2 =
{

a positive integer, if x is prime
0 if x is composite

Since the positive integer is very large the data type int would be to small.

Problem 7. What is the output of the following program?

// cypher.cpp

#include <iostream>

#include <string>

using namespace std;

int main(void)

{

string input = "PLEASE CONFIRM RECEIPT 471";

string output;

char t = 3;

for(int i=0;i<input.length();i++)

{

if((’a’ <= input[i]) && (input[i] <= ’z’))

output += (input[i] - ’a’ + t)%26 + ’a’;

else if((’A’ <= input[i]) && (input[i] <= ’Z’))

output += (input[i] - ’A’ + t)%26 + ’A’;

38 Problems and Solutions

else if((’0’ <= input[i]) && (input[i] <= ’9’))

output += (input[i] - ’0’ + t)%10 + ’0’;

else output += input[i];

}

cout << "output = " << output << endl;

return 0;

}

Solution 7. The output is

SOHDVH FRQILUP UHFHLSW 704

Problem 8. Let n be a positive integer. We define the set Zn as the set of
nonnegative integers less than n

Zn := { 0, 1, 2, . . . , (n− 1) }.

This is referred to as the set of residues modulo n. If we perform modular
arithmetic within this set the following properties hold

Commutative laws (w + x) modn= (x+ w) modn
(w ∗ x) modn= (x ∗ w) modn

Associative laws ((w + x) + y) modn= (w + (x+ y)) modn
((w ∗ x) ∗ y) modn= (x ∗ (w ∗ y)) modn

Distributive law (w ∗ (x+ y)) modn= ((w ∗ x) + (w ∗ y)) modn
Identities (0 + w) modn=wmodn

(1 ∗ w) modn=wmodn

and we have an additive inverse (−w), i.e. for each w ∈ Zn there exists a z such
that w + z = 0 modn. Note that

if (a*b) = (a*c) mod n then b = c mod n if a is relatively
prime to n

Write a C++ program using templates that implements modular arithmetic.

Solution 8.

Problem 9. The change problem is as follows. Convert some amount of money
M into given denominations, using the smallest possible number of coins. This
means the input is an amount of money M and an array of d denominations
c = (c0, c1, . . . , cd−1) in decreasing order of value, i.e. c0 > c1 > · · · > cd−1,
where cd−1 = 1. The output is an array of d integers i0, i1, . . . , id−1 such that

c0i0 + c1i1 + · · ·+ cd−1id−1 = M

Number Manipulations 39

and i0 + i1 + · · ·+ id−1 is a small as possible. The pseudocode is as follows

smallestNumberOfCoins = M

for each (i0, . . . , id−1) from (0, . . . , 0) to (M/c0, . . . ,M/cd−1)

valueOfCoins =
∑d−1
k=0 ikck

if valueOfCoins = M

numberOfcoins =
∑d−1
k=0 ik

if numberOfCoins < smallestNumberOfCoins

smallestNumberOfCoins = numberOfCoins

bestChange = (i0, i1, . . . , id−1)

return array bestChange

Write the pseudocode as a C++ program.

Solution 9.

Problem 10. Write a C++ program using Verylong of SymbolicC++ that
finds all integer solutions of

2437x+ 51329y = 1 x, y ∈ Z

in the range x, y ∈ [−100000, 100000].

Solution 10. We find x = 20599 and y = −978. Note the the greatest common
divisor of 2437 and 51329 is gcd(2437, 51329) = 1.

Problem 11. We define a mapping from the natural numbers N0 to sets as

0→ { }, n+ 1→ {n }.

Give a C++ implementation of this representation of natural numbers.

Solution 11.

// mapnatural.cpp

#include <iostream>

40 Problems and Solutions

using namespace std;

class Zero

{

public:

ostream &output(ostream &o) const { return o << "{ }"; }

};

template <class T> class Successor

{

private:

T predecessor;

public:

Successor(const T &t) : predecessor(t) {}

ostream &output(ostream &o) const

{

o << "{"; predecessor.output(o); o << "}";

return o;

}

};

template <class T>

Successor<T> successor(const T &n) { return Successor<T>(n); }

ostream &operator<<(ostream &o,Zero num)

{ return num.output(o); }

template <class T>

ostream &operator<<(ostream &o,Successor<T> num)

{ return num.output(o); }

int main(void)

{

Zero zero;

cout << zero << endl

<< successor(zero) << endl

<< successor(successor(zero)) << endl

<< successor(successor(successor(zero))) << endl;

return 0;

}

Problem 12. Let m and n be positive integers. We define the map N×N→ N

m�n :=
the lowest common multiple of m and n

the highest common factor of m and n
.

For example

12�30 =
60
6

= 10.

Number Manipulations 41

Is the composition associative, i.e.

(m�n)�p = m�(n�p) ?

Write a C++ program using templates (so that Verylong of SymbolicC++ can
also be used) that implements this composition.

Solution 12. The composition is not associative. An example is

(12�30)�14 = 10�14 = 35.

However
12�(30�14) = 12�105 = 140.

Problem 13. Consider the following arithmetic problem

*

#

+ # #

#

where ∗ denotes multiplication and + denotes addition. Each # should be one
of the digit 1,2,3,4,5,6,7,8,9, where the condition is that each digit occurs only
once. Write a C++ program that finds all the solutions.

Solution 13.

Problem 14. Let n be a positive integer. There are exactly as many irre-
ducible representations of the permutation group Sn (order of Sn is n!) as there
are partitions { pj} of n

n∑
j=1

pj = n, p1 ≥ p2 ≥ · · · ≥ pn ≥ 0.

For example for n = 4 we have 5 partitions with

4000, 3100, 2200, 2110, 1111.

The number of partitions is given by p(1, k), where p(k, n) represents the number
of partitions of n using only natural numbers at least as large as k. A recursion
relation for p(k, n) is given by

p(k, n) =

 0 if k > n
1 if k = n

p(k + 1, n) + p(k + 1, n) + p(k, n− k) otherwise

42 Problems and Solutions

(i) Give a C++ implementation of this recursion.
(ii) Give a C++ implementation that finds the partitions for a given n without
the trailing 0’s.

Solution 14. (i)

// NoofPartitions.cpp

#include <iostream>

using namespace std;

int p(int k,int n)

{

if(k > n) return 0;

if(k==n) return 1;

else return p(k+1,n) + p(k,n-k);

}

int main(void)

{

int r1 = p(2,7);

cout << "r1 = " << r1 << endl;

int r2 = p(1,10);

cout << "r2 = " << r2 << endl;

return 0;

}

(ii) The implementation is

// partition.cpp

#include <iostream>

using namespace std;

int main(void)

{

int n = 7;

int* T = new int[n+1];

int m, h;

T[0] = -1;

int j; int r;

for(j=1;j<=n;j++) T[j] = 1;

for(j=1;j<=n;j++) cout << T[j] << endl;

cout << endl;

T[1] = 2; h = 1; m = n-1;

for(j=1;j<=m;j++) cout << T[j] << endl;

cout << endl;

while(T[1] != n)

Number Manipulations 43

{

if((m-h) > 1) { h = h + 1; T[h] = 2; m = m - 1; }

else { j = m - 2;

while(T[j]==T[m-1]) { T[j] = 1; j = j-1; }

h = j+1; T[h] = T[m-1] + 1;

r = T[m] + T[m-1]*(m-h-1);

T[m] = 1;

if((m-h) > 1) T[m-1] = 1;

m = h+r-1; }

for(j=1;j<=m;j++) cout << T[j] << endl;

cout << endl;

}

return 0;

}

Problem 15. Consider the sequence (Ballot numbers)

B0 =B1 = 1,

BL =BL−1 +
L−2∑
`=0

B`BL−2−`, L = 2, 3,

(i) Give a C++ implementation of this recursion.
(ii) Show that the generating function

B(x) =
∞∑
L=0

BLx
L

is given by
x2(B(x))2 − (1− x)B(x) + 1 = 0.

Solution 15.

Problem 16. A perfect number is a natural number with the properties that
the sum of the factors gives twice the number, for example

2 · 6 = 1 + 2 + 3 + 6

so that 6 is a perfect number. A Mersenne prime is a Mersenne number 2n − 1,
where n is chosen such that 2n − 1 is prime (for example n = 5).
(i) Show that 2n−1(2n − 1) is perfect. For example for n = 5 we have 496 with

496 = 248 + 124 + 62 + 31 + 16 + 8 + 4 + 2 + 1.

(ii) Prove that if 2n−1p is perfect for p prime then p is a Mersenne prime and
p = 2n − 1.

44 Problems and Solutions

(iii) Prove that for any even perfect number q there exists n ∈ N such that
q = 2n−1(2n − 1).

Solution 16. (i) Since 2n − 1 is the prime, the factors of 2n−1(2n − 1) are

1, 2, 4, . . . , 2n−1, 2n − 1, 2(2n − 1), 4(2n − 1), . . . , 2n−1(2n − 1).

Summing the factors we find

n−1∑
j=0

2j +
n−1∑
j=0

2j(2n − 1) = 2n
n−1∑
j=0

2j = 2n(2n − 1) = 2 · 2n−1(2n − 1).

Thus 2n−1(2n − 1) is perfect for 2n − 1 prime.
(ii) In the same way the factors of 2n−1p are

1, 2, 4, . . . , 2n−1, p, 2p, 4p, . . . , 2n−1p.

Summing the factors we find

n−1∑
j=0

2j +
n−1∑
j=0

2jp = (p+ 1)
n−1∑
j=0

2j = (p+ 1)(2n − 1) = 2 · 2n−1p.

Solving for p from the equation

(p+ 1)(2n − 1) = 2np

yields p = 2n − 1.

Problem 17. Consider the one-dimensional map (logistic map) f : [0, 1] →
[0, 1]

f(x) = 4x(1− x).

A computational analysis using a finite state machine with base 2 arithmetic in
fixed point operation provides one-dimensional maps with a lattice of 2N sites
labeled by numbers

x =
N∑
j=1

εj
2j
, εj ∈ { 0, 1 }

and N defines the machine’s precision. Consider N = 8 bits and x = 1/8.
Calculate the orbit f(x), f(f(x)), f(f(f(x))), . . . with this precison. Discuss.

Solution 17. switch to 8 bits The bit representation of 1/8 with N = 6
is 001000. Now f(1/8) = 7/16 with the bit representation 011100 with no
rounding errors. Next we have f(f(1/8)) = 63/64 with the bit representation
111111. Again no rounding error occurs. Next we have

f(f(f(1/8))) =
63

1024
=

25 + 24 + 23 + 22 + 21 + 20

210

Number Manipulations 45

with the bit representation 0000111111. Since we only have 6 bits disposable
we have to truncate the bitstring to 000011 which represents the number 3/64.
Using 3/64 we find next in the sequence 183/1024 with the bit representation
0010110111. We again have to truncate to 001011 which represents 11/64.
Proceeding in this manner we find next 9/16 and then 63/64. Thus we obtain a
4-cycle after only 6 iterations, i.e.

1
8
,

7
16
,

63
64
,

3
64
,

11
64
,

9
16
,

63
64
.

Problem 18. Find the solution of the system

5x= 2 mod 3
4x= 7 mod 9
2x= 4 mod 10.

Solution 18. We have x = 22 mod 45 since

5 · 22 = 110⇒ 110− 36 · 3 = 2
4 · 22 = 88⇒ 88− 9 · 9 = 7
2 · 22 = 44⇒ 44− 4 · 10 = 4.

Problem 19. The Bernoulli numbers B0, B1, B2, . . . are defined by the series

x

ex − 1
=
∞∑
j=0

Bjx
j

j!

where B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30. Note that
B2j+1 = 0 for all j = 1, 2, Give an efficient way to calculate the Bernoulli
numbers. Then write a C++ program using the Verylong and Rational class
of SymbolicC++.

Solution 19.

Problem 20. In the following arithmetic problem with one multiplication
and one sum each digit (except one with the digit 0) has been replaced by an
asterisks.

* * * x
* *

* * * *

46 Problems and Solutions

* * * 0 +

* * * *

Solve the problem when the asterisks can only be one of the prime numbers 2,
3, 5, 7.

Solution 20. The solution is

7 7 5 x
3 3

2 3 2 5

2 3 2 5 0 +

2 5 5 7 5

Problem 21. Consider the nine numbers

111, 222, 333, 444, 555, 666, 777, 888, 999.

Find all the postive integers larger 1 that divide these numbers without remain-
der.

Solution 21. We find 3, 37 and 111 = 3 · 37.

Problem 22. Let n be a positive integer. Any partition of n into parts
n = p1 + p2 + · · · + pn, 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ n can be rearranged in 2 × r
matrix (

a1 a2 · · · ar
b1 b2 · · · br

)
called the Frobenius symbol, such that

0 ≤ a1 < a2 < · · · < ar, 0 ≤ b1 < b2 < · · · < br, n = r +
r∑
j=1

aj +
r∑
j=1

bj .

Each partition has a unique representation as a Frobenius symbol.
(i) Find the Frobenius symbol for n = 20.
(ii) Write a C++ program that finds the Frobenius symbol for a given n.

Solution 22. (i) For n = 20 we have

20 = 5 + 5 + 3 + 3 + 2 + 1 + 1.

This can be represented as

Number Manipulations 47

x x x x x
x x x x x
x x x
x x x
x x
x
x

The diagonal has r = 3 elements we remove. Then

x x x x a_1
x x x x a_2
x x a_3
x x x
x x
x
x
b_1 b_2 b_3

The rows on the right are the elements a1, a2, a3 and the columns on the left
are the elements b1, b2, b3. Thus we obtain the matrix(

4 3 0
6 3 1

)
.

For each given n one can construct p(n) Frobenius symbols with
∞∑
n=0

p(n)qn =
∞∏
n=1

1
1− qn

.

Problem 23. Show that (continued-fraction representation)

1√
3

= [1, 2, 1, 2, 1, 2 . . .].

Solution 23.

Problem 24. The Möbius arithmetic functions µ : N 7→ {0,±1} is defined by

µ(n) :=

 1 if n = 1
(−1)m if n is the product of m distinct primes

0 otherwise

Give a C++ implementation using Verylong of SymbolicC++ and BigInteger
using Java. For m ∈ N one has ∑

n|m

µ(n) = δm,1

48 Problems and Solutions

where δ denotes the Kronecker delta.

Solution 24.
=

Problem 25. Let x, y be integers. Assume they satisfy the equation

x2 − 8y2 = 17.

(i) Show that (x0, y0) = (5, 1) is a solution. Show that (x0, y0) = (7, 2) is a
solution.
(ii) Let n = 0, 1, 2, Show that if (xn, yn) satisfy the equation, then

xn+1 = 3xn + 8yn, yn+1 = xn + 3yn

also satisfy the equation.

Solution 25.
(ii) We have

x2
n+1 − 8y2

n+1 = x2
n − 8y2

n.

Problem 26. Nobles are irrationals with continued fraction representations of
the form

ω = a0 + 1/(a1 + 1/(a2 + · · ·+ 1/(1 + 1/(1 + · · ·

which eventually have elements all equal to one. Find the number with all aj ’s
equal to one.

Solution 26.
=

Problem 27. Let p and q be prime with p ≤ q. Solve for p and q such that
p+ q is prime.

Solution 27. Since p and q are prime and p + q is prime, we have p + q = 2
(which has no solution for p and q prime) or p + q is odd. Since the sum of
two odd numbers is even, one of p and q must be even. Since 2 is the only even
prime number and also the smallest prime number p = 2. Thus p + q = q + 2
must be prime. From q prime and q+ 2 prime it follows that q must be the first
of a pair of twin primes.

Problem 28. Let n = 0, 1, 2, The Fermat numbers Fn are given by

Fn = 2(2n) + 1

Number Manipulations 49

(i) Show that the Fermat numerbers satisfy the recurrence relation

Fn+1 = (Fn − 1)2 + 1

with F0 = 3.
(ii) Calculate the first ten Fermat numbers using this recurrence relation and
the Verylong class of SymbolicC++.
(iii) Calculate the first ten Fermat numbers using this recurrence relation and
the BigInteger class of Java.

Solution 28.

Problem 29. Consider a palindrome consisting of digits. A palindrome is a
string of characters that reads the same from left to right or from right to left.
Show that if n ∈ N is a palindrome with an even number of digits, then n is a
multiple of 11. For example 3223 : 11 = 293. Write a C++ program utilizing
the string class to find out whether a string with an even number of digits is a
palindrome.

Solution 29.

Problem 30. Consider the 6 digit number 142857 with the digits 1, 4, 2, 8,
5, 7. Multiply the number by 2,3,4,5,6. Discuss. What is the connection with
6× 6 permutation matrices? Write a C++ program that can do the job.

Solution 30.

Problem 31. Can one find two positive integers m and n such that

m · n · (m+ n) = 29400.

Solution 31. We find m = 24, n = 25 and owing to symmetry m = 25,
n = 24.

Problem 32. Let n ∈ N. Show that 7n − 2n is divisible by 5. Is 7n − 3n

divisible by 4?

Solution 32.

Problem 33. Let n ∈ N and x, y ∈ R. Show that xn−yn is divisible by x−y.

Solution 33.

50 Problems and Solutions

Problem 34. We know that there is an positive integer n such that

n5 = 5277319168

Find n using that 05 = 0, 15 = 1, 25 = ...2, 35 = ...3, 45 = ...4, 55 = ...5,
65 = ...6, 65 = ...6, 75 = ...7, 85 = ...8, 95 = ...9, i.e. the last digit of the power
5 of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 is the number themselve.

Solution 34. The number is 88.

Problem 35. Find integer solutions of

31n1 − 16n2 = 40.

Solution 35. We obtain n1 = 8, n2 = 16.

Problem 36. Let Z be the set of integers. Let m1,m2 ∈ Z. Find all solutions
of

m2
1 +m2

2 = 80.

Describe your approach.

Solution 36.

Problem 37. All rational numbers can be represented by terminating con-
tinued fractions. For example for 703/29 we have 24 + 7/29. The reciprocal of
7/29 is 29/7. Now 29/7 = 4 + 1/7. The reciprocal of the fractional part is 1/7
is 7. The number 7 has no fractional part. Thus

703
29

= 24 +
1

4 + 1/7
.

Give a C++ implementation of this algorithm utilizing the Verylong and Rational
class of SymbolicC++.

Solution 37.

Problem 38. Let i, j be integers. Give a C++ implementation of the map

i / j := 2j − i mod 6

where mod 6 means divide by 6 and keep only the remainder.

Solution 38.

Problem 39. Let n ∈ N.

Number Manipulations 51

(i) Is 23n − 1 divisible by 7?
(ii) Is 32n + 7 divisible by 8?

=

Problem 40. Let n ∈ N. Show that xn − 1 is divisible by x− 1 for x 6= 1.

Chapter 5

Combinatorical Problems

Problem 1. Let X := {x0 = 0, x1, x2, . . . , xn−1 } be a set of n points on the
real axis with xj < xj+1 for j = 0, 1, . . . , n− 2. Let ∆X denote the sequence of
all (

n

2

)
≡ n!

(n− 2)!2!

pairwise distance between points in X with the ordering ∆xj ≤ ∆xj+1 for
j = 0, 1, . . . ,

(
n
2

)
− 1. For example, let X = { 0, 2, 4, 7, 10}. Then

∆X = {2, 2, 3, 3, 4, 5, 6, 7, 8, 10}.

Given X write a C++ program that generates ∆X. Can one reconstruct X
from ∆X? For the given example look at

0 2 4 7 10

0 2 4 7 10

2 2 5 8

4 3 6

7 3

10

Solution 1.

Problem 2. The rank of an element in a sequence (one-dimensional array) of
numbers is the number of smaller elements in the sequence plus the number of
equal elements that appear to its left. For example, if the sequence is given as
the one-dimensional array a = [4, 3, 9, 3, 7], then the ranks are r = [2, 0, 4, 1, 3].
Write a C++ program with a function void rank(T* a,int n,int* r) that

52

Combinatorical Problems 53

computes the ranks of the elements of the array a[0 : n− 1]. Once the elements
have been ranked using the function rank() write a function rearrange() that
rearrange them in nondecreasing order so that a[0] ≤ a[1] ≤ · · · ≤ a[n − 1] by
moving elements to positions corresponding to their ranks.

Solution 2. We can estimate the complexity of the function rank by counting
the number of comparisons between elements of the array a. These comparisons
are done in the if statement. For each value of i, the number of element
comparisons is i. Thus the total number of element comparisons is 1 + 2 + · · ·+
n− 1 = (n− 1)n/2.

// rank.cpp

#include <iostream>

using namespace std;

template<class T>

void rank(T* a,int n,int* r)

{

for(int i=0;i<n;i++) r[i] = 0; // initialize

// compare all elements

for(int j=1;j<n;j++)

for(int k=0;k<j;k++)

if(a[k] <= a[j]) r[j]++;

else r[k]++;

}

template <class T>

void rearrange(T* a,int n,int* r)

{

T* u = new T[n+1];

// move to the correct place in u

for(int i=0;i<n;i++) u[r[i]] = a[i];

// move back to array a

for(int j=0;j<n;j++) a[j] = u[j];

delete[] u;

}

int main(void)

{

int n = 5;

int* a = new int[n];

a[0] = 4; a[1] = 3; a[2] = 9; a[3] = 3; a[4] = 7;

int* r = new int[n];

rank(a,n,r);

for(int i=0;i<n;i++) cout << "r[" << i << "] = " << r[i] << endl;

rearrange(a,n,r);

for(int j=0;j<n;j++) cout << "a[" << j << "] = " << a[j] << endl;

delete[] a; delete[] r;

54 Problems and Solutions

return 0;

}

Problem 3. Suppose we list all the 2n − 1 nonempty subsets of the set of
numbers {1, 2, . . . , n}. Then, for each subset, we write down the product of
its elements. Finally, we add these 2n − 1 numbers to obtain the number sn.
Obviously s1 = 1. For n = 2 we have {1}, {2}, {1, 2}. Thus s2 = 5 = 1 + 2 + 2.
For n = 3 the seven products one obtains are 1, 2, 3, 1 × 2, 1 × 3, 2 × 3 and
1× 2× 3. Thus s3 = 23.
(i) Find s4.
(ii) Find a recursion sn+1 = f(n, sn) for sn+1 with s=1.
(iii) Write a C++ program that implements this recurrence relation with the
initial value s1 = 1.

Solution 3. (i) For s4 we find

s4 = 1 + 2 + 3 + 4 + 2 + 3 + 4 + 6 + 8 + 12 + 6 + 8 + 12 + 24 + 24.

Thus s4 = 119.
(ii) We have

S1 = 1, S2 = (3 · 1) + 2 = 5, S3 = (4 · 5) + 3 = 23, (5 · 23) + 4 = 119.

The recursion is given by

sn+1 = (n+ 2)sn + (n+ 1)

with s1 = 1.

Problem 4. How many arrangements of a, a, a, b, b, b, c, c, c are there so that
no 2 letters of the same type appear consecutively? For example abcabcabc would
be such an arrangement. Could a tree structure be used to find the solution?
Write a C++ program that finds all sequences.

Solution 4.

Problem 5. A coin is tossed eight times in a row.
(i) What is the probability of getting exactly four heads in a row?
(ii) What is the probability of getting at least four heads in a row?

Solution 5. (i) We partition the set of 8-sequences with exactly 4 heads in a
row into five categories:

HHHHT***, THHHHT**, *THHHHT*, **THHHHT, ***THHHH .

Combinatorical Problems 55

Each * could be either H or T (wildcard), so the total number is 23 + 22 + 22 +
22 + 23 = 28. There are 28 sequences of coin tosses since each toss can be one of
2 choices. Therefore, if we assume each sequence of coin tosses is equally likely,
the probability of getting 4 heads in a row is 28/256 = 0.109375.
(ii) The number of ways to obtain exactly 4 heads has been calculated in (i).
For exactly 5 heads in a row we have

HHHHHT**, THHHHHT*, *THHHHHT, **THHHHH

gives 22 + 2 + 2 + 22 = 12 ways. For exactly 6 heads in a row we have

HHHHHHT*, THHHHHHT, *THHHHHH

gives 2 + 1 + 2 = 5 ways. For exactly 7 heads in a row we have

HHHHHHHT, THHHHHHH

which gives two ways. For 8 heads HHHHHHHH we obviously have one way. This
provides a total of 28 + 12 + 5 + 2 + 1 = 48 ways to obtain at least 4 heads.
Therefore, the probability of getting at least 4 heads in a row is 48/256 = 0.1875.

Problem 6. Show that the number of ways in which n different objects can
be arranged in a a ring, if only relative order matters, is (n− 1)!. First give an
example with 3 objects.

Solution 6. For three objects a, b, c we have abc, bac.

Problem 7. (i) How many n-digit ternary sequences (using only 0,1,2) are
there with k 1’s?
(ii) Find the sequences for n = 3 and k = 2.
(iii) Write a C++ program that finds these sequences for given n and k in
lexicographical order.

Solution 7. Pick the k positions for the 1’s in
(
n
k

)
ways. Then for each

placement of the 1’s there are 2n−k ways to assign 0 or 2 to each of the remaining
n− k positions. Thus the total number is(

n

k

)
· 2n−k.

If n = 3 and k = 2 we have 6 ways. The sequence are in lexicographical order

011 101 110 112 121 211.

Problem 8. How many arrangements of a, a, a, b, b, b, c, c, c are there so that
no 2 letters of the same type appear consecutively? For example, abcabcabc
would be such an arrangement.

56 Problems and Solutions

Solution 8. The total number of arrangements of a, a, a, b, b, b, c, c, c is

9!
3!3!3!

= 1680

which follows from the formula for the permutations of multisets. We use the
inclusion-exclusion principle to find the number of arrangements. Let Sa be
the multiset of those arrangements that have two a’s consecutive. Similarly, we
define Sb and Sc. If two a’s are consecutive, then glue them to form a block
which we consider as one letter. Then |Sa| is the number of ways to permute
the multiset {aa, b, b, b, c, c, c}, which is 7!/(3!3!), times the number of distinct
ways to insert the last a, namely 7. When inserting the last a we only count the
space to the left of aa and not to the right as this would be an over count. Thus

|Sa| = 7 · 7!
3!3!

= 980.

Similarly, |Sb| = |Sc| = Sa| by symmetry. Next we construct Sa ∩ Sb by finding
all multiset permutations on {aa, bb, c, c, c} and then inserting an a and a b.
There are 5 distinct ways to insert the extra a into the 5-perm, 6 distinct ways
to insert the extra b into the 6-perm. In addition, it is possible that a is inserted
just to the right of aa and then it is separated by the b on the second step. This
is equivalent in finding a multiset permutation of {aaba, bb, c, c, c}. Therefore

|Sa ∩ Sb| =
(

5
1, 1, 3

)
· 5 · 6 +

(
5

1, 1, 3

)
= 620.

Similarly, |Sc∩Sb| = |Sa∩Sc| = 620. Finally, we calculate the number of elments
in the multiset Sa ∩ Sb ∩ Sc, i.e. the number of distinct multiset permutations
of {aa, a, bb, b, cc, c}. There are 6 permutations of {aa, bb, cc}. We can add the
extra a in 4 ways, either to the right of aa or in one of the 3 other positions. In
the first case, after inserting the b and c we must end up with one of the strings
aaba (with 3 places to put the c) aaca (with three places to put the b) aabca or
aacba, totally 8 possibilities. In the second case, if the b goes to the right of the
bb the c is forced, if the b goes in any of the remaining 4 positions, the c can be
inserted anywhere except to the right of cc, giving 3 + 3 · 4 · 5 = 63 possibilities.
Therefore

|Sa ∩ Sb ∩ Sc| = 6 · (8 + 63) = 426.

Thus using the inclusion-exclusion principle the number of mutiset permutations
with no double letters is 1680− 3 · 980 + 3 · 620− 426 = 174.

Problem 9. Let n be a positive integer. Use the inclusion-exclusion principle
to prove that

n =
n∑
k=1

(−1)k−1k

(
n

k

)
2n−k.

Combinatorical Problems 57

Solution 9. Using the identity

k

(
n

k

)
≡ n

(
n− 1
k − 1

)
we obtain the equivalent identity

n =
n∑
k=1

(−1)k−1n

(
n− 1
k − 1

)
2n−k

to be proved. Substituting the variables j = k − 1 and m = n− 1, we arrive at
the equivalent identity

1 =
m∑
j=0

(−1)j
(
m

j

)
2m−j .

Let S be the set of all binary sequences of length m. Define Ai to be the set of
all the binary sequences of length m, which have a 1 in the i-th position. Then,
for any j, 1 ≤ j ≤ m, and for any 1 ≤ i1 < i2 < · · · < ij ≤ m, we have

|Ai1 ∩Ai2 ∩ · · · ∩Aij | = 2m−j .

Therefore, by inclusion-exclusion, we obtain that the number of all-zero binary
sequences of length m (which is 1) is equal to

|S − (A1 ∪A2 ∪ · · · ∪Am)| = 2m −
m∑
j=1

(−1)j
(
m

j

)
2m−j =

m∑
j=0

(−1)j
(
m

j

)
2m−j .

Problem 10. Show that the number of ways of writing the positive integer n
as a sum of positive integers, where the order of the summands is significant, is
2n−1 for n ≥ 1. For example, for n = 3 we have 3 = 3, 3 = 2 + 1, 3 = 1 + 2,
3 = 1 + 1 + 1.

Solution 10. There is one expression consisting of the single number n. Any
other expression ends with some positive integer j < n, preceded by an expres-
sion with sum n− j. Thus the number of expressions satisfies

sn = 1 +
n−1∑
j=1

sn−j = 1 +
n−1∑
j=1

sj .

We find that
sn+1 = sn + sn = 2sn.

Since s1 = 1 we have sn = 2n−1.

58 Problems and Solutions

Problem 11. A derangement (or fixed-point-free permutation) of { 1, 2, . . . , n }
is a permutation f such that f(j) 6= j for all j = 1, 2, . . . , n. What is the number
of derangements of n objects?

Solution 11. There are n! permutations. Using(
n

n

)
= 1,

(
n

1

)
= (n− 1)!

we find that the number of derangements of n objects is given by

n!− n(n− 1)! +
(
n

2

)
(n− 2)!−+ · · ·+ (−1)n = n!

(
1
2!
− 1

3!
+− · · ·+ (−1)n

1
n!

)
= n!

n∑
j=2

(−1)j
1
j!
.

Problem 12. A numerical partition of a positive integer n is a sequence

p1 ≥ p2 ≥ · · · ≥ pk ≥ 1

such that
p1 + p2 + · · ·+ pk = n.

Each pj is called a part. For example, 18 = 7 + 4 + 4 + 1 + 1 + 1 is a partition of
18 into 6 parts. The number of partitions of n into k parts is denoted by p(n, k).
(i) Find p(7, 3).
(ii) Show that the recurrence for p(n, k) is given by

p(n, k) = p(n− 1, k − 1) + p(n− k, k)

with the initial conditions p(n, 0) = 0, p(k, k) = 1. Obviously, we have p(n, 1) =
1.
(iii) Write a C++ program that implements this recurrence..
(iv) Every numerical partition of a positive integer n corresponds to a unique
Ferrer’s diagram. A Ferrer’s diagram of a partition is an arrangement of n dots
on a square grid, where a part j in the partition is represented by placing pj
dots in a row. This means we represent each term of the partition by a row
of dots, the terms in descending order with the largest at the top. Sometimes
it is more convenient to use squares instead of dots (in this case the diagram
is called a Young diagram). Draw the Ferrer’s diagram for the partition 18 =
7 + 4 + 4 + 1 + 1 + 1. The partition we obtain by reading the Ferrer’s diagram by
columns instead of rows is called the conjugate of the original partition. Find
the conjugate of the partition 18 = 7 + 4 + 4 + 1 + 1 + 1.

Combinatorical Problems 59

Solution 12. (i) We have

7 = 5 + 1 + 1 = 4 + 2 + 1 = 3 + 3 + 1 = 3 + 2 + 2.

Thus p(7, 3) = 4.
(ii) Consider the cases k = 1 and k > 1. For k = 1 we have p(n, 1) = 1. For
k > 1 we use induction.
(iv) We have 18 = 6 + 3 + 3 + 3 + 1 + 1 + 1.

Problem 13. The Bell numbers count (starting from 0) the ways that n
distinguishable objects can be grouped into sets if no set can be empty. Thus
the Bell numbers are given by the sequence

{ 1, 1, 2, 5, 15, 52, 203, 877, 4140, . . . }.

For example the numbers 1, 2, 3 can be grouped into sets so that

1) 1, 2, 3 are in three separate sets: {1}, {2}, {3}
2) 1 and 2 are together and 3 is separate: {1, 2}, {3}
3) 1 and 3 together and 2 separate: {1, 3}, {2}
4) 2 and 3 together and 1 separate: {2, 3}, {1}
5) 1, 2, 3 are all together in a single set: {1, 2, 3}

Hence for n = 3 there are five partitions and thus the third Bell number is 5.
(i) Let Pn denote the nth Bell number, i.e. the number of all partitions of n
objects. Then we have

Pn =
1
e

∞∑
k=0

kn

k!
.

(i) Find a recurrence relation for Pn.
(ii) Write a C++ program that implements this recursion. Apply Verylong of
SymbolicC++.
(iii) Find the MacLaurin expansion (expansion around 0) of exp(exp(x)) and
establish a connection with the Bell numbers.

Solution 13. (i) Let S be the set to be partioned and x ∈ S. If the class
containing x has k elements, it can be chosen in(

n− 1
k − 1

)
ways. The remaining n− k elements can be partioned in Pn−k ways. Thus the
number of partitions in which the class containing x has k elements is(

n− 1
k − 1

)
Pn−k.

60 Problems and Solutions

This remains true for k = n if we set P0 = 1. Thus

Pn =
n∑
k=1

(
n− 1
k − 1

)
Pn−k =

n−1∑
k=0

(
n− 1
k

)
Pk.

(iii) Since d(exp(exp(x))/dx = exp(x) exp(exp(x)) etc and exp(0) = 1 we find

exp(exp(x)) = e

(
1 +

1x
1!

+
2x2

2!
+

5x3

3!
+ · · ·

)
Thus the coefficients 1, 1, 2, 5, . . . are the Bell numbers.

Problem 14. Let N be a positive integer. Consider the set of numbers

S = { 0, 1, 2, . . . , N }

How many pairs (m,n) (m,n ∈ S) can be formed with the condition that m < n.

Solution 14. First we can form

(0, 1), (0.2), . . . , (0, N)

which are N pairs. Then we can form

(1, 2), (1, 3), . . . , (1, N)

which are N − 1 pairs. Proceeding in this way we obtain

N + (N − 1) + (N2) + · · ·+ 2 + 1 ≡ N(N + 1)
2

ways.

Problem 15. Consider a bitstring of length m which has exactly m1 ones and
m2 zeros (m1 +m2 = m).
(i) Find the number of different possible bitstrings.
(ii) Consider the special case m = 4, m1 = m2 = 2. Write down the bitstrings
in lexicographical order.

Solution 15. We have (
m

m1

)
≡ m!
m1!m2!

.

(ii) For the special case we find(
4
2

)
=

4!
2!2!

= 6

Combinatorical Problems 61

with
0011, 0101, 0110, 1001, 1010, 1100.

Problem 16. A dice is thrown twice. The first throw determines the tens
digit and the second throw the ones digit of the two-digit number. Find the
probability that this two-digit number is a perfect square.

Solution 16. Since the dice is thrown twice there are 36 possible outcomes,
namely

11, 12, . . . 16, 21, . . . , 26, . . . , 61, . . . , 66.

Only four of them represent squares, namely

16, 25, 36, 64.

Thus the probability is 4/36 = 1/9.

Problem 17. How many different numbers of 7 digits can be formed with the
digits 1122334 ?

Solution 17.
=

Problem 18. Suppose three fair coins are flipped. Let X be the event that
they same face. Let Y be the event that there is at most one head. Show that
X and Y are independent.

Solution 18. There are eight possible outcomes. We have

|X| = |{TTT,HHH}| = 2, |Y | = |{TTT,HTT, THT, TTH}| = 4.

Consequently
|X ∩ Y | = |{TTT}| = 1.

It follows that

P (X ∪ Y) = P (TTT) =
1
8
, P (X) = P (TTT ∪HHH) =

1
4
, P (Y) =

1
2
.

Thus P (X ∩ Y) = P (X)P (Y).

Problem 19. The Stirling number of the second kind S(n, k) is the number
of partitions of a set with n elements into k classes. Let b†, b be Bose creation
and annihilation operators with the commutation relations

[b, b†] = bb† − b†b = I

62 Problems and Solutions

where I is the identity operator. Then S(n, k) can be defined by

(b†b)n =
n∑
k=1

S(n, k)(b†)kbk.

Let n = 3. Use this definition to find S(3, 1), S(3, 2), S(3, 3).

Solution 19. Using the commutation relation we find

(b†b)3 = b†b+ 3b†b†bb+ b†b†b†bbb.

Thus
S(3, 1) = 1, S(3, 2) = 3, S(3, 3) = 1.

Problem 20. Let n ≥ 1. Let a1, a2, . . . ,an be real numbers. How many terms
are there in the sum ∑ ∑

1≤j1<j2<j3≤n

∑
aj1aj2aj3 .

Solution 20.
=

Problem 21. Let n ≥ 1. Let c†1, c†2, . . . , c†n be spin-less Fermi creation
operators and c1, c2, . . . , cn be spin-less Fermi annihilation operators. Thus

[c†j , ck]+ = δjkI, [cj , ck]+ = 0, [c†j , c
†
k]+ = 0

where 0 is the zero operator, [,]+ denotes the anti-commutator and j, k =
1, . . . , n. Then (cj)2 = 0 and (c†j)

2 = 0. Let |0〉 be the vacuum state with
cj |0〉 = 0|0〉 and j = 1, . . . , n. Then for n = 1 we can form the two-dimensional
basis |0〉, c†1|0〉. For n = 2 we can form the four dimensional basis

|0〉, c†1|0〉, c†2|0〉, c†2c
†
1|0〉.

(i) Find the basis for n = 3.
(ii) Find the basis for n = 4.
(iii) Extend to arbitrary n.

Solution 21. (i) For n = 3 we have one state |0〉 with no Fermi particle, three
states with one Fermi particle

c†1|0〉, c†2|0〉, c†3|0〉,

Combinatorical Problems 63

three states with two Fermi particle

c†1c
†
2|0〉, c†1c

†
3|0〉, c†2c

†
3|0〉

and one state with three Fermi particles c†1c
†
2c
†
3|0〉. Altogether we have 23 = 8

states.
(ii) For n = 4 we have 16 states

|0〉, c†1|0〉, c†2|0〉, c†3|0〉, c†4|0〉,

c†1c
†
2|0〉, c†1c

†
3|0〉, c†1c

†
4|0〉, c†2c

†
3|0〉, c†2c

†
4|0〉, c†3c

†
4|0〉

c†1c
†
2c
†
3|0〉, c†1c

†
2c
†
4|0〉, c†1c

†
3c
†
4|0〉, c†2c

†
3c
†
4|0〉, c†1c

†
2c
†
3c
†
4|0〉.

(iii) For general n we have 2n states. Note that

2n ≡
n∑
k=0

(
n

k

)
.

First we have one vacuum state |0〉, then n ≡
(
n
1

)
one Fermi particle states,

(
n
2

)
states with two Fermi particles,

(
n
3

)
states with three Fermi particles etc and

finally the state with n Fermi particle c†nc
†
n−1 · · · c

†
1|0〉.

Problem 22. In how many ways can four people arrange themselves in a
row? (open end boundary conditions) In how many ways can four people ar-
range themselves around a circular table? (cyclic boundary conditions, circular
permutation) Number the people as 0, 1, 2, 3. Give all configuration for the
second case. Draw pictures for all possible configurations starting with

0 -- 1
| |
3 -- 2

Solution 22.

Problem 23. Given eight soccer teams we number 0, 1, . . . , 7. Every team
plays every otherteam. At each weekend there are four matches with each team
playing. To generate all the matches for the seven weekends we proceed as
follows: For the first weekend the matches are

(0,7) (1,6) (2,5) (4,5)

We keep the 7 in the first pairing fixed for all weekends. For all other entries we
add −1 modulo 7. So the pairings for the second weekend are

(6,7) (0,5) (1,4) (2,3)

64 Problems and Solutions

Give a C++ implementation to find the pairings for all weekends.

Solution 23. The C++ code is

// soccer.cpp

// c++ -std=c++11 -o soccer soccer.cpp

#include <iostream>

using namespace std;

int main(void)

{

int teams = 8;

int i, j, team1, team2;

for(i=0;i<teams-1;++i)

{

for(j=0;j<teams/2;++j)

{

team1 = (2*teams-2-j-i) % (teams-1);

team2 = (2*teams-2+j-i) % (teams-1);

if(j==0) team2 = teams-1;

cout << "(" << team1 << "," << team2 << ") ";

}

cout << endl;

}

}

The output is

(0,7) (1,6) (2,5) (3,4)

(6,7) (0,5) (1,4) (2,3)

(5,7) (6,4) (0,3) (1,3)

(4,7) (5,3) (6,2) (0,2)

(3,7) (4,2) (5,1) (6,0)

(2,7) (3,1) (4,0) (5,6)

(1,7) (2,0) (3,6) (4,5)

Obviously the code could also be used for 16 teams by setting int teams=16;.

Problem 24. The English language has 26 letters. A palindrome is a word
that reads the same forwards and backwards. How many five letter, one-word,
English language palindromes are possible? Describe how you find your solution.

Solution 24.

Chapter 6

Matrix Calculus

Problem 1. An n × n matrix T is called a Toeplitz matrix if it satisfies the
relation T (k, j) = T (k − 1, j − 1), for 2 ≤ j, k ≤ n. In other words, the entries
on each diagonal of T are all equal. Hence, such a matrix is determined by the
2n − 1 entries appearing in the first row and first column. We denote these
entries by t0, t1, . . . , t2n−2 such that

T =

tn−1 tn−2 . . . t2 t1 t0
tn tn−1 tn−2 . . . t2 t1
tn+1 tn tn−1 tn−2 . . . t2

...
. . .

...
...

. . .
...

t2n−3 t2n−2 . . . tn−1 tn−2

t2n−2 t2n−3 . . . tn+1 tn tn−1

.

We say that the vector t = (t0, t1, . . . , t2n−2) defines the Toeplitz matrix T .
Thus the 4 × 4 Toeplitz matrix defined by the vector t = (t0, t1, t2, t3, t4, t5, t6)
is

T =

t3 t2 t1 t0
t4 t3 t2 t1
t5 t4 t3 t2
t6 t5 t4 t3

 .

Write a C++ program that generates the Toeplitz matrix T from a given vector
t. Vice versa given a Toeplitz matrix T find the vector t.

Solution 1.

// toeplitz.cpp

65

66 Problems and Solutions

#include <iostream>

#include <string>

#include <vector>

using namespace std;

template <class T>

vector<vector<T> > toeplitz(const vector<T> &t)

{

int n = (t.size()+1)/2;

vector<vector<T> > toepl(n);

for(int i=0;i<n;i++)

{

toepl[i].resize(n);

for(int j=0;j<n;j++) toepl[i][j] = t[n-1-j+i];

}

return toepl;

}

template <class T>

vector<T> toepl_vector(const vector<vector<T> > &toepl)

{

int i, n = toepl.size();

vector<T> t(2*toepl.size()-1);

for(i=0;i<n;i++) t[i] = toepl[0][n-1-i];

for(i=1;i<n;i++) t[i+n-1] = toepl[n-1][n-1-i];

return t;

}

int main(void)

{

int i, j;

vector<string> v(7);

v[0] = "t0"; v[1] = "t1"; v[2] = "t2"; v[3] = "t3";

v[4] = "t4"; v[5] = "t5"; v[6] = "t6";

vector<vector<string> > tp = toeplitz(v);

vector<string> t = toepl_vector(tp);

for(i=0;i<4;i++)

{

cout << "[";

for(j=0;j<4;j++) cout << tp[i][j] << " ";

cout << "]" << endl;

}

cout << endl;

for(i=0;i<7;i++) cout << "[" << t[i] << "]" << endl;

Matrix Calculus 67

return 0;

}

Problem 2. Let A1, A2, . . . , Ap be square matrices of the same size. Let

fn,1(A1, A2, . . . , Ap) := (eA1/neA2/n · · · eAp/n)n.

Then

‖ exp(
p∑
j=1

Aj)− fn,1(A1, A2, . . . , Ap)‖ ≤
2
n

 p∑
j=1

‖Aj‖

2

exp

n+ 2
n

p∑
j=1

‖Aj‖

and

lim
n→∞

fn,1(A1, A2, . . . , Ap) = exp

 p∑
j=1

Aj

 .

For p = 2 we obtain
eA1+A2 = lim

n→∞
(eA1/neA2/n)n. (1)

Let

A =
(

0 1
1 1

)
, A1 =

(
0 0
0 1

)
, A2 =

(
0 1
1 0

)
.

Then A = A1 +A2. Note that [A1, A2] 6= 0.
(i) Calculate eA by diagonalizing A.
(ii) Calculate eA using equation (1).
(iii) Calculate f2,1(A1, A2) and the error estimation.

Solution 2.

Problem 3. The discrete Fourier transform over n points can be written in
matrix form

Fn :=

1 1 1 . . . 1
1 w w2 . . . wn−1

1 w2 w4 . . . w2(n−1)

...
...

...
. . .

...
1 wn−1 w2(n−1) . . . w(n−1)2

where w := e2πi/n is the n-th root of unity. We obtain the discrete Fourier
transform from

(x̂1, x̂2, . . . , x̂n)T = Fn(x1, x2, . . . , xn)T .

Apply F4 to the data (1, 0, 0, 1)T and (0, 1, 1, 0)T and interpret the results to
find the underlying periodicity.

68 Problems and Solutions

Solution 3. We have w = e2πi/4 = eπi/2 and

F4 =

1 1 1 1
1 eπi/2 e2πi/2 e3πi/2

1 e2πi/2 e4πi/2 e6πi/2

1 e3πi/2 e6πi/2 e9πi/2

=

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .

Consequently for the first case we find
x̂1

x̂2

x̂3

x̂4

 =

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

1
0
0
1

 =

2

1− i
0

1 + i

and for the second case

x̂1

x̂2

x̂3

x̂4

 =

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

0
1
1
0

 =

2

−1 + i
0

−1− i

 .

The nonzero x̂k identify frequencies, thus n/k yields the periodicity. In both
cases we find periodicity 4/1 = 4 and 4/3 (which does not make sense). This
result is due to uncertainty about the truncated sequence, i.e. we could have

1001100110011001 . . .

or
1001001001001001 . . .

The first sequence has period 4 while the second has period 3.

Problem 4. (i) The discrete Fourier transform over n points can be written
in matrix form

Fn :=

1 1 1 . . . 1
1 w w2 . . . wn−1

1 w2 w4 . . . w2(n−1)

...
...

...
. . .

...
1 wn−1 w2(n−1) . . . w(n−1)2

where w = e2πi/n is the n-th root of unity. Show that the matrix 1√

n
Fn is

unitary.

Matrix Calculus 69

(ii) Use trigonometric interpolation to find

f(x) = c0 + c1e
ix + c2e

2ix + c3e
3ix

which interpolates the points

x0 = 0, y0 = 0, x1 =
π

2
, y1 = 1,

x2 = π, y2 = 1, x3 =
3π
2
, y3 = 0

i.e. solve the equation F4(c0, c1, c2, c3)T = (y0, y1, y2, y3)T .

Solution 4. (i) We have(
1√
n
Fn

1√
n
F ∗n

)
j,k

=
1
n

n−1∑
l=0

wjl(w∗)kl

=
1
n

n−1∑
l=0

e(j−k)2lπi/n

=
{

1 j = k
1−en(j−k)2lπi/n

1−e(j−k)2lπi/n j 6= k

= δjk

and (
1√
n
F ∗n

1√
n
Fn

)
j,k

=
1
n

n−1∑
l=0

wkl(w∗)jl

=
1
n

n−1∑
l=0

e(k−j)2lπi/n

=
{

1 j = k
1−en(k−j)2lπi/n

1−e(k−j)2lπi/n j 6= k

= δkj .

Consequently 1√
n
Fn

1√
n
F ∗n = 1√

n
F ∗n

1√
n
Fn = I.

(ii) Obviously (c0, c1, c2, c3)T = F−1
4 (y0, y1, y2, y3)T

c0
c1
c2
c3

 =
1
4

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 +i −1 −i

0
1
1
0

 =

1
2
−1−i

4
0
−1+i

4

so that

f(x) =
1
2
− 1

4
(1 + i)eix − 1

4
(1− i)e3ix =

1
2
− 1

2
e2ix(cosx+ sinx).

70 Problems and Solutions

Problem 5. A 1-inverse of the m× n matrix A is an n×m matrix A− such
that AA−A = A.

(i) Suppose that m = n and that A−1 exists, find A−.
(ii) Is the 1-inverse unique? Prove or disprove.
(iii) The Moore-Penrose pseudoinverse of the m × n matrix A is the 1-inverse
A− of A which additionally satisfies

A−AA− = A− (AA−)∗ = AA− (A−A)∗ = A−A.

Let A = UΣV ∗ be the singular value decomposition of A. Show that A− =
V Σ−U∗ is a Moore-Penrose pseudoinverse of A, where

(Σ−)jk =
{ 1

(Σ)kj
(Σ)kj 6= 0

0 (Σ)kj = 0

Hint: First show that Σ− is the Moore-Penrose pseudoinverse of Σ. Find the
Moore-Penrose pseudoinverse of (

1 1
1 1

)
.

Solution 5. (i) Since A−1 exists we find

A−1(AA−A)A−1 = A−1AA−1

i.e. A− = A−1.
(ii) Consider

A =
(

1 0
0 0

)
then both A and the 2× 2 identity matrix I2 are 1-inverses of A. Consequently,
the 1-inverse is in general not unique.
(iii) First we calculate (j, k ∈ {1, 2, . . . , n})

(Σ−Σ)jk =
m∑
l=1

(Σ−)jl(Σ)lk =
m∑
l=1

(Σ)lj 6=0

(Σ)lk
(Σ)lj

.

Since (Σ)lj = 0 when l 6= j we find

(Σ−Σ)jk =
((Σ)jk

(Σ)jj
(Σ)jj 6= 0

0 (Σ)jj = 0

)
=
{
δjk (Σ)jj 6= 0
0 (Σ)jj = 0 .

Similarly (j, k ∈ {1, 2, . . . ,m})

(ΣΣ−)jk =
{
δjk (Σ)jj 6= 0
0 (Σ)jj = 0 .

Matrix Calculus 71

The matrix Σ−Σ is a diagonal n × n matrix while ΣΣ− is a diagonal m × m
matrix. All the entries of these matrices are 0 or 1 so that

(ΣΣ−)∗ = ΣΣ−, (Σ−Σ)∗ = Σ−Σ.

Now

(ΣΣ−Σ)jk =
n∑
l=1

(Σ)jl(Σ−Σ)lk = (Σ)jj(Σ−Σ)jk

=
{
δjk(Σ)jj (Σ)jj 6= 0

0 (Σ)jj = 0
= (Σ)jk

and

(Σ−ΣΣ−)jk =
m∑
l=1

(Σ−)jl(ΣΣ−)lk = (Σ−)jj(ΣΣ−)jk

=
{
δjk(Σ−)jj (Σ)jj 6= 0

0 (Σ)jj = 0

= (Σ−)jk

i.e.
ΣΣ−Σ = Σ, Σ−ΣΣ− = Σ−

so that Σ− is the Moore-Penrose pseudoinverse of Σ. The remaining properties
are easy to show

AA−A = (UΣV ∗)(V Σ−U∗)(UΣV ∗) = UΣΣ−ΣV ∗ = UΣV ∗ = A,

A−AA− = (V Σ−U∗)(UΣV ∗)(V Σ−U∗) = V Σ−ΣΣ−U∗ = V Σ−U∗ = A−,

(AA−)∗ = (UΣV ∗V Σ−U∗)∗ = I∗m = Im = AA−,

(A−A)∗ = (V Σ−U∗UΣV ∗)∗ = I∗n = In = AA−.

Thus A− is a Moore-Penrose pseudoinverse of A.
(iv) We find (

1 1
1 1

)∗(1 1
1 1

)
=
(

2 2
2 2

)
with eigenvalues 4 and 0 with corresponding orthonormal eigenvectors 1√

2
(1 1)

and 1√
2

(1 −1). Thus the singular value decomposition is

(
1 1
1 1

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)(
2 0
0 0

)(1√
2

1√
2

1√
2
− 1√

2

)
.

72 Problems and Solutions

The Moore-Penrose pseudoinverse is(
1 1
1 1

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)(
1
2 0
0 0

)(1√
2

1√
2

1√
2
− 1√

2

)
=

1
4

(
1 1
1 1

)
.

Problem 6. Find the eigenvectors and generalized eigenvectors of 0 1 0
0 0 0
0 −1 0

 .

Solution 6. The eigenvalues are all 0. The eigenvectors follow from solving 0 1 0
0 0 0
0 −1 0

− 0

 1 0 0
0 1 0
0 0 1

x1

x2

x3

 =

 0
0
0

for x1, x2 and x3. Thus x2 = 0. The set of eigenvectors is given by

u
0
v

 ∣∣∣∣∣ (u, v) ∈ C2/(0, 0)

 .

The generalized eigenvectors follow from solving 0 1 0
0 0 0
0 −1 0

− 0

 1 0 0
0 1 0
0 0 1

3x1

x2

x3

 =

 0
0
0

for x1, x2 and x3. This equation is satisfied for all x1, x2 and x3. The set of
generalized eigenvectors is given by

C3/(0, 0, 0).

Problem 7. Let

A =

 0 iπ 0
0 0 0
0 −iπ 0

 .

Calculate exp(A), sinh(A), cosh(A), sin(A), cos(A) efficiently.

Solution 7. Since the square of the matrix is the 3× 3 zero matrix we find

exp

 0 iπ 0
0 0 0
0 −iπ 0

 =

 1 0 0
0 1 0
0 0 1

+

 0 iπ 0
0 0 0
0 −iπ 0

 =

 1 iπ 0
0 1 0
0 −iπ 1

 .

Matrix Calculus 73

Using the Cayley-Hamilton theorem, we need to solve the equations

eλ = c0 + c1λ+ c2λ
2

eλ = c1 + 2c2λ
eλ = 2c2

where λ = 0. The last two equations we obtain by repeated differentiation of
the first equation. Thus c2 = 1

2 and c0 = c1 = 1. Consequently

exp

 0 iπ 0
0 0 0
0 −iπ 0

=

 1 0 0
0 1 0
0 0 1

+

 0 iπ 0
0 0 0
0 −iπ 0

+
1
2

 0 iπ 0
0 0 0
0 −iπ 0

2

=

 1 iπ 0
0 1 0
0 −iπ 1

 .

Problem 8. Solve the system of linear equations 2 1 1
0 2 1
1 0 2

x
y
z

 =

 1
1
1

using the Jacobi method. Start from the initial guess x0 = y0 = z0 = 0.

Solution 8. The determinant of the 3× 3 matrix is nonzero. Thus the inverse
of the 3× 3 matrix exists and is given by 4/7 −2/7 −1/7

1/7 3/7 −2/7
−2/7 1/7 4/7

 .

Thus we find for the solutionx
y
z

 =

 4/7 −2/7 −1/7
1/7 3/7 −2/7
−2/7 1/7 4/7

 1
1
1

 =

 1/7
2/7
3/7

 .

Problem 9. How would one store a matrix using a linked list?

Solution 9.

Problem 10. Given an n × n matrix over C. How would we efficiently test
whether the matrix is unitary? Apply your approach to

U =
1√
3

 1 1 1
i i −i
i −i −i

 .

74 Problems and Solutions

Solution 10. Obviously we would not test whether the matrix is invertible
and if so calculate the inverse and then test whether U∗ = U−1. We would just
calculate U∗ from U and then test entry by entry whether U∗U = In.

Problem 11. The sum 13 + 23 + 33 + · · ·+ n3 can be written as

13 + 23 + 33 + · · ·+ n3 = an4 + bn3 + cn2

where the unknown coefficients a, b, c can be determined from a system of linear
equations obtained from n = 1, n = 2, n = 3. Find this system of linear
equations and write a C++ program using Gauss elimination that finds the
solution.

Solution 11.

Problem 12. Let A be an n × n symmetric matrix over R. Write a C++
program that uses Givens transform to cast the matrix into tridiagonal form.

Solution 12. We apply the C++ program to the matrix

A =

1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

 .

We obtain

Ã =

1 −1 0 0
−1 −1 0 0
0 0 −1 −1
0 0 −1 1

 .

// Givens.cpp

#include <iostream>

#include <cmath>

using namespace std;

void rotation(double** A,int n)

{

const double pi = 3.14159265;

int i, j, k;

for(j=0;j<n-2;j++) // loop over rows

{

for(i=j+2;i<n;i++) // loop over columns

{

double r = sqrt(A[j+1][j]*A[j+1][j]+A[i][j]*A[i][j]);

if(r < 1E-16) continue;

Matrix Calculus 75

// calculate c = cos(phi), s = sin(phi)

double c = A[j+1][j]/r; double s = -A[i][j]/r;

// rotate rows

for(k=j;k<n;k++)

{

double h = A[i][k]*c + A[j+1][k]*s;

A[j+1][k] = A[i][k]*s - A[j+1][k]*c;

A[i][k] = h;

}

// rotate columns

for(k=j;k<n;k++)

{

double h = A[k][i]*c + A[k][j+1]*s;

A[k][j+1] = A[k][i]*s - A[k][j+1]*c;

A[k][i] = h;

} // end for loop

}

}

}

int main(void)

{

double** A = NULL;

int n = 4;

A = new double* [n];

for(int k=0;k<n;k++)

A[k] = new double[n];

A[0][0] = 1.0; A[0][1] = 0.0; A[0][2] = 0.0; A[0][3] = 1.0;

A[1][0] = 0.0; A[1][1] = 1.0; A[1][2] = 1.0; A[1][3] = 0.0;

A[2][0] = 0.0; A[2][1] = 1.0; A[2][2] = -1.0; A[2][3] = 0.0;

A[3][0] = 1.0; A[3][1] = 0.0; A[3][2] = 0.0; A[3][3] = -1.0;

rotation(A,n);

for(int i=0;i<n;i++)

for(int j=0;j<n;j++)

{ cout << "A[" << i << "][" << j << "] = " << A[i][j] << endl; }

for(int p=0;p<n;p++) delete[] A[p]; delete[] A;

return 0;

}

Problem 13. Given an n× n tridiagonal matrix over R with n ≥ 3. Write a
C++ program that finds the characteristic polynomial.

Solution 13.

// charPolynomial.cpp

#include <iostream>

#include <cmath>

76 Problems and Solutions

using namespace std;

void charPoly(double** A,double* c,int n)

{

double* c0 = new double[n+1];

double* c1 = new double[n+1];

// initializing

c0[0] = A[n-1][n-1];

c0[1] = -1.0;

c1[0] = A[n-2][n-2]*A[n-1][n-1] - A[n-1][n-2]*A[n-2][n-1];

c1[1] = -(A[n-1][n-1] + A[n-2][n-2]);

c1[2] = 1.0;

for(int i=3;i<=n;i++) // recursive loop

{

c[i] = -c1[i-1];

for(int j=i-1;j>=0;j--)

{

c[j] = A[n-i][n-i]*c1[j] - A[n-i][n-i+1]*A[n-i+1][n-i]*c0[j];

}

for(int k=i-2;k>=0;k--) { c[k+1] -= c1[k]; }

for(int q=0;q<=i;q++) { c0[q] = c1[q]; c1[q] = c[q]; }

}

delete[] c0; delete[] c1;

}

int main(void)

{

double** A = NULL;

int n = 4;

A = new double* [n];

for(int k=0;k<n;k++)

A[k] = new double[n];

A[0][0] = 1.0; A[0][1] = 1.0; A[0][2] = 0.0; A[0][3] = 0.0;

A[1][0] = 1.0; A[1][1] = -1.0; A[1][2] = 0.0; A[1][3] = 0.0;

A[2][0] = 0.0; A[2][1] = 0.0; A[2][2] = -1.0; A[2][3] = 1.0;

A[3][0] = 0.0; A[3][1] = 0.0; A[3][2] = 1.0; A[3][3] = 1.0;

double* c = new double[n+1];

charPoly(A,c,n);

for(int i=0;i<=n;i++)

{ cout << "c[" << i << "] = " << c[i] << endl; }

for(int p=0;p<n;p++) delete[] A[p]; delete[] A;

delete[] c;

return 0;

}

Matrix Calculus 77

Problem 14. Let A be an n × n matrix over R. Let u be a nonzero column
vector in Rn. Computing the n× n matrix(

In −
2uuT

uTu

)
A

can be done as follows.

Step 1. Compute the number β = 2/(uTu).

Step 2. for j = 1, 2, . . . , n do
α = u1a1j + u2a2j + · · ·+ unanj
α = β · α
for i = 1, 2, . . . , n do aij = aij − αui

Write a C++ program that implements this algorithm.

Solution 14.

Problem 15. Consider the two polynomials

p1(x) = a0 + a1x+ · · ·+ anx
n, p2(x) = b0 + b1x+ · · ·+ bmx

m

where n = deg(p1) and m = deg(p2). Assume that n > m. Let r(x) =
p2(x)/p1(x). We expand r(x) in powers of 1/x, i.e.

r(x) =
c1
x

+
c2
x2

+ · · ·

From the coefficients c1, c2, . . . , c2n−1 we can form an n× n Hankel matrix

Hn =

c1 c2 · · · cn
c2 c3 · · · cn+1

...
...

. . .
...

cn cn+1 · · · c2n−1

 .

The determinant of this matrix is proportional to the resultant of the two poly-
nomials. If the resultant vanishes, then the two polynomials have a non-trivial
greates common divisor. Implement this algorithm in SymbolicC++ where
aj , bj ∈ Q and apply it to the polynomials

p1(x) = x3 + 6x2 + 11x+ 6, p2(x) = x2 + 4x+ 3.

Solution 15. Since n = 3 we need the coefficients c1, c2, . . . , c5. Straightfor-
ward division yields

(x2 + 4x+ 3) : (x3 + 6x+ 11x+ 6) =
1
x
− 2
x2

+
4
x3
− 8
x4

+
16
x5

+ · · ·

78 Problems and Solutions

Thus
c1 = 1, c2 = −2, c3 = 4, c4 = −8, c5 = 16.

Thus the Hankel matrix is

H3 =

 1 −2 4
−2 4 −8
4 −8 16

 .

We find det(H3) = 0. Thus p1, p2 have a greatest common divisior. Obviously

(x2 + 4x+ 3)(x+ 2) = (x3 + 6x+ 11x+ 6).

Problem 16. Given an m× n matrix A = (ajk). We define a norm as

‖A‖ := max
1≤j≤m

(
n∑
k=1

|ajk|

)
.

Give a C++ implementation using templates.

Solution 16.

Problem 17. Write a C++ program that transposes a square matrix in-place.

Solution 17.

// Transpose.cpp

#include <iostream>

using namespace std;

template <class T>

void swap(T* j,T* k)

{

T temp;

temp = *j; *j = *k; *k = temp;

}

template <class T>

void transpose(T** a,int rows)

{

for(int i=0;i<rows;i++)

for(int j=i+1;j<rows;j++)

swap(a[i][j],a[j][i]);

}

int main(void)

{

Matrix Calculus 79

int rows = 4; // number of rows = number of columns

double** m = NULL;

m = new double* [rows];

for(int j=0;j<rows;j++) m[j] = new double[rows];

m[0][0]=2.0; m[0][1]=2.5; m[0][2]=3.0; m[0][3]=3.5;

m[1][0]=1.5; m[1][1]=1.1; m[1][2]=1.2; m[1][3]=1.4;

m[2][0]=1.8; m[2][1]=5.5; m[2][2]=0.5; m[2][3]=0.7;

m[3][0]=0.1; m[3][1]=7.7; m[3][2]=0.3; m[3][3]=3.7;

transpose(m,rows);

for(int k=0;k<rows;k++)

{

for(int l=0;l<rows;l++)

{ cout << "m[" << k << "][" << l << "] = " << m[k][l] << " "; }

cout << endl;

}

for(int p=0;p<rows;p++) delete[] m[p];

delete[] m;

return 0;

}

Problem 18. Consider a binary n × n matrix, where we count the entries
from 0. We have b00 = 1 and bn−1n−1 = 1. The other 0-1 entries are generated
randomly. An ant at entry (0, 0) can only move to the right or down (not diag-
onal) when this entry contains a 1. Write a C++ program that check whether
the ant could reach the entry (n− 1, n− 1). For example, consider the matrix

1 0 0 0 0
1 1 1 0 0
1 0 1 0 1
0 0 1 1 0
0 0 0 1 1

 .

For this case one path

(0, 0)→ (1, 0)→ (1, 1)→ (1, 2)→ (2, 2)→ (3, 2)→ (3, 3)→ (4, 3)→ (4, 4)

would be possible. Note that the ant could also get stuck at (2, 0).

Solution 18.

Problem 19. Let z ∈ C and A be an n × n matrix over C with A2 = In.
Calculate exp(zA).

Solution 19. Since A2 = In we have

exp(zA) = cosh(z)In + sinh(z)A.

80 Problems and Solutions

Problem 20. Let z ∈ C and A be an n × n matrix over C with A2 = A.
Calculate exp(zA).

Solution 20. Since A2 = A we have An = A for all n ≥ 2. Consequently

exp(zA) = In +A(ez − 1).

Problem 21. Apply the Leverrier method to find the determinant of the
matrix

A(ε) =

 1 0 1
0 1 0
1 0 ε

where ε ∈ R. What is the condition on ε such that the inverse of A(ε) exists?

Solution 21. We have

B1 = A, p1 = tr(B1) = 2 + ε.

Then

B2 = A(B1 − p1I3) =

−ε 0 −1
0 −1− ε 0
−1 0 1− 2ε

 .

Thus p2 = 1
2 tr(B2) = −2ε. For B3 we obtain

B3 = A(B2 − p2I3) =

 ε− 1 0 0
0 −1 + ε 0
0 0 ε− 1

and thus p3 = 1

3 tr(B3) = ε − 1 which is the determinant. Consequently the
inverse matrix exists if p3 6= 0, i.e. ε 6= 1. Then the inverse is

A−1 =
1

ε− 1

 ε 0 −1
0 ε− 1 0
−1 0 1

 .

Problem 22. Let

A =
(

1/4 1/2
1/2 1/4

)
.

Let
ρ(A) = max

1≤j≤2
|λj |

where λj are the eigenvalues of A.

Matrix Calculus 81

(i) Check that ρ(A) < 1.
(ii) If ρ(A) < 1, then

(I2 −A)−1 = I2 +A+A2 + · · · .

Calculate (I2 −A)−1.
(iii) Calculate

(I2 −A)(I2 +A+A2 + · · ·+Ak).

Solution 22. (i) The eigenvalues are λ1 = −1/4 and λ2 = 3/4. Thus ρ(A) < 1.
(ii) We find

(I2 −A)−1 =
(

12/5 8/5
8/5 12/5

)
.

(iii) We have

(I2 −A)(I2 +A+A2 + · · ·+Ak) = I2 −Ak+1.

Problem 23. Let A be an n×n matrix over R. Consider the system of linear
equations

Ax = b

or
n∑
j=1

aijxj = bi, i = 1, 2, . . . , n.

We assume that A is invertible. Let A = C −R. This is called a splitting of the
matrix A and R is the defect matrix of the splitting. Consider the iteration

Cx(t+ 1) = Rx(t) + b, t = 0, 1, . . .

with a given x(0).
Let

A =

 4 −1 0
−1 4 −1
0 −2 4

 , C =

 4 0 0
0 4 0
0 0 4

 , b =

 3
2
2

 , x(0) =

 0
0
0

 .

Perform the iteration. Does x(k) (k = 0, 1, . . .) converge to the solution of
Ax = b. Write a C++ program that implements this iteration.

Solution 23. The first iteration yields

Cx(1) = Rx(0) + b⇒ Cx(1) = b =

 3
2
2

⇒ x(1) =

 3/4
1/2
1/2

 .

82 Problems and Solutions

The second iteration yields

Cx(2) = Rx(1) + b =

 0 1 0
1 0 1
0 2 0

 3/4
1/2
1/2

 =

 7/2
13/4

3

 .

Thus

x(2) =

 7/8
13/16
3/4

 .

The vector x(k) converges to the solution (1, 1, 1)T .

Problem 24. Let A be an n × n matrix over C. Then any eigenvalue of A
satisfies the inequality

|λ| ≤ max
1≤j≤n

n∑
k=1

|ajk|.

Write a C++ program that calculates the right-hand side of the inequality for
a given matrix. Apply the complex class of STL. Apply it to the matrix

A =

i 0 0 i
0 2i 2i 0
0 3i 3i 0
4i 0 0 4i

 .

Solution 24.

Problem 25. We count the entries of the n × n matrix from (0, 0) to (n −
1, n − 1). Let A = (ajk) be a real n × n matrix (j, k = 0, 1, . . . , n − 1). The
permanent of A is defined to be the real number

perm(A) :=
∑
σ∈Sn

∏
j∈[n]

Aj,σ(j)

where the summation is over all n! permutations of the set [n] := {0, 1, . . . , n−1}.
Give an implementation with SymbolicC++ to find the permanent of a given
matrix A.

Note that the definition of the determinant for the matrix A is

det(A) :=
∑
σ∈Sn

sgn(σ)

∏
j∈[n]

Aj,σ(j)

Matrix Calculus 83

where the summation is over all n! permutations of the set [n] := {0, 1, . . . , n−1}
and sgn(σ) equals +1 if σ is an even permutation and equals −1 if σ is an odd
permutation.

Solution 25.

Problem 26. We count the entries of the n × n matrix F from (0, 0) to
(n− 1, n− 1). We define

ωn = exp(i2π/n).

Now the n× n matrix F is defined by

F = ωjkn , j, k = 0, 1, . . . , n− 1.

Give a SymbolicC++ implementation for F .

Solution 26.

Problem 27. Consider the linear equation written in matrix form 1 0 1
0 1 1
1 0 2

x1

x2

x3

 =

 1
2
1

 .

First show that the determinant of the 3 × 3 matrix is nonzero. Apply two
different methods (Gauss elimination and the Leverrier’s method) to find the
solution. Compare the two methods and discuss.

Solution 27. The determinant of the matrix is +1. The Leverrier method
provides the inverse matrix 0 0 0

0 0 0
0 0 0

 .

Applying Gauss elimination provides ...

Problem 28. Consider the two 3 × 3 permutation matrices (which are of
course then also unitary matrices)

U1 =

 0 1 0
0 0 1
1 0 0

 , U2 =

 0 0 1
1 0 0
0 1 0

 .

We want to find efficiently K1 and K2 such that U1 = eK1 and U2 = eK2 . We
would apply the spectral decomposition theorem to find K1, i.e.

K1 =
3∑
j=1

ln(λj)vjv∗j

84 Problems and Solutions

where λj are the eigenvalues of U1 and vj are the corresponding normalized
eigenvectors. But then to find K2 we would apply the property that U2

1 = U2. Or
could we actually apply that U2 = UT1 ? Note that U1, U2, I3 form a commutative
subgroup of the group of 3× 3 permutation under matrix multiplication.

Solution 28. To apply the spectral theorem we note that the eigenvalues
of U1 are +1, ei2π/3, ei4π/3. Since ln(1) = 0 we need not to calculate the
corresponding eigenvector v1 since it does not contribute to K1. For the second
and third eigenvalues we obtain the corresponding normalized eigenvectors

v2 =
1√
3

 1
ei2π/3

ei4π/3

 , v3 =
1√
3

 1
ei4π/3

ei2π/3

 .

Now since ln(ei2π/3) = i2π/3, ln(ei4π/3 = i4π/3 we find for K1

K1 = i
2π
3

v1v∗1 + i
4π
3

v2v∗2.

Since U2
1 = U2 = eK1eK1 = e2K1 = eK2 , the matrix K2 is given by K2 = 2K1.

Problem 29. Let A, B, C be n× n matrices. Simplify

(A⊗ In ⊗ In)(In ⊗B ⊗ In(In ⊗ In ⊗ C) .

Solution 29. We have

(A⊗ In ⊗ In)(In ⊗B ⊗ In(In ⊗ In ⊗ C) = A⊗B ⊗ C.

Problem 30. Consider the 3× 3 normal matrix

A =

 0 0 1
0 1 0
1 0 0

 .

Study the following four methods to calculate exp(A). Discuss.
(i) Apply the definition

exp(A) :=
∞∑
j=0

Aj

j!
.

(ii) Apply the definition

exp(A) := lim
n→∞

(
I3 +

A

n

)n
.

Matrix Calculus 85

(iii) Apply the spectral theorem, i.e. use the eigenvalues and normalized eigen-
vectors of A.
(iv) Apply the Cayley-Hamilton theorem which also needs the eigenvalues of A.
Keep in mind that one eigenvalue is degenerate.

Solution 30. (i) Since A2 = I3 and collecting the terms with I3 and A we
obtain

eA = cosh(1)I3 + sinh(1)A.

(ii) We have
(I3 +A/2)2 = I(1 + 1/4) +A.

(I3 +A/2)3 = I(1 + 1/3) +A(1 + 1/27).

(iii) The eigenvalues are λ1 = −1, λ2 = 1, λ3 = 1 with the corresponding
normalized eigenvectors

v1 =
1√
2

 1
0
−1

 , v2 =
1√
2

 1
0
1

 , v3 =

 0
1
0

 .

Thus the spectral decomposition of A is

A = λ1v1v∗1 + λ2v2v∗2 + λ3v3v∗3

and exp(A) follows as

exp(A) = eλ1v1v∗1 + eλ2v2v∗2 + eλ3v3v∗3.

(iv) Using the Cayley-Hamilton theorem we can write since we have a 3 × 3
matrix

f(A) = eA = a2A
2 + a1A+ a0I3

where the complex numbers a2, a1, a0 are determined as follows: Let

r(λ) := a2λ
2 + a1λ+ a0

which is the right-hand side of f(A) withAj replaced by λj , where j = 0, 1, . . . , n−
1. For each distinct eigenvalue λj of the matrix A we consider the equation

f(λj) = r(λj).

Here one eigenvalue has multiplicity two and we have to consider the equation

f ′(λ)|λ=λj
= r′(λ)|λ=λj

.

We have the three eigenvalues λ1 = −1, λ2 = +1, λ3 = +1. Thus we obtained
the three equations

e−1 = a2λ
2
1 + a1λ1 + a0 = a2 − a1 + a0

e1 = a2λ
2
2 + a1λ2 + a0 = a2 + a1 + a0

e1 = 2a2λ3 + a1 = 2a2 + a1.

86 Problems and Solutions

The solution is

a0 =
1
2

cosh(1), a1 = sinh(1), a2 =
1
2

cosh(1).

Consequently

exp(A) = a2A
2 + a1A+ a0I3 = (a2 + a0)I3 + a1A = cosh(1)I3 + sinh(1)A.

Problem 31. Consider an n × n symmetric tridiagonal matrix over R. Let
fn(λ) := det(A− λIn) and

fk(λ) = det

α1 − λ β1 0 · · · 0
β1 α2 − λ β2 · · · 0

0 β2
. . . · · · 0

...
...

...
...

...
0 · · · · · · αk−1 − λ βk−1

0 · · · 0 βk−1 αk − λ

for k = 1, 2, . . . , n and f0(λ) = 1, f−1(λ) = 0. Then

fk(λ) = (α− λ)fk−1(λ)− β2
k−1fk−2(λ)

for k = 2, 3, . . . , n. Find f4(λ) for the 4× 4 matrix
0
√

1 0 0√
1 0

√
2 0

0
√

2 0
√

3
0 0

√
3 0

 .

Solution 31.
=

Chapter 7

Recursion

Problem 1. Let a, b be real positive numbers. If A = (a + b)/2 denotes
the arithmetic mean and B =

√
ab denotes the geometric mean, then A ≥ B

with equality precisely when a = b. Given two positive real numbers, a0 and b0,
where we suppose that a0 ≥ b0, we consider the recursion

aj+1 =
1
2

(aj + bj), bj+1 =
√
ajbj

so that aj+1 is the arithmetic mean of aj and bj , while bj+1 is their geometric
mean. Write a C++ program that implements this recursion with a0 = 2.0 and
b0 = 1.0.

Solution 1.

// arithgeom.cpp

#include <iostream>

#include <cmath>

using namespace std;

int main(void)

{

double a0 = 2.0, b0 = 1.0;

double a1, b1;

double eps = 0.000000001;

while((a0-b0) > eps)

{

a1 = (a0 + b0)/2.0;

b1 = sqrt(a0*b0);

87

88 Problems and Solutions

a0 = a1; b0 = b1;

}

cout << "a0 = " << a0 << endl;

cout << "b0 = " << b0 << endl;

return 0;

}

Problem 2. For all p > 1, the iteration (k = 0, 1, 2, . . .)

xk+1 =
1
p

((p− 1)xk + x1−p
k a), x0 = 1

converges quadratically to a1/p if a belongs to

a ∈ { z ∈ C : <(z) > 0 and |z| ≤ 1 } ∪ R+.

Write a C++ program that implements this iteration for p = 3 and a = 27.

Solution 2.

// root.cpp

#include <iostream>

#include <cmath>

using namespace std;

int main(void)

{

double a = 27.0;

double x0 = 1.0;

double p = 3.0;

double x1 = ((p-1.0)*x0 + a*pow(x0,1.0-p))/p;

double eps = 0.000001;

while(fabs(x0-x1) > eps)

{

x0 = x1;

x1 = ((p-1.0)*x0 + a*pow(x0,1.0-p))/p;

}

cout << "x1 = " << x1;

return 0;

}

Problem 3. Let 0 < x < 2. The computation of 1/x can be done with
addition and multiplication using the following recurrence relation

aj+1 = aj(1 + cj), cj+1 = c2j (1)

Recursion 89

with j = 0, 1, 2, . . . and the initial values a0 = 1, c0 = 1− x.
(i) Show that

aj =
1− cj
x

(2)

and since cj = c2
j

0 with |c0| < 1, it follows that

lim
j→∞

aj =
1
x
.

(ii) Write a C++ program that implements this recurrence relation.

Solution 3. (i) To derive (2) from (1) we use the relations

aj+1 = (1 + cj)(1 + cj−1) · · · (1 + c1)(1 + c0)
1 + cj

1− cj+1
=

1
1− cj

.

(ii) Using a do-while loop the C++ program is given by

// divide1x.cpp

#include <iostream>

#include <cmath>

using namespace std;

int main(void)

{

double x = 0.5;

double a0, a1, c0, c1;

a0 = 1.0; c0 = 1.0 - x;

double eps = 0.00001;

double t0, t1;

do

{

a1 = a0*(1.0 + c0); c1 = c0*c0;

t0 = a0; t1 = a1;

a0 = a1; c0 = c1;

} while(fabs(t1-t0) > eps);

cout << "1/x = " << a1;

return 0;

}

Problem 4. Find a recursion for

In =
∫ π/4

0

tann(x)dx

90 Problems and Solutions

where n = 0, 1, . . . and

I0 =
∫ π/4

0

dx =
π

4

I1 =
∫ π/4

0

tan(x)dx = − ln(cos(x))|π/40 = − ln(cos(π/4)) + ln(cos(0)) = ln(
√

2).

Solution 4. We have

In + In+2 =
∫ π/4

0

(tann(x) + tann+2(x))dx =
∫ π/4

0

tann(x) sec2(x)dx

=
∫ 1

0

undu

=
1

n+ 1

where we used the identity 1+tan2(x) ≡ sec2(x) and the substitution u = tan(x)
with tan(0) = 0 and tan(π/4) = 1.

Problem 5. Let x ∈ [0, 1]. Then
√
x can be approximated by the sequence of

polynomials

pk+1(x) = pk(x) +
1
2

(x− (pk(x))2), k = 0, 1, 2, . . .

and k → ∞ the sequences converges pointwise to
√
x with p0(x) = x. Write a

C++ program that implements this sequence to find an approximation for
√
x.

Solution 5. Using a while loop we have the implementation

// sqrtx.cpp

#include <iostream>

#include <cmath>

using namespace std;

int main(void)

{

double x = 0.7;

double p0 = x;

double p1 = x+0.5*(x-x*x);

double eps = 0.00001;

while(fabs(p1-p0) > eps) { p0 = p1; p1 = p0+0.5*(x-p0*p0); }

cout << "p1 = " << p1 << endl;

return 0;

}

Recursion 91

Problem 6. The number π/2 can be calculated using the iteration

xk+1 = xkyk, yk+1 =
√

2yk/(yk + 1), k = 0, 1, 2, . . .

where x0 = 1, y0 =
√

2. Then

lim
k→∞

xk =
π

2
.

Write a C++ program that implements this iteration and thus finds an approx-
imation of π/2.

Solution 6. Using a do-while we have

// pihalf.cpp

#include <iostream>

#include <cmath>

using namespace std;

int main(void)

{

double x0 = 1.0;

double y0 = sqrt(2.0);

double x1, y1, t;

double eps = 0.0001;

do

{

x1 = x0*y0;

y1 = sqrt(2.0*y0/(y0+1.0));

t = fabs(x0-x1);

x0 = x1; y0 = y1;

} while(t > eps);

cout << "x1 = " << x1;

return 0;

}

Problem 7. The number π can be calculated using the iteration

xk+1 =
2xkyk
xk + yk

, yk+1 =
√
xk+1yk, k = 0, 1, 2, . . .

where
x0 = 2

√
3, y0 = 3.

Then
lim
k→∞

xk = lim
k→∞

yk = π.

92 Problems and Solutions

Write a C++ program that implements this iteration and thus finds an approx-
imation of π.

Solution 7. Using a do-while loop we have

// pipfaff.cpp

#include <iostream>

#include <cmath>

using namespace std;

int main(void)

{

double x0 = 2.0*sqrt(3.0);

double y0 = 3.0;

double x1, y1, t;

double eps = 0.00001;

do

{

x1 = 2.0*x0*y0/(x0 + y0); y1 = sqrt(x1*y0);

t = fabs(x0-x1);

x0 = x1; y0 = y1;

} while(t > eps);

cout << "x1 = " << x1 << endl;

cout << "y1 = " << y1 << endl;

return 0;

}

Problem 8. (i) Let r be a real nonzero number. Then 1/r can be calculated
to ever increasing accuracy applying the map

xt+1 = xt(2− rxt), t = 0, 1, . . .

provided the initial estimate x0 is sufficientlty close to 1/r. The number of digits
of accuracy approximately doubles with each iteration. First find the fixed points
of the map. Let r = 3 and x0 = 2. Find x1, x2, Discuss.
(ii) The same iteration can be applied to find the multiplicative inverse modulo
any power of 2. For example, to find the multiplicative inverse of 5, modulo 256,
we start with x0 = 1 (any odd number will do). Then

x1 = x0(2− 5 · x0) = −3
x2 =−3(2− 5 · (−3)) = −51
x3 =−51(2− 5 · (−51)) = −13107.

Thus −13107 mod 256 = 205. Thus the multiplicative inverse of 5 (modulo 256)
is 205. Write a C++ program that implements this algorithm.

Recursion 93

Solution 8.

Problem 9. According to Gauss, the elliptic integral

I =
2
π

∫ π/2

0

dx

(a2 cos2(x) + b2 sin2(x))1/2

is equal to the limit of any of the two convergent sequences

s0, s1, s2, . . . or t0, t1, t2 . . .

as defined by the recurrence relations for j > 0

sj+1 = (sj + tj)/2
tj+1 =

√
sjtj

and s0 = a, t0 = b. The calculation of the two sequences is called the arithmetic-
geometric mean method. Write a C++ program that implements this method.

Solution 9.

Problem 10. Given the sequence of terms

t0, t1, t2, . . .

the series of partial sums
s0, s1, s2, . . .

is defined such that

sj := t0 + t1 + · · ·+ tj j = 0, 1, 2, . . .

If the sequence is given by the recurrence relation

tj+1 = f(tj) for j ≥ 0

then the series sj is determined by

sj+1 = sj + tj+1 for j ≥ 0
s0 = t0.

Give a C++ implementation for the sequence sj and the recursion

tj+1 = f(tj) =
tj

j + 1
.

Solution 10.

94 Problems and Solutions

Problem 11. Let m be a positive integer and x be a fixed real number. Then
we can calculate cos(mx) using the recursion

cos((m+ 1)x) = 2 cos(x) cos(mx)− cos((m− 1)x)

Write a C++ program that implements this recursion. Use the values m = 10
and x = 0.1.

Solution 11.

Problem 12. Let k be a positive integer k ≥ 2. Consider the recursion

xt+1 = xt + kyt, yt+1 = xt + yt

where t = 0, 1, 2, . . . and x0 = y0 = 1. Study xt+1/yt+1 for t→∞ and k = 5.

Solution 12.

Problem 13. Give a C++ implementation of the recursion

c0 = 1, c1 = −1, cn+1 = −
n∑
k=1

k∑
i=0

cick−icn−k+1.

Solution 13. For c2 we have c2 = −2.

=

Problem 14. Give a C++ implementation of the recursion

xj(t+ 1) = (1− ε)xj(t) +
1
2

(xj−1(t) + xj+1(t)), t = 0, 1, 2, . . .

where j = 0, 1, 2, 3 and −1 ≡ 3, 4 ≡ 0.

Solution 14.

Problem 15. Consider the function

fn(x) =
∫ ∞

0

yn exp(−y4 − xy2)dy, n = 0, 1, . . .

(i) Show that

fn+4(x) =
n+ 1

4
fn(x)− x

2
fn+2(x)

using integration by parts.

Recursion 95

(ii) Show that
dfn(x)
dx

= −fn+2(x).

Solution 15.

Problem 16. (i) Consider the recursion

xt+1 = xt + 5yt
yt+1 = xt + yt

where t = 0, 1, Let x0 = y0 = 1. Calculate x1, y1, x2, y2, x3, y3 and x0/y0,
x1/y1, x2/y2, x3/y3.
(ii) Define

zt :=
xt
yt
.

Find the recursion for zt. Find the fixed points of this recursion. Are the fixed
point stable? Find

lim
t→∞

zt

with z0 = x0/y0 = 1.

Solution 16. (i) We have x1 = 6, y1 = 2, x2 = 16, y2 = 8, x3 =, y3 =.
(ii) From

xt+1

yt+1
=
xt + 5yt
xt + yt

we find

zt+1 =
zt + 5
zt + 1

.

Thus the fixed points follows from the solution of the equation

z + 5
z + 1

= z

with z =
√

5 since x0 and y0 are positive.

Problem 17. Let n be a positive integer. A Dyk word is a string of length 2n
with n x’s and n y’s such that no initial segment of the string of length 2n has
more y’s than x’s.
(i) Give the Dyk words for n = 1, n = 2 and n = 3.
(ii) Describe an algorithm to generate the Dyk words for a given n. Give a
recursion.

96 Problems and Solutions

Solution 17. (i) For n = 1 we have xy. For n = 2 we have xxyy, xyxy and
for n = 3 we have six strings

xxxyyy, xyxxyy, xyxyxy, xxyyxy, xxyxyy .

The number of strings is given by the Catalan numbers.
(ii) A recursion for the Dyk words w is given by

w = xw1yw2

with (possible empty) Dyk words w1 and w2.

Problem 18. Let k and n be positive integers. Implement in C++ the
recursive function

p(k, n) =

 0 if k > n
1 if k = n

p(k + 1, n) + p(k, n− k) otherwise

where p(1, 1) = 1.

Solution 18.

Problem 19. Consider the alphabet {A,B,C} and the Fredholm subsitution

A 7→ AB, B 7→ BC, C 7→ CC.

Start of with A and find the sequence. Then set A = C = 0 and B = 1 and find
the bitstring.

Solution 19. We have

A 7→ AB 7→ ABBC 7→ ABBCBCCC 7→ · · ·

with the bitstrings

0 7→ 01 7→ 0110 7→ 01101000 7→ · · ·

Problem 20. Let k = 0, 1, . . . and φ ∈ R. Consider the integral defined by

Ik(φ) :=
∫ π

0

cos(kθ)− cos(kφ)
cos(θ)− cos(φ)

dθ .

Show that I0(φ) = 0 and I1(φ) = π. Show that Ik(φ) satisfies the second order
difference equation

Ik+2(φ)− 2 cos(φ)Ik+1(φ) + Ik(φ) = 0, k = 0, 1, . . .

Recursion 97

with I0(φ) = 0 and I1(φ) = π. Solve the second order difference equation.

Solution 20.
=

Problem 21. Let m = 1, 2, Consider the recursion

cm =
m∑
k=1

ck−1cm−k

with c0 = 1. Define a generating function

P (x) =
∞∑
m=0

cmx
m = c0 + c1x

1 + c2x
2 + · · · ≡ 1 + c1x+ c2x

2 + · · · .

Then

P (x) = 1+
∞∑
m=1

m∑
k=1

ck−1cm−kx
m = 1+x

∞∑
k=1

∞∑
m=k

cm−kx
m−kck−1x

k−1 = 1+xP 2(x)

with the solution for P (x)

P (x) =
1−
√

1− 4x
2x

with P (0) = 1. Taylor expansion of P (x) provides

cm =
4n− 2
n+ 1

cm−1, m = 1, 2, . . .

and thus (c0 = 1)

cm =
(2m)!

m!(m+ 1)!
.

Give an implementation of the recursion for cm and of the two last equations for
cm using SymbolicC++ and the Verylong of SymbolicC++.

Solution 21.

Problem 22. Consider the tridiagonal n× n matrix

A =

a1 b2 0 . . . 0 0
c2 a2 b3 . . . 0 0
0 c3 a3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . an−1 bn
0 0 0 . . . cn an

98 Problems and Solutions

with a1, aj , bj , cj ∈ C (j = 1, 2, . . . , n). It has in general n complex eigenvalues
the n roots of the characteristic polynomial p(λ). Show that this polynomial
can be evaluated by the recursive formula

pk(λ) = (λ− ak)pk−1 − bkckpk−2(λ), k = 2, 3, . . . , n
p1(λ) = λ− a1

p0(λ) = 1.

Solution 22.

Problem 23. Let Iν(x) be the modified Bessel function. For the asymptotic
expansion we have

Iν+1(x)
Iν(x)

∼
∞∑
j=0

cjx
−j

The expansion coefficients cj obey the quadratic recursive relation

c0 = 1, c1 = −
(
ν +

1
2

)
, c2 = c3 =

1
2

(
ν2 − 1

4

)
,

2cj = (j − 1)cj−1 −
j−2∑
`=2

c`cj−`, j ≥ 4.

Give a SymbolicC++ implementation of this recursion applying the Verylong
class. Then apply it to ν = 1/2 and ν = −1/2.

Solution 23.

Problem 24. Let a > 0. Give a SymbolicC++ implementation of the recur-
sion

c0 = 1
c1 =−(a+ 1/2)

c2 = c3 =
1
2

(a2 − 1/4)

cn =
1
2

(n− 1)cn−1 −
1
2

n−2∑
`=2

c`cn−`, n ≥ 4.

Solution 24. in book 2

Problem 25. Let j = 2, 3, . . . and

Pj+1 =
P 2
j

Pj−1
+ Pj

Recursion 99

with P1 = 1 and P2 = 2. Give a SymbolicC++ implementation utilizing the
class Verylong.

Solution 25.

Problem 26. Let x1 =
√

1 = 1, x2 =
√

1 +
√

2. Study the recurrence relation

xt+2 =
√

1 +
√

2 + xt, t = 1, 2, . . .

Find limt→∞ xt.

Solution 26.

Chapter 8

Numerical Techniques

Problem 1. Calculating
√

2 an elementary and ancient recursion consists of
the double sequence

pj+1 = pj + 2qj , qj+1 = pj + qj

with j = 0, 1, . . . and
lim
j→∞

pj
qj

=
√

2.

(i) Calculate the first three terms with the initial values p0 = q0 = 1.
(ii) Give an error estimation with εj := |

√
2− pj/qj |.

(iii) Write the problem in matrix notation and solve it.

Solution 1. (i) We obtain

x0 =
p0

q0
= 1, x1 =

p1

q1
=

3
2
, x2 =

p2

q2
=

7
5
, x3 =

p3

q3
=

17
12
.

The approximation x3 = 17/12 was used by Mesopotamians to replace
√

2.
(ii) We find εj+1 < εj/5 which gives a geometrical convergence.
(iii) In matrix form we have(

pj+1

qj+1

)
=
(

1 2
1 1

)(
pj
qj

)
so that (

pj
qj

)
=
(

1 2
1 1

)j (
p0

q0

)
100

Numerical Techniques 101

where j = 1, 2,

Problem 2. Let a > 0. Find an iteration to approximate
√
a. Use the fact

that if x (x > 0) is the actual square root of a, then x = a/x; that is, the two
factors x and a/x are equal.

Solution 2. If x is an underestimate of the square root, then a/x is an
overestimate, and vice versa. The arithmetic mean of the underestimate and
the overestimate is certainly a better estimate than at least of one of them, and
hopefully it is better than both. Thus we define the iteration

xn+1 =
1
2

(
xn +

a

xn

)
, n = 0, 1, 2,

The sequence of iterates converges quadratically to
√
a.

Problem 3. For any positive number h we define an operator Sh which replaces
a continuous function f : R → R by its average over an interval with length h
and centre x

(Shf)(x) :=
1
h

∫ x+h/2

x−h/2
f(t)dt.

We find that
lim
h→0

(Shf)(x) = f(x).

(i) Show that the operator Sh is linear.
(ii) Show that the operator Sh leaves linear functions unchanged.
(iii) Calculate Shf for f(t) = e−|t| sin(t) with h = 0.1.

Solution 3. (i) We have

Sh(c1f1 + c2f2) =
1
h

∫ x+h/2

x−h/2
(c1f1(t) + c2f2(t))dt

= c1
1
h

∫ x+h/2

x−h/2
f1(t)dt+ c2

1
h

∫ x+h/2

x−h/2
f2(t)dt

= c1(Shf1) + c2(Shf2).

(ii) Straighforward calculation yields

Sh(c1x+ c2) = c1x+ c2.

(iii) We have

(S0.1f)(x) =
1
h

∫ x+0.05

x−0.05

e−|t| sin(t)dt =

102 Problems and Solutions

Problem 4. (i) Provide a fast algorithm to calculate
√

2.
(ii) Provide a fast algorithm to calculate the golden mean number ϕ = (1+

√
5)/2.

Solution 4. (i) Since
√

2 ≈ 1.4 we use

√
2 =

7
5

5
√

2
7

=
7
5

√
50
49

=
7
5

(
49
50

)−1/2

=
7
5

(
50− 1

50

)−1/2

=
7
5

(
1− 1

50

)−1/2

and the expansion

(1− x)−m = 1 +mx+
m(m+ 1)

2
x2 + · · ·

with x = 1/50 and m = 1/2.
(ii) We use

ϕ =
1
2

+
√

5
2

=
1
2

+
(

4
5

)−1/2

=
1
2

+
(

1− 1
5

)−1/2

and the expansion

(1− x)−m = 1 +mx+
m(m+ 1)

2
x2 + · · ·

where x = 1/5 and m = 1/2.

Problem 5. If a beam runs into an obstacle a part of the signal is transmitted
the rest reflected. The difference between the frequency of the reflected part η
and the initial frequency η0 is the so-called Doppler shift ∆η caused by a particle
moving with velocity ν in the direction opposite to the transmitted signal. It
can be calculated as

∆η = η − η0 =
2cη0ν

c2 − ν2

where c denotes the velocity of sound within the medium. We have ν � c. Can
the calculation be simplified?

Solution 5. We have
∆η =

2η0ν

c

where we used that

2cη0ν

c2 − ν2
≡ 2cη0ν

c2(1− ν2/c2)
≡ 2η0ν

c(1− ν2/c2)

and 1− ν2/c2 ≈ 1.

Problem 6. Given pairs of single precision numbers (x1, y1), (x2, y2), (x3, y3),
(x4, y4). Decide whether the line segement (x1, y1)− (x2, y2) intersects the line

Numerical Techniques 103

determined by (x3, y3)−(x4, y4) at a unique point. If so, compute the coordinates
(x, y) of the intersection point accurate to single precision. That is, if the exact
intersection point is (x∗, y∗), then return a point (x, y) such that x is the nearest
single precision number to x′ and y is the nearest single precision number to y′.

Solution 6. Writing the intersection problem as a system of two linear equa-
tions, we find that the line segment intersects the line at a unique point if and
only if d 6= 0, where

d = (y4 − y3)(x1 − x2) + (x3 − x4)(y1 − y2).

In this case, the coordinates of the intersection point are given by

x =
1
d

((x1 − x2)t+ (x3 − x4)s), y =
1
d

((y1 − y2)t+ (y3 − y4)s)

where s := (x2y1−x1y2) and t := (x3y4−x4y3). We can compute d by rewriting
the previous expression as a sum of products, multiplying each term using double
precision, and then distilling the terms to obtain an expansion for d. Then
d vanishes if and only if the first component of the expansion vanishes, and
otherwise this component is accurate to double precision. Similarly we can
express the numerators of the expressions for x and y as sums of products, then
multiply these terms, distill, and use the leading components, which are again
accurate to double precision. Taking the quotient of these leading components
with the leading component of d gives coordinates which are accurate to near
double precision, and at any rate sufficiently accurate to round to the correct
single precision quantities, provided no underflow occurs.

Problem 7. The harmonic series can be approximated by

n∑
j=1

1
j
≈ 0.5772 + ln(n) +

1
2n
.

Calculate the left and right hand side for n = 1 and n = 10.

Solution 7. For n = 1 we obtain for the left hand side 1 and for the right-hand
side 1.0772 since ln(1) = 0.

Problem 8. Consider the linear first order delay-differential equation

du

dt
= −u(t− 1).

We can find the solution with the ansatz

u(t) = Ceλt.

104 Problems and Solutions

Since du/dt = Cλeλt and u(t− 1) = Ceλ(t−1) we obtain

λ = −e−λ.

There is no solution if λ is real. If λ is complex then there are an infinite number
of solutions. They are given by the Lambert W function. Write a C++ program
that finds some of the solutions.

Solution 8.

Problem 9. Let a, b, c, d > 0 and a + b + c > d. Consider the problem of
relating the input and output crank angles of a four-bar mechanism. The angles
θ and φ, respectively, are measured from the line of the fixed pivots. The moving
links of fixed length are a, b, c. The fixed link is d. This provides us with the
equation

b2 = c2 + d2 + a2− 2dc cos(φ)− 2ac cos(φ) cos(θ)− 2ac sin(φ) sin(θ) + 2ad cos(θ).

With C1 = d/c, C2 = d/a, C3 = (d2 + a2 − b2 + c2)/(2ac) we obtain the
Freudenstein equation

C1 cos(θ)− C2 cos(φ) + C3 − cos(θ − φ) = 0.

Set a = 1, b = c = d = 2. Solve this transcendental equation with the Newton
method for different fixed θ and solve for φ.

Solution 9. The derivative of

f(θ, φ) =

with respect to φ is given by

df

dφ
= R2 sin(φ)− sin(θ − φ).

Some values for solution

theta phi

0 41.4

5 43.1

10 45

15 46.9

20 48.9

40 57.9

60 67.7

200 56.0

225 39.7

250 32.0

Numerical Techniques 105

Problem 10. Let f : R→ R be an analytic function. We define

∆f(x) :=
f(x− ε) + f(x+ ε)− 2f(x)

ε2
.

(i) Let f(x) = x2. Find ∆f(x). Study ε→ 0.
(ii) Give a C++ implementation for ∆f(x).
(iii) Calculate the derivative of f(x) = x2 using

f ′(x) := lim
ε→0

−11f(x) + 18f(x+ ε)− 9f(x+ 2ε) + 2f(x+ 3h)
6ε

.

Solution 10. (i) We obtain

f(x− ε) + f(x+ ε)− 2f(x) = (x− ε)2 + (x+ ε)2 − 2x2 = 2ε2.

Thus
∆f(x) = 2.

(ii)
(iii) We find

f(x+ ε) = (x+ ε)2 = x2 + 2εx+ ε2

f(x+ 2h) = (x+ 2ε)2 = x2 + 4εx+ 4ε2

f(x+ 3h) = (x+ 3h)2 = x2 + 6εx+ 9ε2.

Therefore

−11f(x) + 18f(x+ epsilon)− 9f(x+ 2ε) + 2f(x+ 3ε) = 12εx.

It follows that
f ′(x) = lim

ε→0

12εx
6ε

= 2x.

Problem 11. Given a sequence of ordered parameters (knots): (x0, x1, . . . , xm),
the ith normalized B-spline basis function (B-function) Ni,k of order k is defined
recursively as

Ni,k(x) =
{

1 if xi ≤ x < xi+1

0 otherwise if k = 1

Ni,k(x) =
x− xi

xi+k−1 − xi
Ni,k−1(x) +

xi+k − x
xi+k − xi+1

Ni+1,k−1(x) if k > 1

with i = 0, 1, . . . , k and k < m. The properties of the B-spline basis functions
are:

106 Problems and Solutions

1) Partition of unity, i.e.
m−k∑
i=0

Ni,k(x) = 1.

2) Positivity
Ni,k(x) ≥ 0.

3) Local support
Ni,k(x) = 0 for x /∈ [xi, xi+k].

4) Ck−2 continuity. If the knots {xi } are pairwise different from each other,
then Ni,k(x) ∈ Ck−2, i.e., the function Ni,k(x) is (k − 2) times continuously
differentiable.

Let m = 4 and

x0 = 0, x1 = 0.5, x2 = 1.0, x3 = 1.5, x4 = 2.0.

Let k = 2. Find N0,2(x), N1,2(x) and N2,2(x). Draw the functions.

Solution 11. From the definition we obtain

N0,1(x) =
{

1 if 0 ≤ x < 0.5
0 otherwise

N1,1(x) =
{

1 if 0.5 ≤ x < 1.0
0 otherwise

N2,1(x) =
{

1 if 1.0 ≤ x < 1.5
0 otherwise

N3,1(x) =
{

1 if 1.5 ≤ x < 2.0
0 otherwise

Thus

N0,2(x) = 2xN0,1(x) + (2− 2x)N1,1(x)
N1,2(x) = (2x− 1)N1,1(x) + (3− 2x)N2,1(x)
N2,2(x) = (2x− 2)N2,1(x) + (4− 2x)N3,1(x).

Problem 12. Let f be a continuos function in the interval [a, b] (b > a). Then

lim
n→∞

b− a
n

n∑
k=1

f

(
a+

k(b− a)
n

)
=
∫ b

a

f(x)dx.

Implement in C++ the left-hand side for a given f , a, b and n with

Numerical Techniques 107

double integrate(double (*f)(double),double a,double b,int n)

Apply it to the function
f(x) = sin(x)

and the interval [0, π] and to the function

f(x) = exp(x ∗ ln(x))

with the interval [0, 1]. Choose n = 10, 100, 1000000.

Solution 12.

// integrate.cpp

#include <iostream>

#include <cmath>

using namespace std;

double integrate(double (*f)(double),double a,double b,int n)

{

double step = (b-a)/n;

double x, sum = 0.0;

for(x=a;x<=b;x+=step) sum += f(x);

return sum*step;

}

double xtox(double x)

{

if(x==0.0) return 1.0;

return exp(x*log(x));

}

int main(void)

{

const double pi = 4.0*atan(1.0);

cout.precision(10);

// integral from 0 to pi of sin x = -cos pi - (-cos 0) = 2

cout << integrate(sin,0.0,pi,10) << endl;

cout << integrate(sin,0.0,pi,100) << endl;

cout << integrate(sin,0.0,pi,1000000) << endl;

// integral of x^x from 0 to 1

cout << integrate(xtox,0.0,1.0,10) << endl;

cout << integrate(xtox,0.0,1.0,100) << endl;

cout << integrate(xtox,0.0,1.0,1000000) << endl;

return 0;

}

/*

1.983523538

108 Problems and Solutions

1.999835504

2

0.8877326878

0.7834935879

0.7834305107

*/

Problem 13. (i) Use the class Derive of SymbolicC++ to find the derivative
of

y = 2x3 − 5x− 1

at the point x = 2. Use the data type double for x.
(ii) Use the class Derive of SymbolicC++ and the class complex over double
to find the derivative of the complex-valued function

w = 2z2 − 5z − 1

at the point z = i.

Solution 13. The code is

// sderive.cpp

#include <iostream>

#include <complex>

#include "Derive.h"

using namespace std;

int main(void)

{

Derive<double> x;

x.set(2.0);

Derive<double> y = 2.0*x*x*x-5.0*x-1.0;

cout << "The derivative of y at x = " << x << " is "

<< df(y) << endl;

cout << "value of y at x = " << x << " is "

<< y << endl;

Derive<complex<double> > z;

z.set(complex<double>(0.0,1.0));

complex<double> five(5.0,0.0);

complex<double> two(2.0,0.0);

complex<double> one(1.0,0.0);

Derive<complex<double> > w = two*z*z-five*z-one;

cout << "The derivative of w at z = " << z << " is "

<< df(w) << endl;

cout << "value of w at z = " << z << " is "

Numerical Techniques 109

<< w << endl;

return 0;

}

Problem 14. Let r be a real number with r 6= 0. Then 1/r can be calculated
to ever increasing precision by using the iteration

xt+1 = xt(2− rxt), t = 0, 1, 2, . . .

provided the initial value x0 is sufficiently close to 1/r. The number of digits of
precision approximately doubles with each iteration. Write a C++ program to
find the inverse of r = 2 with the initial value x0 = 0.8. Why does the initial
value x0 = 1 not work?

Solution 14. Using a while loop we have

// Division.cpp

#include <iostream>

#include <cmath>

using namespace std;

int main(void)

{

double d = 2.0;

double x0 = 0.8;

double x1 = x0*(2.0-d*x0);

double eps = 0.000001;

while(fabs(x0-x1) > eps)

{ x0 = x1; x1 = x0*(2.0-d*x0); }

cout << "x1 = " << x1 << endl;

return 0;

}

The initial value x0 = 1.0 is not in the domain of attraction of the map. The
map f(x) = 2x − 2x2 has the fixed points x∗ = 0 and x∗ = 1/2 given as the
solution of the equation 2x∗ − 2x∗2 = x∗. The fixed point x∗ = 1/2 is stable. If
x0 = 1 we have x1 = 0 (fixed point).

Problem 15. In C and C++ the function fabs finds the absolute value of
a floating point number. How can fabs be replaced by an if condition and
multiplication by −1.0?

Solution 15. Obviously the if condition tests whether the number is negative.

// myfabs.cpp

110 Problems and Solutions

#include <iostream>

using namespace std;

int main(void)

{

double x;

cout << "enter a floating point number: ";

cin >> x;

if(x < 0.0) x = -1.0*x;

cout << "the absolute value is: " << x << endl;

return 0;

}

Problem 16. What is the following code doing

// InvSqrt.cpp

#include <iostream>

using namespace std;

float invSqrt(float x)

{

float xhalf = 0.5f*x;

int i = *(int*)& x; // get bits for floating value

i = 0x5f3759df - (i >> 1); // initial guess

x = *(float*)& i; // convert bits back to float

x *= 1.5f - xhalf*x*x;

x *= 1.5f - xhalf*x*x;

return x;

}

int main(void)

{

float x1 = 10.0f;

float r1 = invSqrt(x1);

cout << "r1 = " << r1 << endl;

float x2 = 100.0f;

float r2 = invSqrt(x2);

cout << "r2 = " << r2 << endl;

return 0;

}

Solution 16. The code gives an approximation of the inverse square root
1/
√
x of a floating point number x using the Newton method and a clever initial

guess of y = 1/
√
x. We define F (y) = 1/y2 − x. We want the positive root of

F (y) = 0. Given x choose an initial value y0. Then the Newton iteration scheme

Numerical Techniques 111

is

yn+1 = yn −
F (yn)
F ′(yn)

, n ≥ 0

where F ′(y) = −2/y3 is the derivative of F . Thus

yn+1 =
yn(3− xy2

n)
2

.

The initial guess is selected as follows. The IEEE 32-bit float has a mantissa
M filling bit positions 0 through 22, an 8-bit biased exponent E filling bits
23 through 30, and a sign bit in position 31. The function invSqrt expects
nonnegative input, so the sign bit is 0 for the input x. The bias is 127. Thus the
true exponent is e = E−127. The corresponding number in readable form is x =
1.M ∗2e. We want y0 to be a good approximation to 1/

√
x = (1/

√
1.M)∗2−e/2.

The biased exponent for −e/2 is −e/2+127. In terms of integer arithmetic, this
is 0xbe-(E >> 1) where E is the biased exponent for x. The statement

i = 0x5f3759df - (i >> 1);

implicitly computes the biased exponent −e/2 + 127. This statement also im-
plicitly computes the mantissa for the initial guess y0.

Problem 17. Consider the function f : Rn → R, where it is assumed that
the function f is at least twice continuous differentiable. We want to find the
minimum of the function f . Let

H(x) :=
(
∂2f(x)
∂xj∂xk

)
be the Hessian matrix and j, k = 1, 2, . . . , n. In the Levenberg-Marquardt algo-
rithm we apply

xt+1 = xt − (H(xt) + λdiag(H(xt))−1∇f(xt)

where t = 0, 1, 2, . . ., λ is the step length and given initial values. We need
matrix inversion as part of the update. Since the determinant of the Hessian
matrix is proportional to the curvature of f , the iteration implies a large step in
the direction with low curvature (i.e., an almost flat terrain) and a small step in
the direction with hight curvature (i.e. a steep incline). Write a C++ program
that applies this method to solve the system of equation

x1 = sin(x1 + x2), x2 = cos(x1 − x2)

by finding the minimum the function

f(x1, x2) = (x1 − sin(x1 + x2))2 + (x2 − cos(x1 − x2))2.

Use the initial values x1,0 = x2,0 = 0.

112 Problems and Solutions

Solution 17.

Problem 18. A polygon is a closed plane figure with n sides. If all sides and
angles are equivalent the polygon is called regular. The area of a planar convex
polygon with vertices

(x0, y0), (x1, y1), . . . , (xn−1, yn−1)

is given by

A =
1
2

n−1∑
i=0

(xiyi+1 − xi+1yi), xn ≡ x0, yn ≡ y0.

A polygon in the plane R2 is a closed figure with n sides. If all sides and angles
are equal the polygon is called regular. The area of a planar convex polygon
with vertices

(x0, y0), (x1, y1), . . . , (xn−1, yn−1)

is given by

A =
1
2

∣∣∣∣∣∣
n−1∑
j=1

(xjyj+1 − xj+1yj)

∣∣∣∣∣∣ , xn ≡ x0, yn ≡ y0.

(i) Write a C++ program that finds the area of a given planar convex polygon.
Apply the modulus operator % to identify n and 0.
(ii) Write a Java program that finds the area of a given planar convex polygon.
Apply the modulus operator % to identify n and 0.

Solution 18. In the example the polygon is the unit square. The C++
program is

// polygon.cpp

#include <iostream>

using namespace std;

double area(double* x,double* y,int n)

{

double area = 0.0;

for(int i=0;i<n;i++)

{ area += (x[i]*y[(i+1)%n]-x[(i+1)%n]*y[i]); }

return 0.5*area;

}

int main(void)

{

Numerical Techniques 113

int n = 4;

double* x = new double[n];

double* y = new double[n];

x[0] = 0.0; x[1] = 1.0; x[2] = 1.0; x[3] = 0.0;

y[0] = 0.0; y[1] = 0.0; y[2] = 1.0; y[3] = 1.0;

double result = area(x,y,n);

cout << "result = " << result << endl;

delete[] x; delete[] y;

return 0;

}

The Java program is

// Polygon.java

public class Polygon

{

public static void main(String[] args)

{

double[] x = new double[4];

double[] y = new double[4];

x[0] = 0.0; x[1] = 1.0; x[2] = 1.0; x[3] = 0.0;

y[0] = 0.0; y[1] = 0.0; y[2] = 1.0; y[3] = 1.0;

double area = 0.0;

int length = x.length;

for(int j=0;j<x.length;j++)

{ area += (x[j]*y[(j+1)%length]-x[(j+1)%length]*y[j]); }

area = 0.5*Math.abs(area);

System.out.println("area of polygon = " + area);

}

}

Problem 19. Given a time series {xi : i = 0, 1, . . . , N − 1 }, the linear
correlation of an epoch consisting of K points {xi : i = 0, 1, . . . ,K − 1 } and
another epoch of the same length K covering a different time interval {xk : k =
j, j+ 1, . . . ,K + j− 1 }, K + j ≤ N , is given by the cross-correlation coefficient

rj :=
K−1∑
i=0

(xi − 〈x0〉)(xi+j − 〈xj〉)
σ0σj

where 〈x0〉 and 〈xj〉 are, respectively, the mean values of the epochs starting at
x0 and xj and σ0 and σj the corresponding standard deviations. Write a C++
program that find the correlation coefficient for the logistic map

xt+1 = 4xt(1− xt), t = 0, 1, 2, . . .

and x0 = 1/3. Let N = 2048 and K = 1024.

114 Problems and Solutions

Solution 19.

Problem 20. The standard Hermite polynomial satisfy the recursion relations

Hn+1(x) = 2xHn(x)− 2nHn−1(x),
dHn(x)
dx

= 2nHn−1(x)

with H0(x) = 1. Combining these two relations we get the recursion relation

Hn+1(x) =
(

2x− d

dx

)
Hn(x).

Write a C++ program using SymbolicC++ which implement this recursion re-
lation.

Solution 20.

Problem 21. Write a C++ program to implement an approximation to the
integral ∫ x

0

exp(−s2)ds = x− x3

3 · 1!
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·

Solution 21.

Problem 22. Consider the 3× 3 matrix

A =

 0 1 1
1 0 1
1 1 0

 .

Find A2 and A3. We know that

tr(A) = λ1 + λ2 + λ3, tr(A2) = λ2
1 + λ2

2 + λ2
3, tr(A3) = λ3

1 + λ3
2 + λ3

3.

Use Newton’s method to solve this system of equations to find the eigenvalues
of A.

Solution 22. For the powers of A we have

A =

 0 1 1
1 0 1
1 1 0

 , A2 =

 2 1 1
1 2 1
1 1 2

 , A3 =

 2 3 3
3 2 3
3 3 2

 .

Thus we have the equations

tr(A) = 0 = λ1 + λ2 + λ3

tr(A2) = 6 = λ2
1 + λ2

2 + λ2
3

tr(A3) = 6 = λ3
1 + λ3

2 + λ3
3.

Numerical Techniques 115

We use the three dimensional Newton-Raphson method to find the solution

λ1 = 2, λ2 = −1, λ3 = −1.

The following C++ program implements the Newton-Raphson method.

// nr3.cpp

#include <iostream>

#include <cmath>

using namespace std;

typedef double dfunction(double[3]);

// f0, f1 and f2 implement the equations

// x0+x1+x2=0.0

// x0^2+x1^2+x2^2-6.0=0.0

// x0^3+x1^3+x2^3-6.0=0.0

double f0(double x[3]) {return x[0]+x[1]+x[2];}

double f1(double x[3]) {return x[0]*x[0]+x[1]*x[1]+x[2]*x[2]-6.0;}

double f2(double x[3])

{return x[0]*x[0]*x[0]+x[1]*x[1]*x[1]+x[2]*x[2]*x[2]-6.0;}

// dfij is the partial derivative of fi with respect to x[j]

double df00(double x[3]) {return 1.0;}

double df01(double x[3]) {return 1.0;}

double df02(double x[3]) {return 1.0;}

double df10(double x[3]) {return 2.0*x[0];}

double df11(double x[3]) {return 2.0*x[1];}

double df12(double x[3]) {return 2.0*x[2];}

double df20(double x[3]) {return 3.0*x[0]*x[0];}

double df21(double x[3]) {return 3.0*x[1]*x[1];}

double df22(double x[3]) {return 3.0*x[2]*x[2];}

// MatrixMul multiplies a 3x3 matrix with a 3 dimensional vector

// and stores the result in ans

void MatrixMul(double A[3][3],double x[3],double ans[3])

{

ans[0]=A[0][0]*x[0]+A[0][1]*x[1]+A[0][2]*x[2];

ans[1]=A[1][0]*x[0]+A[1][1]*x[1]+A[1][2]*x[2];

ans[2]=A[2][0]*x[0]+A[2][1]*x[1]+A[2][2]*x[2];

}

// CalculateInverse inverts a 3x3 matrix using the adjoint matrix

// the return value indicates if the matrix could be inverted

int CalculateInverse(double A[3][3],double Ainv[3][3])

{

double det=(A[0][0]*A[1][1]*A[2][2]+A[0][1]*A[1][2]*A[2][0]

+A[0][2]*A[1][0]*A[2][1]-A[0][0]*A[1][2]*A[2][1]

116 Problems and Solutions

-A[0][1]*A[1][0]*A[2][2]-A[0][2]*A[1][1]*A[2][0]);

if(det==0.0) return 0;

Ainv[0][0]= (A[1][1]*A[2][2]-A[1][2]*A[2][1])/det;

Ainv[0][1]=-(A[0][1]*A[2][2]-A[0][2]*A[2][1])/det;

Ainv[0][2]= (A[0][1]*A[1][2]-A[0][2]*A[1][1])/det;

Ainv[1][0]=-(A[1][0]*A[2][2]-A[1][2]*A[2][0])/det;

Ainv[1][1]= (A[0][0]*A[2][2]-A[0][2]*A[2][0])/det;

Ainv[1][2]=-(A[0][0]*A[1][2]-A[0][2]*A[1][0])/det;

Ainv[2][0]= (A[1][0]*A[2][1]-A[1][1]*A[2][0])/det;

Ainv[2][1]=-(A[0][0]*A[2][1]-A[0][1]*A[2][0])/det;

Ainv[2][2]= (A[0][0]*A[1][1]-A[0][1]*A[1][0])/det;

return 1;

}

// the Newton-Raphson method

// lambda[3] contains the initial values and stores the final result

// f[3] implements the three equations

// df[3][3] implements the partial derivatives of f[3]

// eps is the required accuracy

// maxiter is the maximum number of iterations

int Newton(double lambda[3],dfunction *f[3],dfunction *df[3][3],

double eps,int maxiter)

{

double temp1[3],temp2[3],m[3][3],minv[3][3];

int i=0;

while(((fabs(f[0](lambda))>eps) || (fabs(f[1](lambda))>eps)

|| (fabs(f[2](lambda))>eps)) && i<maxiter)

{

// calculate the partial derivatives

m[0][0]=df[0][0](lambda);m[0][1]=df[0][1](lambda);

m[0][2]=df[0][2](lambda);

m[1][0]=df[1][0](lambda);m[1][1]=df[1][1](lambda);

m[1][2]=df[1][2](lambda);

m[2][0]=df[2][0](lambda);m[2][1]=df[2][1](lambda);

m[2][2]=df[2][2](lambda);

// evaluate the functions

temp1[0]=f[0](lambda); temp1[1]=f[1](lambda);

temp1[2]=f[2](lambda);

if(!CalculateInverse(m,minv)) return 0;

MatrixMul(minv,temp1,temp2);

lambda[0]-=temp2[0]; lambda[1]-=temp2[1]; lambda[2]-=temp2[2];

i++;

}

if (i>=maxiter) return 0;

return 1;

}

Numerical Techniques 117

int main(void)

{

dfunction *f[3],*df[3][3];

// for every one solution found there are two more

// we choose the initial values to satisfy the first equation

double lambda[3]={0,1,-1};

f[0]=f0;f[1]=f1;f[2]=f2;

df[0][0]=df00;df[0][1]=df01;df[0][2]=df02;

df[1][0]=df10;df[1][1]=df11;df[1][2]=df12;

df[2][0]=df20;df[2][1]=df21;df[2][2]=df22;

if(Newton(lambda,f,df,1e-50,100))

{

cout<<"Lambda 1 : "<<lambda[0]<<endl;

cout<<"Lambda 2 : "<<lambda[1]<<endl;

cout<<"Lambda 3 : "<<lambda[2]<<endl;

}

else cout<<"Could not find a solution "

<<"with the required accuracy."<<endl;

return 0;

}

// Output:

// Lambda 1 : -1

// Lambda 2 : 2

// Lambda 3 : -1

Problem 23. What is the output of the following C++ code

// epsilon.cpp

#include <iostream>

using namespace std;

int main(void)

{

double eps = 1.0, x = 2.0, y = 1.0;

while(y < x) { eps *= 0.5; x = 1.0 + eps; }

eps *= 2.0;

cout << "eps = " << eps;

}

Solution 23. We obtain

2.220446049250313e-0.16

which is 252 the smallest positive number that satisfies 1.0 + ε > 1.0.

118 Problems and Solutions

Problem 24. Use numerical integration to show that∫ 1

0

x

1 + x2
ln(1 + x)dx = 0.162865007.

Solution 24.

Problem 25. Let x > 0. Find the solution of the equation

(x− 2)2 = ln(x).

First show that the equation has a root in [1, 2].

Solution 25.

Problem 26. Consider the mathematical expression

sin(b) + a ∗ b +︸︷︷︸ c ∗ d+ (a− b).

(i) Write this mathematical expression as a binary tree with the root indicated
by the underbrace. Then evaluate this binary tree from bottom to top with the
values a = 2, b = π/2, c = 4, d = 1.
(ii) Am alternative to represent a mathematical expression as tree is multiex-
pression programming. Use multiexpression programming to evaluate the math-
ematical expression given above.

Solution 26.

Problem 27. Find an approximation of
√

30 utilizing
√

30 =
√

25 + 5 = 5
√

1 + 0.2.

Solution 27. We have

5
√

1 + 0.2 ≈ 5(1 +
1
2

0.2) = 5.5.

Chapter 9

Random Numbers

Problem 1. Calculate the integral∫ 1

0

| cos(2πx)|dx

using the random numnber generator described in problem 7, chapter 10, page
250, Problems and Solutions in Scientific Computing. Compare to the exact
result by solving the integral.

Solution 1. Note that

cos(0) = 1, cos(π/2) = 0, cos(3π/2) = 0, cos(2π) = 1.

The integration yields∫ 1

0

| cos(2πx)|dx=
∫ 1/4

0

cos(2πx)dx−
∫ 3/4

1/4

cos(2πx)dx+
∫ 1

3/4

cos(2πx)dx

=
1

2π
sin(2πx)

∣∣∣∣1/4
0

− 1
2π

sin(2πx)
∣∣∣∣3/4
1/4

+
1

2π
sin(2πx)

∣∣∣∣1
3/4

=
2
π
.

The program is

// MonteCarlo.cpp

#include <iostream>

#include <cmath>

119

120 Problems and Solutions

using namespace std;

const double PI = 3.1415926535;

void randgen(double* x)

{ *x = fmod((*x+PI)*(*x+PI)*(*x+PI)*(*x+PI)*(*x+PI),1.0); }

double sum(double (*f)(double),int n)

{

double u = 0.618;

double result = 0.0;

for(int i=0;i<n;i++) { randgen(&u); result += f(u); }

return result/n;

}

double f(double x) { return fabs(cos(2.0*PI*x)); }

int main(void)

{

double value;

int n = 1000;

value = sum(f,n);

cout << "value = " << value;

return 0;

}

Chapter 10

Optimization Problems

Problem 1. Consider an overdetermined linear system Ax = b, where A is
an m × n matrix with m > n. Thus x is a column vector with n rows and b
is a column vector with m rows. Write a genetic algorithm program that finds
the Chebyshev or minmax solution to set of overdetermined linear equations
Ax = b, i.e. the column vector x which minimizes

c = max
1≤i≤m

ci ≡ max
1≤i≤m

∣∣∣∣∣∣bi −
n∑
j=1

aijxj

∣∣∣∣∣∣ .
Apply the program to the overdetermined linear system

1 −1 1
1 −0.5 0.25
1 0 0
1 0.5 0.25
1 1 1

x1

x2

x3

 =

1

0.5
0

0.5
2.0

 .

Solution 1. We have

c1 = |1− x1 + x2 − x3|
c2 = |0.5− x1 + 0.5x2 − 0.25x3|
c3 = |x1|
c4 = |0.5− x1 − 0.5x2 − 0.25x3|
c5 = |2− x1 − x2 − x3|.

121

122 Problems and Solutions

The solution is given by

x1 =
1
6
, x2 =

1
3
, x3 =

4
3
.

Chapter 11

String Manipulations

Problem 1. Given a string of digits with or without a decimal point, for
example ”345678” or ”12.3456”. Write a C++ program that converts the string
to a floating point number double.

Solution 1.

// strtodbl.cpp

#include <cassert>

#include <cctype>

#include <iostream>

#include <string>

using namespace std;

double strtodbl(const string &s)

{

int negative = 0;

int fraction = 0;

double value = 0.0;

double fracpart = 1.0;

for(int i=0;i<s.length();i++)

{

switch(s[i])

{

case ’-’: assert(i==0); negative = 1; break;

case ’.’: assert(!fraction); fraction = 1; break;

default : assert(isdigit(s[i]));

if(fraction) value += (s[i]-’0’)*(fracpart*=0.1);

123

124 Problems and Solutions

else value = value*10 + (s[i]-’0’);

break;

}

}

return value;

}

int main(void)

{

cout << strtodbl("") << endl;

cout << strtodbl("12345") << endl;

cout << strtodbl("12.345") << endl;

cout << strtodbl("1.2345") << endl;

cout << strtodbl(".12345") << endl;

cout << strtodbl("12345.") << endl;

cout << strtodbl(".") << endl;

string s = ".123456789012345678901234567890";

double r = strtodbl(s);

cout << "r = " << r << endl;

return 0;

}

/*

0

12345

12.345

1.2345

0.12345

12345

0

0.123457

*/

Problem 2. Write a C++ program that implements the Levenshtein distance
(also called the edit distance).

Solution 2.

// levenshtein.cpp

#include <iostream>

#include <string>

using namespace std;

int min(int a,int b,int c)

{

int m = a;

if(b < m) { m = b; }

if(c < m) { m = c; }

String Manipulations 125

return m;

}

int LD(string s,string t,int n,int m,int** D)

{

int cost; // cost

// step 1

if(n==0) return m;

if(m==0) return n;

// step 2

for(int p=0;p<=n;D[p][0]=p++);

for(int q=0;q<=m;D[0][q]=q++);

// step 3

for(int i=1;i<=n;i++) {

// step 4

for(int j=1;j<=m;j++) {

cost = (t.substr(j-1,1)==s.substr(i-1,1) ? 0 : 1);

// step 6

D[i][j] = min(D[i-1][j]+1,D[i][j-1]+1,D[i-1][j-1]+cost);

}

}

return D[n][m];

}

int main(void)

{

string s = "010101010101"; string t = "101010101010";

int n = s.length(); int m = t.length();

int** D = NULL;

D = new int*[n+1];

for(int k=0;k<=n;k++) D[k] = new int[m+1];

int distance = LD(s,t,n,m,D);

cout << "distance = " << distance << endl;

for(int l=0;l<=n;l++) delete D[l]; delete[] D;

return 0;

}

Problem 3. Write a C++ program that find the first character in an ASCII
string that occurs only once. Find a solution that minimizes the number of
comparisons between characters. Note that ’\0’ denotes the null character.

Solution 3. We have

// first.cpp

#include <iostream>

#include <string>

using namespace std;

126 Problems and Solutions

/* Order (s.length())^2 comparisons for the worst case */

char naive(string s)

{

size_t i, j;

for(i=0;i<s.length();i++)

{

for(j=0; j<s.length(); j++)

if(i!=j && s[i]==s[j]) break;

if(j==s.length()) return s[i];

}

return ’\0’;

}

/* Order s.length() comparisons for the worst case */

char optimal(string s)

{

size_t i, j;

int ascii[128];

for(i=0;i<128;i++) ascii[i] = 0;

for(i=0;i<s.length();i++) ascii[s[i]]++;

for(i=0;i<s.length();i++) if(ascii[s[i]]==1) return s[i];

return ’\0’;

}

int main(void)

{

char firstn, firsto;

string s;

cout << "Enter a string: ";

getline(cin,s);

firstn = naive(s);

firsto = optimal(s);

if(firstn != firsto)

{

cerr << "Error: the naive and optimal algorithms returned different values,"

<< " ’" << firstn << "’ and ’" << firsto << "’ respectively"

<< endl;

return 1;

}

if(firstn==’\0’)

cout << "No character has only one occurence." << endl;

else cout << "’" << firstn

<< "’ is the first character with only one occurence."

<< endl;

String Manipulations 127

return 0;

}

Problem 4. (i) Write a C++ program that uses the string class and the line

string* sa = new string[N];

and then concatentes the strings.
(ii) Write a C++ program that uses the string class and the line

string* sa = new string(6,’ ’);

and then concatentes the characters.

Solution 4. (i) An example is

// stringarray.cpp

#include <iostream>

#include <string>

using namespace std;

int main(void)

{

int N = 3;

string* sa = new string[N];

sa[0] = "a"; sa[1] = "ab"; sa[2] = "aba";

string s = "";

for(int i=0;i<N;i++) { s += sa[i]; }

cout << "s = " << s << endl;

delete[] sa;

return 0;

}

(ii) An example is

// newstring.cpp

#include <iostream>

#include <string>

using namespace std;

int main(void)

{

string* s = new string(6,’ ’);

(*s)[0] = ’ ’; (*s)[1] = ’I’; (*s)[2] = ’S’;

(*s)[3] = ’S’; (*s)[4] = ’C’; (*s)[5] = ’ ’;

cout << *s << endl;

cout << s << endl;

128 Problems and Solutions

delete s;

return 0;

}

Chapter 12

Programming Problems

Problem 1. The rank of an element in a sequence (one-dimensional array) of
numbers is the number of smaller elements in the sequence plus the number of
equal elements that appear to its left. For example, if the sequence is given as
the one-dimensional array a = [4, 3, 9, 3, 7], then the ranks are r = [2, 0, 4, 1, 3].
Write a C++ program with a function void rank(T* a,int n,int* r) that
computes the ranks of the elements of the array a[0 : n− 1]. Once the elements
have been ranked using the function rank() write a function rearrange() that
rearrange them in nondecreasing order so that a[0] ≤ a[1] ≤ · · · ≤ a[n − 1] by
moving elements to positions corresponding to their ranks.

Solution 1. We can estimate the complexity of the function rank by counting
the number of comparisons between elements of the array a. These comparisons
are done in the if statement. For each value of i, the number of element
comparisons is i. Thus the total number of element comparisons is 1 + 2 + · · ·+
n− 1 = (n− 1)n/2.

// rank.cpp

#include <iostream>

using namespace std;

template<class T>

void rank(T* a,int n,int* r)

{

for(int i=0;i<n;i++) r[i] = 0; // initialize

// compare all elements

for(int j=1;j<n;j++)

for(int k=0;k<j;k++)

129

130 Problems and Solutions

if(a[k] <= a[j]) r[j]++;

else r[k]++;

}

template <class T>

void rearrange(T* a,int n,int* r)

{

T* u = new T[n+1];

// move to the correct place in u

for(int i=0;i<n;i++) u[r[i]] = a[i];

// move back to array a

for(int j=0;j<n;j++) a[j] = u[j];

delete[] u;

}

int main(void)

{

int n = 5;

int* a = new int[n];

a[0] = 4; a[1] = 3; a[2] = 9; a[3] = 3; a[4] = 7;

int* r = new int[n];

rank(a,n,r);

for(int i=0;i<n;i++)

cout << "r[" << i << "] = " << r[i] << endl;

rearrange(a,n,r);

for(int j=0;j<n;j++)

cout << "a[" << j << "] = " << a[j] << endl;

delete[] a; delete[] r;

return 0;

}

Problem 2. Given an array of 20 integer numbers. We would like to assign
the numbers 0, 4, 8, . . . , 76 to the array, i.e.

array[0] = 0, array[1] = 4, ... , array[19] = 76.

Can the multiplication i*4 in the following C++ program forloop1.cpp be
avoided and replaced by addition? Can the C++ program be even more efficient?

// forloop1.cpp

#include <iostream>

using namespace std;

int main(void)

{

int* array = new int[20];

for(int i=0;i<20;i++) { array[i] = i*4; }

delete[] array;

Programming Problems 131

return 0;

}

Solution 2. In the C++ program forloop2.cpp we replace the multiplication
by addition.

// forloop2.cpp

#include <iostream>

using namespace std;

int main(void)

{

int* array = new int[20];

int temp = 0;

for(int i=0;i<20;i++) { array[i] = temp; temp += 4; }

delete[] array;

return 0;

}

Using pointers and pointer arithmetic the program can even more efficient.

// forloop3.cpp

#include <iostream>

using namespace std;

int main(void)

{

int* array = new int[20];

int temp = 0;

int* p = array;

for(int i=0;i<20;i++) { *(p++) = temp; temp += 4; }

delete[] array;

return 0;

}

// forloop4.cpp

#include <iostream>

using namespace std;

int main(void)

{

int* array = new int[20];

int* p = array;

for(int temp=0;temp<80;temp+=4) { *(p++) = temp; }

delete[] array;

return 0;

}

132 Problems and Solutions

Problem 3. Let n be a positive integer. Then the solutions of zn = 1 are
called the roots of unity. For example, if n = 4 we have z1 = 1, z2 = i, z3 = −1,
z4 = −i. Write a C++ program using the class complex<double> that stores
the unit roots in an array for a given n.

Solution 3. The roots are given by (i =
√
−1)

exp(ij2π/n), j = 0, 1, . . . , n− 1.

Now we can write

exp(ij2π/n) ≡ cos(j2π/n) + i sin(j2π/n).

// unitroots.cpp

#include <iostream>

#include <complex>

#include <cmath>

using namespace std;

void unitroots(complex<double>* a,int n)

{

const double pi = 3.14159265358979323846;

for(int j=0;j<n;j++)

a[j] = complex<double>(cos(j*2.0*pi/n),sin(j*2.0*pi/n));

}

int main(void)

{

int n = 4;

complex<double>* a = new complex<double>[n];

unitroots(a,n);

for(int j=0;j<n;j++)

{

cout << "real part a[" << j << "] = " << a[j].real() << endl;

cout << "imag part a[" << j << "] = " << a[j].imag() << endl;

}

delete[] a;

return 0;

}

Problem 4. Extend the C++ program Gauss0.cpp to a template basis
so that it can also be used for other data types such as Rational<int> and
Rational<Verylong>.

Solution 4. The file identity.h is a header file provided in SymbolicC++
which defines the function zero(x) and one(x) which return zero and one in
the same data type as x.

Programming Problems 133

// gauss0power.cpp

// Gauss elimination + back substitution

#include <iostream>

#include <cmath>

#include "verylong.h"

#include "rational.h"

#include "identity.h"

using namespace std;

template<class T> T ABS(T& n)

{

if(n < zero(T())) return -n;

return n;

}

template<class T,int N> void gauss(T C[N][N+1])

{

int i, j, k, m;

for(i=0;i<N-1;i++)

{

T temp, max = ABS<T>(C[m=i][i]);

for(j=i+1;j<N;j++)

if(ABS<T>(C[j][i]) > max) max = ABS<T>(C[m=j][i]);

for(j=i;j<=N;j++)

{ temp = C[i][j]; C[i][j] = C[m][j]; C[m][j] = temp; }

if(C[i][i] != zero(T()))

for(j=i+1;j<N;j++)

{

T r = C[j][i]/C[i][i];

C[j][i] = zero(T());

for(k=i+1;k<=N;k++) C[j][k] = C[j][k]-r*C[i][k];

}

}

}

template<class T,int N> int solve(T A[N][N],T b[N],T x[N])

{

int i, j;

T C[N][N+1];

for(i=0;i<N;i++)

{

for(j=0;j<N;j++) C[i][j] = A[i][j];

C[i][N] = b[i];

}

gauss<T,N>(C); // Gauss elimination

for(i=N-1;i>=0;i--) // Back substitution

{

134 Problems and Solutions

T sum = C[i][N];

if(C[i][i] == zero(T())) return 0;

for(j=i+1;j<N;j++) sum -= C[i][j]*x[j];

x[i] = sum/C[i][i];

}

return 1;

}

int main(void)

{

const int n = 3;

double A[n][n] = {{ 1, 1, 1 },{ 8, 4, 2 },{ 27, 9, 3 }};

double b[n] = { 1, 5, 14 };

double x[n];

if(solve<double,n>(A,b,x))

{

cout << "(";

for(int i=0;i<n;i++) cout << x[i] << " ";

cout << ")" << endl;

}

else cout << "No solution or no unique solution" << endl;

const int m = 2;

Rational<Verylong> B[m][m] = {{ "1/2", "1/3" }, { "1/4", "1/5" }};

Rational<Verylong> c[m] = { "1/6", "1/7" };

Rational<Verylong> y[m];

if(solve<Rational<Verylong>,m>(B,c,y))

{

cout << "(";

for(int i=0;i<m;i++) cout << y[i] << " ";

cout << ")" << endl;

}

else cout << "No solution or no unique solution" << endl;

return 0;

}

Problem 5. Consider the system of nonlinear equations

3x2 − 2y2 − 4z2 + 54 = 0, 5x2 − 3y2 − 7z2 + 74 = 0.

Write a C++ program that finds all integer solutions in the range 0 ≤ x ≤ 100,
0 ≤ y ≤ 100, 0 ≤ z ≤ 100.

Solution 5. Using three for-loops we have the implementation

// nonlinear.cpp

#include <iostream>

Programming Problems 135

using namespace std;

int main(void)

{

for(int x=0;x<=100;x++)

{

for(int y=0;y<=100;y++)

{

for(int z=0;z<=100;z++)

{

int r1 = 3*x*x-2*y*y-4*z*z+54;

int r2 = 5*x*x-3*y*y-7*z*z+74;

if((r1==0) && (r2==0))

{

cout << "(" << x << "," << y << "," << z << ")"; cout << endl;

}

}

}

}

return 0;

}

Problem 6. Let a0, a1, a2, . . . , an−1 be a finite sequence of numbers. Its
Cesáro sum is defined as

1
n

(s0 + s1 + s2 + · · ·+ sn−1)

where
sk = a0 + a1 + · · ·+ ak

for each k, 0 ≤ k ≤ (n − 1). Write a C++ program that finds the Cesáro sum
for a given finite sequence of numbers. Use templates so that the program can
also be used for complex numbers, rational numbers etc.

Solution 6. Using templates the program is

// cesarosums.cpp

#include <iostream>

#include <complex>

using namespace std;

template <class T> T cesaro(T* a,int n)

{

T* s = new T[n];

for(int j=0;j<n;j++) { s[j] = T(0); }

for(int k=0;k<n;k++)

136 Problems and Solutions

{ for(int l=0;l<=k;l++) { s[k] += a[l]; } }

T CS = T(0);

for(int p=0;p<n;p++) { CS += s[p]; }

return CS/((T) n);

} // end function cesaro

int main(void)

{

int n = 4;

double* a = new double[n];

a[0] = 0.5; a[1] = 0.7; a[2] = 0.9; a[3] = 0.3;

double result;

result = cesaro(a,n);

cout << "result = " << result << endl;

delete[] a;

complex<double>* ac = new complex<double>[n];

ac[0] = complex<double>(0.5,0.3);

ac[1] = complex<double>(0.1,0.7);

ac[2] = complex<double>(1.1,2.2);

ac[3] = complex<double>(4.1,7.1);

complex<double> sum;

sum = cesaro(ac,n);

cout << "sum = " << sum << endl;

delete[] ac;

return 0;

}

Problem 7. Let x, y ∈ Z. Consider the equation

x4 + y4 + 79 = 48xy.

Write a C++ program that finds all solutions in the range −10 ≤ x ≤ 10 and
−10 ≤ y ≤ 10.

Solution 7. If (x, y) is a solution, so are (y, x), (−x,−y), and (−y,−x).
Obviously, xy > 0 so that x and y are both positive or negative. If x = y there
is no solution for x4 − 24x2 + 79/2 = 0. Suppose that (x, y) is a solution with
0 < y ≤ x. Then

x3 +
y4 + 79

x
= 48y ≤ 48x.

It follows that x2 < 48. Thus |x| and |y| are bounded by 6. Thus in our C++
program we can restrict us to this range.

Programming Problems 137

Problem 8. Write a C++ program that finds the numbers of integer solutions
of the equation i1 + i2 + i3 = 12 satisfying the following constraints

0 ≤ i1 ≤ 6, 0 ≤ i2 ≤ 6, 0 ≤ i3 ≤ 3.

Solution 8. A brute-force C++ program would be

// integersolutions.cpp

#include <iostream>

using namespace std;

int main(void)

{

int i1, i2, i3;

int count = 0;

for(i1=0;i1<=6;i1++)

{

for(i2=0;i2<=6;i2++)

{

for(i3=0;i3<=3;i3++) { if((i1+i2+i3)==12) count++; }

}

}

cout << "count = " << count << endl;

return 0;

}

The number of solutions is 10.

Problem 9. Let x be the number of man, y be the number of woman and
z be the number of children. Altogether there are 100 persons. Given 100 kg
of potatos. Every man gets 3 portions, a woman gets 2 portions and a child
gets 1/2 a portions. Find all (integer) solutions. We have two linear equations
with three unkowns, however we have the constraint that x, y, z are nonnegative
integers. Write a C++ program that finds all these integer solutions.

Solution 9. From

x+ y + z = 100, 3x+ 2y +
1
2
z = 100

we find after eliminating z
5x+ 3y = 100.

The C++ program is

// Karl.cpp

#include <iostream>

138 Problems and Solutions

using namespace std;

int main(void)

{

int result;

for(int x=0;x<100;x++)

{

for(int y=0;y<100;y++)

{

result = 100 - 5*x - 3*y;

if(result==0)

cout << "x = " << x << " " << "y = " << y << " "

<< "z = " << (100-x-y) << endl;

}

}

return 0;

}

The seven solutions are

x = 2 y = 30 z = 68

x = 5 y = 25 z = 70

x = 8 y = 20 z = 72

x = 11 y = 15 z = 74

x = 14 y = 10 z = 76

x = 17 y = 5 z = 78

x = 20 y = 0 z = 80

Problem 10. Consider a linked list. Determine if the linked list loops using
only two pointers.

Solution 10. We set both pointers to the head of the list.

Problem 11. The problem refers to the book ”Mathematical Tools in Signal
Processing with C++ and Java Simulations”. Consider the program (page 25)
au.cpp. Where is the amplitude? Extend the program to two or more sine
waves (for example frequency 880 besides 440).

Solution 11.

Problem 12. The problem refers to the book ”Mathematical Tools in Signal
Processing with C++ and Java Simulations”. Consider the program (page 8)
SineSound.java. Run the Java program with the first line (page 10) changed
to

...new File("sine.au"));

Programming Problems 139

with WAVE also changed. Compare to the previous problem. Extend the program
to get in more frequencies.

Solution 12.

Problem 13. The problem refers to the book ”Mathematical Tools in Signal
Processing with C++ and Java Simulations”. Consider the program (page 31)
LGB.java. Rewrite the program in C++ either with the vector class of STL or
“plain” (just functions).

Solution 13.

Problem 14. The problem refers to the book ”Mathematical Tools in Signal
Processing with C++ and Java Simulations”. Consider the program (page 44)
Noise.java. Rewrite the program into C++.

Solution 14.

Problem 15. The problem refers to the book ”Mathematical Tools in Sig-
nal Processing with C++ and Java Simulations”. Consider the Matlab Filter
Implementation (page 49). Rewrite the code in C++.

Solution 15.

Problem 16. The problem refers to the book ”Mathematical Tools in Signal
Processing with C++ and Java Simulations”. Consider the program (page 60)
NonCircular.java. Rewrite the code in C++.

Solution 16.

Problem 17. The problem refers to the book ”Mathematical Tools in Signal
Processing with C++ and Java Simulations”. Give a Java implementation of
the two-dimensional convolution (page 61).

Solution 17.

Problem 18. The problem refers to the book ”Mathematical Tools in Signal
Processing with C++ and Java Simulations”. Implement the two-dimensional
Fourier transform in C++ (page 72).

Solution 18.

140 Problems and Solutions

Problem 19. The problem refers to the book ”Mathematical Tools in Signal
Processing with C++ and Java Simulations”. Implement the two-dimensional
Cosine transform (page 76).

Solution 19.

Problem 20. The problem refers to the book ”Mathematical Tools in Signal
Processing with C++ and Java Simulations”. Use the complex class of STL and
do someting useful with the z-transform (chapter 8).

Solution 20.

Problem 21. The problem refers to the book ”Mathematical Tools in Sig-
nal Processing with C++ and Java Simulations”. Implement two-dimensional
wavelets (page 89).

Solution 21.

Problem 22. The problem refers to the book ”Mathematical Tools in Signal
Processing with C++ and Java Simulations”. In the C++ program (page 138)
the total number of distinct observations is 2. Extend the program to more
observations.

Solution 22.

Problem 23. The problem refers to the book ”Mathematical Tools in Signal
Processing with C++ and Java Simulations”. Extend the C++ code fragment
(page 205) to a complete C++ program.

Solution 23.

Problem 24. The problem refers to the book ”Mathematical Tools in Signal
Processing with C++ and Java Simulations”. Implement the decompression
procedure (page 216) in C++.

Solution 24.

Problem 25. Write a Java program Gauss.java that implements Gauss elim-
ination to solve linear equation with n equations and n unkowns. Apply the
program to the system 0 0 1

0 1 0
1 0 0

x0

x1

x2

 =

 1
2
3

 .

Programming Problems 141

Solution 25. We implement the Gauss elimination with pivot search

// Gauss.java

public class Gauss

{

public static void solveGauss(double[][] A,double[] b,double[] x)

{

int n = A.length;

for(int j=0;j<n-1;j++)

{

double max = Math.abs(A[j][j]);

int imax = j;

for(int i=j+1;i<n;i++)

{

if(Math.abs(A[i][j]) > max)

{ max = Math.abs(A[i][j]); imax = i; }

}

//

double[] h = A[j]; A[j] = A[imax]; A[imax] = h;

double hb = b[j]; b[j] = b[imax]; b[imax] = hb;

for(int i=j+1;i<n;i++)

{

double f = -A[i][j]/A[j][j];

for(int k=j+1;k<n;k++) A[i][k] += f*A[j][k];

b[i] += f*b[j];

}

}

for(int j=n-1;j>=0;j--)

{

x[j] = b[j];

for(int k=j+1;k<n;k++) x[j] -= A[j][k]*x[k];

x[j] /= A[j][j];

}

} // end method solveGauss

public static void main(String[] args)

{

int n=3;

double[][] A = new double[n][n];

A[0][0] = 0.0; A[0][1] = 0.0; A[0][2] = 1.0;

A[1][0] = 0.0; A[1][1] = 1.0; A[1][2] = 0.0;

A[2][0] = 1.0; A[2][1] = 0.0; A[2][2] = 0.0;

double[] b = new double[n];

b[0] = 1.0; b[1] = 2.0; b[2] = 3.0;

double[] x = new double[n];

solveGauss(A,b,x);

for(int j=0;j<n;j++)

142 Problems and Solutions

{ System.out.println("x[" + j + "]= " + x[j]); }

} // end main

} // end class Gauss

Problem 26. Which of the following C++ program fragments will loop for-
ever?

int i = 1;

while(i != 0) i = i + 1;

int j = 1;

while(j != 0) j = 2*j + 1;

double x = 1.0;

while(x != 0) x = x/2.0;

Solution 26.

Problem 27. Write down the tree expression for

((a/b) ∗ 4) + ((1 + c) ∗ (2− d)).

Then evaluate the tree expression for a = 1, b = 2, c = 3, d = 4.

Solution 27.

Problem 28. How would one store a matrix using a linked list?

Solution 28.

Chapter 13

Applications of STL in
C++

Problem 1. Given a set of positive integers, for example,

{ 2, 3, 11, 7, 4, 28, 41, 16 }

Write a C++ program using set<int> that partitions the set into two subsets
of even and odd numbers, respectively.

Solution 1.

// partition.cpp

#include <iostream>

#include <set>

#include <utility>

using namespace std;

template <class T>

pair<set<T>,set<T> > partition(const set<T> &s,int (*p)(T))

{

set<T> p1, p2;

typename set<T>::const_iterator i;

for(i=s.begin();i!=s.end();i++)

if(p(*i)) p1.insert(*i); else p2.insert(*i);

return make_pair(p1,p2);

}

143

144 Problems and Solutions

int even(int x) { return x%2 == 0; }

template<class T>

void showset(const set<T> &s)

{

typename set<T>::const_iterator i;

cout << "{ ";

for(i=s.begin();i!=s.end();)

{

cout << (*i);

cout << ((++i==s.end()) ? " ":", ");

}

cout << "}";

}

int main(void)

{

set<int> s;

s.insert(2); s.insert(3);

s.insert(11); s.insert(7);

s.insert(4); s.insert(28);

s.insert(41); s.insert(16);

showset(s); cout << endl;

pair<set<int>,set<int> > p = partition(s,even);

showset(p.first); cout << endl;

showset(p.second); cout << endl;

return 0;

}

/*

{ 2, 3, 4, 7, 11, 16, 28, 41 }

{ 2, 4, 16, 28 }

{ 3, 7, 11, 41 }

*/

Problem 2. Write a useful C++ program that uses the function find_if().
The function find_if takes a predicate (function object or function) as param-
eter.

Solution 2.

// myfind_if.cpp

#include <iostream>

#include <list>

#include <string>

#include <algorithm>

using namespace std;

Applications of STL in C++ 145

bool favorite_fruits(const std::string& name)

{ return (name == "apple" || name == "orange"); }

int main(void)

{

list<string> fruits;

fruits.push_back("banana");

fruits.push_back("orange");

fruits.push_back("peach");

list<string>::const_iterator found =

find_if(fruits.begin(),fruits.end(),favorite_fruits);

if(found == fruits.end())

cout << "No favorite fruits in the list";

else cout << "Found it: " << *found << "\n";

return 0;

}

Problem 3. A function f is a set of pairs (a, b) where a ∈ A and b ∈ B are
elements of the sets A and B, respectively, such that for each a ∈ A there is
exactly one b ∈ B such that (a, b) ∈ f .

Example. Consider the sets

A = {one, two, three, four, five}, B = {1, 2, 3, 4, 5}.

Let
f = {(one, 1), (two, 2), (three, 3), (four, 4), (five, 5)}

then f(one) = 1, f(two) = 2 etc. The set f denotes a function since each ele-
ment of A appears as the first of a pair exactly once in f . The set A is called
the domain of f and the set B is called the range of f .

We usually write f : A→ B and f(a) = b where (a, b) ∈ f .

Example. Consider

A = {1, 2, 3, 4, 5}, B = {true, false}.

Let
g = {(1, false), (2, true), (3, true), (4, false), (5, true)}

then g(2) = true, g(4) = false etc. The function g associates with each number
in A the value in B which indicates whether the number is prime.

Let f : A→ B and g : B → C where A, B and C are sets. Then, by convention,
a ∈ A ⇒ f(a) ∈ B. Consequently

a ∈ A ⇒ f(a) ∈ B ⇒ g(f(a)) ∈ C.

146 Problems and Solutions

Thus we define function composition

g ◦ f : A→ C, g ◦ f = {(a, g(f(a))) | a ∈ A}.

Note that the functions f and g need to be compatible for function composition,
i.e. the range of f must be contained in (subset of) the domain of g.

Example. Let f and g denote the two functions from the examples above and
(we rename the sets for clarity)

A= {one, two, three, four, five},
B = {1, 2, 3, 4, 5},
C = {true, false}.

Thus f : A→ B and g : B → C. Consequently

g ◦ f = {(one, g(f(one))), (two, g(f(two))), (three, g(f(three))),
(four, g(f(four))), (five, g(f(five)))}

f = {(one, g(1)), (two, g(2)), (three, g(3)), (four, g(4)), (five, g(5))}
f = {(one, false), (two, true), (three, true), (four, false), (five, true)}.

In other words (g◦f)(two) = g(f(two)) = g(2) = true and (g◦f)(four) = false.

Finite sets of a homogeneous nature, such as integers (represented by int in
C++) allow a simple representation of functions in C++ using the STL data type
map. The template class map<A,B> associates pairs of type A and B. Implement
the examples above using the map data type. Implement function composition
for two arbitrary (compatible) maps.

Solution 3.

// function.cpp

#include <iostream>

#include <map>

#include <set>

#include <string>

using namespace std;

template <class D,class R1,class R2>

map<D,R2> compose(map<R1,R2> m1,map<D,R1> m2)

{

typename map<D,R1>::iterator i;

map<D,R2> c;

for(i=m2.begin();i!=m2.end();i++) c[i->first] = m1[i->second];

return c;

Applications of STL in C++ 147

}

template <class D,class R> set<D> domain(map<D,R> m)

{

typename map<D,R>::iterator i;

set<D> s;

for(i=m.begin();i!=m.end();i++) s.insert(i->first);

return s;

}

template <class D,class R> set<R> range(map<D,R> m)

{

typename map<D,R>::iterator i;

set<R> s;

for(i=m.begin();i!=m.end();i++) s.insert(i->second);

return s;

}

template<class T> void showset(const set<T> &s)

{

typename set<T>::const_iterator i;

cout << "{ ";

for(i=s.begin();i!=s.end();)

{

cout << (*i);

cout << ((++i==s.end()) ? " ":", ");

}

cout << "}";

}

int main(void)

{

map<string,int> m;

map<int,bool> prime1;

m["zero"] = 0; m["one"] = 1; m["two"] = 2;

m["three"] = 3; m["four"] = 4; m["five"] = 5;

prime1[0] = false; prime1[1] = false;

prime1[2] = true; prime1[3] = true;

prime1[4] = false; prime1[5] = true;

showset(domain(prime1)); cout << endl;

showset(range(prime1)); cout << endl;

map<string,bool> prime2 = compose(prime1,m);

showset(domain(prime2)); cout << endl;

showset(range(prime2)); cout << endl;

map<string,bool>::iterator j;

for(j=prime2.begin();j!=prime2.end();j++)

cout << j->first << " -> " << j->second << endl;

string n;

148 Problems and Solutions

cout << "Enter zero, one, two, three, four, or five: ";

cin >> n;

cout << n << ((prime2[n]) ? " is ":" is not ") << "prime." << endl;

return 0;

}

/*

{ 0, 1, 2, 3, 4, 5 }

{ 0, 1 }

{ five, four, one, three, two, zero }

{ 0, 1 }

five -> 1

four -> 0

one -> 0

three -> 1

two -> 1

zero -> 0

Enter zero, one, two, three, four, or five: four

four is not prime.

*/

Problem 4. The spiral map (Problems and Solutions in Scientific Computing,
page 79) is a 1 to 1 map (i.e. invertible) which maps Z2 → Z. Write a C++
program using the map class and pair that stores the elements of the map as

map<int,pair<int,int> >

Solution 4.

// spiralmap2.cpp

#include <iostream>

#include <map>

#include <utility>

using namespace std;

template <class T1,class T2>

map<T2,T1> inverse(const map<T1,T2> &m)

{

typename map<T1,T2>::const_iterator i;

map<T2,T1> mi;

for(i=m.begin();i!=m.end();i++) mi[i->second] = i->first;

return mi;

}

int main(void)

{

map<int,pair<int,int> > m;

Applications of STL in C++ 149

int max = 1000, x = 0, y = 0, i = 0;

for(i=0;i<max;i++)

{

m[i] = make_pair(x,y);

if((y>=x) && (y>-x)) --x;

else if((y>x) && (y<=-x)) --y;

else if((y<x) && (y>=-x+1)) ++y;

else ++x;

}

cout << "Enter the number: "; cin >> i;

cout << i << " -> (" << m[i].first << ","

<< m[i].second << ")" << endl;

map<pair<int,int>,int> mi = inverse(m);

cout << "Enter x: "; cin >> x;

cout << "Enter y: "; cin >> y;

cout << "(" << x << "," << y << ")" << " -> "

<< mi[make_pair(x,y)] << endl;

return 0;

}

Problem 5. Let C be the complex plane. Let c ∈ C. The Mandelbrot set M
is defined as

M := { c ∈ C : c, c2 + c, (c2 + c)2 + c, . . . , 6→ ∞}.

To find the Mandelbrot set we study the recursion relation

zt+1 = z2
t + c, t = 0, 1, 2, . . .

with the initial value z0 = 0 and whether zt escapes to infity. For example
c = 0 and c = 1/4 + i/4 belong to the Mandelbrot set. The point c = 1/2 does
not belong to the Mandelbrot set. Write a C++ program using the complex
class of STL to find the Mandelbrot set. The output should be written to a file
Mandel.pnm (portable anymap utilities). This file can then be used to display
the fractal.

Solution 5. Using complex<double> z we have the implementation

// mandelbrot.cpp

#include <complex>

#include <fstream>

#include <iostream>

using namespace std;

int mandeltest(const complex<double> &c,int maxiter)

{

150 Problems and Solutions

int j;

complex<double> z;

for(j=0,z=0.0;j<maxiter;j++)

{

z=z*z+c;

if(abs(z)>100) return j/int(1.0+exp(-abs(z)));

}

return j;

}

int main(void)

{

int maxiter=255, dpi=180, xcm=100, ycm=200;

int i, j;

double minx=-1.33, maxx=-1.25, miny=-0.20, maxy;

double x, y, stepx, stepy;

int xcount=int(dpi*xcm/2.5), ycount=int(dpi*ycm/2.5);

ofstream mandel("mandel.pnm");

maxy=(maxx-minx)*ycount/xcount+miny;

stepx=(maxx-minx)/xcount;

stepy=(maxy-miny)/ycount;

cout << xcount << " x " << ycount << endl;

mandel << "P6 " << xcount << " "

<< ycount << " " << maxiter << endl;

for(i=0,y=miny;i<ycount;y+=stepy,i++)

{

cout.precision(3);

cout << 100.0*i/ycount << "% \r";

cout.flush();

for(j=0,x=minx;j<xcount;x+=stepx,j++)

{

int k=mandeltest(complex<double>(x,y),maxiter);

unsigned char c;

c=30+char(205*((x-minx)*k/((maxx-minx)*maxiter)));

mandel.write((char*)&c,1);

c=char(255*((y-miny)*k/((maxy-miny)*maxiter)));

c=20;

mandel.write((char*)&c,1);

c=30+char(225*double(k)/maxiter);

mandel.write((char*)&c,1);

}

}

mandel.close();

cout << endl;

return 0;

}

Applications of STL in C++ 151

Problem 6. A priority queue is a type of queue that assigns a priority to every
element that it stores. New elements are added to the queue using the push()
function. Thus it is a set for which two operations are defined:
1) Adding an item (using push())
2) Extracting the item that has the highest priority using top() and pop().

We may think of a priority queue as a set of tasks with priorities. At any time
a new task can be added. A task can also be removed from the priority queue,
but this can only be the one with the highest priority. If this highest priority
is shared by more than one task, we do not care which one is taken. Write a
C++ program that uses the priority queue from STL. Apply it to floating point
numbers so that bigger numbers get a higher priority. Apply it to strings so that
strings lexicographicaly higher get a higher priority (case sensitive).

Solution 6. As container we use the vector class.

// Priorityqueue.cpp

#include <iostream>

#include <queue>

#include <vector>

#include <string>

#include <cassert>

using namespace std;

int main(void)

{

priority_queue<double,vector<double>,less<double> > q;

assert(q.empty());

q.push(3.1356); q.push(4.134); q.push(2.1);

for(int j=0;j<3;j++)

{

cout << q.top() << " ";

q.pop();

}

priority_queue<string,vector<string>,less<string> > p;

assert(p.empty());

p.push("willi");

p.push("xxx");

p.push("ccaa");

for(int k=0;k<3;k++) { cout << p.top() << " "; p.pop(); }

return 0;

}

Problem 7. The ancient puzzle of the Tower of Hanoi consists of a number of
wooden disks mounted on three poles, which are in turn attached to a baseboard.

152 Problems and Solutions

The disks each have different diameters and a hole in the middle large enough
for the poles to pass through. At the beginning all disks are on the left pole
with the smallest at the top, the second smallest one down etc. The object of
the puzzle is to move all the disks over to the right pole, one at the time, so that
they end up in the original order on that pole. One uses the middle pole as a
temporary resting place for the disks. However it is allowed for a larger disk to
be on top of a smaller one. For example if we have three disks then the moves
are

move disk A from pole 1 to 3

move disk B from pole 1 to 2

move disk A from pole 3 to 2

move disk C from pole 1 to 3

move disk A from pole 2 to 1

move disk B from pole 2 to 3

move disk A from pole 1 to 3

total number of moves: 7

(i) Write a C++ program using recursion to implement the Tower of Hanoi.
(ii) Write a C++ program using the stack class of the standard template li-
braray to implement the Tower of Hanoi.

Solution 7. The solution is

// hanoist.cpp

#include <iostream>

#include <stack>

using namespace std;

void hanoi(int n,char A,char B,char C)

{

if(n == 0) return;

hanoi(n-1,A,C,B);

cout << "Move " << A << " to " << C << endl;

hanoi(n-1,B,A,C);

}

struct hanoi_struct { int n; char A, B, C; };

void hanoist(int n,char A,char B,char C)

{

struct hanoi_struct hs, hss;

stack<hanoi_struct> st;

hs.n = n; hs.A = A; hs.B = B; hs.C = C;

st.push(hs);

while(!st.empty())

{

hs = st.top(); st.pop();

Applications of STL in C++ 153

switch(hs.n)

{

case 0: break;

case 1: cout << "Move " << hs.A << " to " << hs.C << endl;

break;

default: // operations in reverse order

hss.n = hs.n-1; hss.A = hs.B; hss.B = hs.A; hss.C = hs.C;

st.push(hss);

hss.n = 1; hss.A = hs.A; hss.B = hs.B; hss.C = hs.C;

st.push(hss);

hss.n = hs.n-1; hss.A = hs.A; hss.B = hs.C; hss.C = hs.B;

st.push(hss);

}

}

}

int main(void)

{

hanoi(4,’A’,’B’,’C’); cout << endl;

hanoist(4,’A’,’B’,’C’);

return 0;

}

Problem 8. Using the Verylong class of SymbolicC++ and the complex class
(of STL) that finds positive integer solutions (a, b, c) of the equation

c = (a+ bi)3 − 107i

where i2 = −1.

Solution 8.

Problem 9. Let i =
√
−1. Calculate ii. Use the complex class of the standard

template library of C++ to calculate ii. Discuss.

Solution 9. The program is

// ipoweri.cpp

#include <iostream>

#include <complex>

using namespace std;

int main(void)

{

complex<double> i(0.0,1.0);

complex<double> r = pow(i,i);

154 Problems and Solutions

cout << "r = " << r;

return 0;

}

Chapter 14

Particle Swarm
Optimization

Problem 1. Particle Swarm Optimization (PSO) is based on the behavior of
a colony or swarm of insects, such as ants, termites, bees, and wasps; a flock
of birds; or a school of fish. The particle swarm optimization algorithm mimics
the behavior of these social organisms. The word particle denotes, for example,
a bee in a colony or a bird in a flock. Each individual or particle in a swarm be-
haves in a distributed way using its own intelligence and the collective or group
intelligence of the swarm. As such, if one particle discovers a good path to food,
the rest of the swarm will also be able to follow the good path instantly even if
their location is far away in the swarm. Optimization methods based on swarm
intelligence are called behaviorally inspired algorithms as opposed to the genetic
algorithms, which are called evolution-based procedures. The PSO algorithm
was originally proposed by Kennedy and Eberhart in 1995.

In the context of multivariable optimization, the swarm is assumed to be of
specified or fixed size with each particle located initially at random locations
in the multidimensional design space. Each particle is assumed to have two
characteristics: a position and a velocity. Each particle wanders around in the
design space and remembers the best position (objective function value) it has
discovered. The particles communicate information or good positions to each
other and adjust their individual positions and velocities based on the informa-
tion received on the good positions.
The PSO is developed based on the following model:

1. When one particle locates an extremum point of the objective function, it

155

156 Problems and Solutions

instantaneously transmits the information to all other particules.
2. All other particles gravitate to the extremum point of the objective function,

but not directly.
3. There is a component of each particle’s own independent thinking as well as

its past memory.
Thus the model simulates a random search in the design space for the extremum

points of the objective function. As such, gradually over many iterations, the
particles go to the target (the extremum point of the objective function).
The algorithm for determining the maximum of a function f(x) (with x an n

dimensional vector) is as follows:

1) Initialize the number of particles N , the search intervals for each dimension
(ai, bi), i = 1, . . . , n (n being the dimension of the search space), the search
precision for each dimension εi, the maximum number of iterations imax.
Initialize the positions of the particles xj(0) = rand(), j = 1, . . . , N randomly
in the search domain.
Initialize the speeds of the particles vj(0) = 0, j = 1, . . . , N .
Initialize the individual best positions of the particles xbest,j(0) = xj(0), j =
1, . . . , N .
Initialize the iteration count k = 0.

2) Check the stop conditions: the diameter of the swarm in each dimension is
less then the dimension’s precision εi, or the maximum number of iterations imax
was reached. If yes then terminate else continue to step 3).

3) Calculate the values of the function f(x) in the current positions of the par-
ticles, f(xj(k)), j = 1, . . . , N . Update the values of the best individual points
for each particle xbest,j(k), j = 1, . . . , N and the value of the global best point
xbest(k). Continue to 4).

4) Update the particles’ speeds by applying the formula:

vj(k) = θ(k)vj(k− 1) + c1r1 [xbest,j(k)− xj(k − 1)] + c2r2 [xbest(k)− xj(k − 1)]

where j = 1, . . . , N and r1 and r2 are random number between 0 and 1. The
parameters c1 and c2 have usually the value 2 so that the particles would overfly
the target about half of the time. θ(k) is the inertia weight dependent of the
iteration count according to the formula:

θ(k) = θmax −
(
θmax − θmin

imax

)
k

Particle Swarm Optimization 157

where θmax is a maximum value and θmin is a minimum value, typically θmax =
0.9 and θmin = 0.4. Continue to 5).
5) Update the particles’ positions by applying the formula:

xj(k) = xj(k − 1) + vj(k), j = 1, . . . , N

6) Increment the iteration count k and go to 2).

Determine the maximum of the function

f(x) = −x2 + 2x+ 11, −2 ≤ x ≤ 2

by applying the PSO (Particle Swarm Optimization) method. The required
precision is 10−4.

Solution 1. The following C# program gives a solution implementation.

// PSO.cs

using System;

using System.Diagnostics;

namespace Optimization

{

// Particle Swarm Optimization

class PSO

{

public delegate double Func(double x);

public PSO(Func func,double a,double b,double eps,int N,int maxiter)

{

_func = func;

_a = a; _b = b; _eps = eps;

_N = N;

_maxiter = maxiter;

_dtheta = (_thetamax-_thetamin)/_maxiter;

}

public double Xbest { get; set; }

public double Fbest { get; set; }

public int Iter { get; set; }

public void Calculate()

{

double[] x = new double[_N];

double[] v = new double[_N];

double[] best = new double[_N];

158 Problems and Solutions

double[] fbest = new double[_N];

double f, min, max;

int i;

// Initialize the positions randomly in (_a, _b)

Random rnd = new Random();

double delta = _b - _a;

for(i=0;i < _N;i++)

{ x[i] = _a + rnd.NextDouble() * delta; }

// Initialize the best

for(i=0;i < _N;i++)

{

best[i] = x[i];

fbest[i] = _func(x[i]);

}

// Initialize the velocities

for(i=0;i < _N;i++)

{ v[i] = 0.0; }

Xbest = 0.0;

Fbest = -Double.MaxValue;

double D = 2.0*_eps, theta = _thetamax;

Iter = 0;

while((D > _eps) && (Iter <= _maxiter))

{

for(i=0;i < _N;i++)

{

f = _func(x[i]);

if(f > fbest[i]) { best[i] = x[i]; fbest[i] = f; }

if(f > Fbest) { Xbest = x[i]; Fbest = f; }

}

for(i=0;i<_N;i++)

{

v[i] = theta*v[i] + _c1*rnd.NextDouble()*(best[i] - x[i]) +

_c2 * rnd.NextDouble() * (Xbest - x[i]);

x[i] += v[i];

// Check the ranges

if(x[i] < _a) { x[i] = _a; }

if(x[i] > _b) { x[i] = _b; }

}

// Calculate the new diameter

min = Double.MaxValue; max = -Double.MaxValue;

for(i=0;i < _N;i++)

{

if(x[i] > max) max = x[i];

if(x[i] < min) min = x[i];

}

D = max - min;

theta -= _dtheta;

Iter++;

Particle Swarm Optimization 159

}

}

public void Print()

{

Console.WriteLine("Xbest = " + Xbest);

Console.WriteLine("Fbest = " + Fbest);

Console.WriteLine("Iter = " + Iter);

}

private static double _c1 = 2.0;

private static double _c2 = 2.0;

private static double _thetamin = 0.1;

private static double _thetamax = 0.9;

private int _N;

private int _maxiter;

private double _dtheta;

private double _a;

private double _b;

private double _eps;

private Func _func;

public static void Main(String[] args)

{

// anonymous function

Func f = delegate(double x) { return -x*x + 2.0*x + 11.0; };

double a = -2.0, b = 2.0;

double eps = 1.0e-4;

int N = 10;

int maxiter = 200;

PSO pso = new PSO(f, a, b, eps, N, maxiter);

pso.Calculate();

pso.Print();

Console.WriteLine("Xbest = " + pso.Xbest);

Console.ReadLine();

}

}

}

The results among runs vary due to the stochastic characteristics of the method.
Typical output results:

Xbest = 0.999999972070712

Fbest = 12

Iter = 118

Xbest = 0.999999972070712

160 Problems and Solutions

Problem 2. Minimize

f(x1, x2) = x2
1 + x2

2 − 2x1 − 4x2

subject to the constraints

x1 + 4x2 − 5 ≤ 0, 2x1 + 3x2 − 6 ≤ 0, x1 ≥ 0, x2 ≥ 0

by applying the Particle Swarm Optimization (PSO) method. The required pre-
cision is 10−3.

Solution 2. The theory of the PSO method was described in the previous
problem. What is different in the case of a constrained optimization problem is
the way in which the functional to be minimized is defined. If we consider the
general constrained minimization problem:
Minimize

f(x)

subject to
gi(x) ≤ 0, i = 1, 2, . . . ,m

and
hj(x) = 0, j = 1, 2, . . . , p,

we can reduce this problem to an unconstrained minimization problem by apply-
ing a penalty function method, for example the exterior method, which assumes
the minimization of the functional:

Φ(x) = f(x) +
n∑
i=1

rig̃i(x)2 +
p∑
j=1

Rjhj(x)2

where g̃i(x) = max{gi(x), 0} and ri, Rj are some appropiate large positive con-
stants.

The C# code is the same as for the previous problem. Only the Main() function
is different.

public static void Main(String[] args)

{

Func f = delegate(double x1,double x2)

{

double g1 = x1 + 4.0 * x2 - 5.0;

if(g1 <= 0.0) g1 = 0.0;

double g2 = 2.0 * x1 + 3.0 * x2 - 6.0;

if(g2 <= 0.0) g2 = 0.0;

return x1*x1 + x2*x2 - 2.0*x1 - 4.0*x2 + 100.0*g1*g1 + 100.0*g2*g2;

};

Particle Swarm Optimization 161

double a1 = 0.0, b1 = 5.0;

double a2 = 0.0, b2 = 2.0;

double eps = 1.0e-3;

int N = 20;

int maxiter = 300;

PSO pso = new PSO(f, a1, b1, a2, b2, eps, N, maxiter);

pso.Calculate();

pso.Print();

Console.ReadLine();

}

Considering the stochastic nature of the PSO method, the output results vary.
Some typical results are:

Xbest = 0.764842337759194

Ybest = 1.05937731766136

Fbest = -4.05937683715063

Iter = 238

Xbest = 0.764844055622397

Ybest = 1.05937686791438

Fbest = -4.0593768371545

Iter = 260

Problem 3. Find the global minimum of the De Jong’s function (or sphere
model)

f(x) =
n∑
i=1

x2
i , n ≥ 2

by applying the Particle Swarm Optimization (PSO) method. The required
precision is 10−3.

Solution 3. The theory of the PSO method was described above Here only
the C# code is implemented in a more general manner.

// PSO.cs

using System;

using System.Collections.Generic;

namespace Optimization

{

class Vector

{

//Constructors

public Vector(int n)

{

162 Problems and Solutions

_v = new List<double>(n);

for(int i=0;i < n;i++) { _v.Add(0.0); }

}

public Vector(List<double> v)

{

_v = new List<double>(v);

}

public Vector(Vector v)

{

_v = new List<double>(v._v);

}

public int Size { get { return _v.Count; } }

// Indexer

public double this[int ix]

{

get { return _v[ix]; }

set { _v[ix] = value; }

}

public void Copy(Vector v)

{

for(int i=0;i < _v.Count;i++) { _v[i] = v[i]; }

}

// Minus

public static Vector operator -(Vector v)

{

Vector res = new Vector(v);

for(int i=0;i < res.Size;i++) { res[i] = -res[i]; }

return res;

}

// Product with a scalar

public static Vector operator *(double a, Vector v)

{

Vector res = new Vector(v);

for(int i=0;i < res.Size;i++) { res[i] *= a; }

return res;

}

// Sum

public static Vector operator +(Vector a, Vector b)

{

Vector res = new Vector(a);

Particle Swarm Optimization 163

for(int i=0;i < res.Size;i++) { res[i] += b[i]; }

return res;

}

// Difference

public static Vector operator -(Vector a, Vector b)

{

Vector res = new Vector(a);

for(int i=0;i < res.Size;i++) { res[i] -= b[i]; }

return res;

}

// Scalar Product

public static double operator *(Vector a, Vector b)

{

double prod = 0.0;

for(int i=0;i < a.Size;i++) { prod += a[i]*b[i]; }

return prod;

}

public double Norm1()

{

double sum = 0.0;

for(int i=0;i < _v.Count;i++) { sum += Math.Abs(_v[i]); }

return sum;

}

public double Norm2()

{

double sum = 0.0;

for(int i=0;i < _v.Count;i++) { sum += _v[i]*_v[i]; }

return Math.Sqrt(sum);

}

public void Normalize2()

{

double norm = this.Norm2();

for(int i=0;i < _v.Count;i++) { _v[i] /= norm; }

}

private List<double> _v = null;

}

// Particle Swarm Optimization

class PSO

{

public delegate double Func(Vector v);

164 Problems and Solutions

public PSO(Func func,int n,double a,double b,double eps,int N,int maxiter)

{

_func = func;

_a = a; _b = b; _n = n;

_eps = eps;

_N = N;

_maxiter = maxiter;

_dtheta = (_thetamax - _thetamin)/_maxiter;

}

public Vector Xbest { get; set; }

public double Fbest { get; set; }

public int Iter { get; set; }

public void Calculate()

{

Vector[] x = new Vector[_N];

Vector[] v = new Vector[_N];

Vector[] best = new Vector[_N];

double[] fbest = new double[_N];

double f, min, max;

int i, j;

// Initialize the positions randomly

Random rnd = new Random();

double delta = _b - _a;

for(i=0;i < _N;i++)

{

x[i] = new Vector(_n);

for(j=0;j< _n;j++)

{

x[i][j] = _a + rnd.NextDouble()*delta;

}

}

// Initialize the best

for(i=0;i<_N;i++)

{

best[i] = new Vector(x[i]);

fbest[i] = _func(x[i]);

}

// Initialize the velocities

for(i=0;i<_N;i++)

{

v[i] = new Vector(_n);

}

Xbest = new Vector(_n);

Fbest = Double.MaxValue;

double D = 2.0*_eps, theta = _thetamax;

Vector dx = new Vector(_n);

Particle Swarm Optimization 165

Iter = 0;

while((D > _eps) && (Iter <= _maxiter))

{

for(i=0;i<_N;i++)

{

f = _func(x[i]);

if(f < fbest[i]) { best[i].Copy(x[i]); fbest[i] = f; }

if(f < Fbest)

{

Xbest.Copy(x[i]);

Fbest = f;

}

}

for(i=0;i < _N;i++)

{

for(j=0;j < _n;j++)

{

v[i][j] = theta*v[i][j]+ _c1*rnd.NextDouble()*(best[i][j] - x[i][j]) +

_c2 * rnd.NextDouble()*(Xbest[j]-x[i][j]);

x[i][j] += v[i][j];

// Check the ranges

if(x[i][j] < _a) { x[i][j] = _a; }

if(x[i][j] > _b) { x[i][j] = _b; }

}

}

// Calculate the new diameter

for(j=0;j<_n;j++)

{

min = Double.MaxValue;

max = -Double.MaxValue;

for(i=0;i<_N;i++)

{

if(x[i][j] > max) max = x[i][j];

if(x[i][j] < min) min = x[i][j];

}

dx[j] = max - min;

}

D = dx.Norm2();

theta -= _dtheta;

Iter++;

}

}

public void Print()

{

Console.Write("(");

for(int j=0;j<_n;j++) { Console.Write(Xbest[j] + ","); }

Console.WriteLine(")");

166 Problems and Solutions

Console.WriteLine("Fbest = " + Fbest);

Console.WriteLine("Iter = " + Iter);

}

private static double _c1 = 2.0;

private static double _c2 = 2.0;

private static double _thetamin = 0.1;

private static double _thetamax = 0.9;

private int _N; // swarm size

private int _n; // dimensions

private int _maxiter;

private double _dtheta;

private double _a;

private double _b;

private double _eps;

private Func _func;

public static void Main(String[] args)

{

// anonymous function

Func f = delegate(Vector v)

{

double res = 0.0;

for(int i=0;i < v.Size;i++) { res += v[i]*v[i]; }

return res;

};

double a = -5.12, b = 5.12;

double eps = 1.0e-3;

int N = 30; // swarm size

int n = 10; // dimensions

int maxiter = 300;

PSO pso = new PSO(f, n, a, b, eps, N, maxiter);

pso.Calculate();

pso.Print();

Console.ReadLine();

}

}

}

Considering the stochastic nature of the PSO method, the output results vary.
Some typical results are:

Xbest = (1.75743850620593E-06, -7.04582167753594E-07, -5.98369689492146E-07,

-1.47577290957276E-07, 1.82807687033641E-06, -1.63155487700595E-06,

-1.89989811929982E-06, -4.35238981607769E-07, 1.44554970651784E-06,

1.32364807623722E-06,)

Fbest = 1.7609391855432E-11

Iter = 258

Xbest = (1.85150232714368E-06, 5.36097754838293E-06, -7.88392060112956E-06,

Particle Swarm Optimization 167

-1.05494321354011E-06, 8.78338039213776E-06, -4.18653688743919E-06,

-5.73282698952597E-06, 3.23069025424733E-06, 3.87355624888027E-07,

-4.25035494605146E-06,)

Fbest = 2.51630338951555E-10

Iter = 247

Problem 4. Differntial evolution (DE) is a population-based optimization
method that attacks the starting point problem by sampling the objective func-
tion at multiple, randomly chosen initial points. At initialization a vector pop-
ulation of dimension Np is generated such that the allowed parameter region is
entirely covered. Each vector is indexed with a number from 0 to Np − 1 for
bookkeeping because each of them has to enter a competition. Like other Evolu-
tionary Strategy population-based methods, DE generates new points that are
perturbations of existing points, but unlike other Evolutionary Strategy meth-
ods, DE perturbs population vectors with the scaled difference of two randomly
selected population vectors to produce the trial vectors. Assume that we pro-
duce the trial vector with index 0, u0. DE selects randomly two distinct vectors
xr1 and xr2 from the population and adds the scaled perturbation xr1 − xr2 to
a third vector also randomly selected from the population xr3, distinct from the
first two vectors. The procedure is repeated in order to generate all the set of
trial vectors u0, u1, . . . , uNp . In the selection stage, each trial vector competes
against the vector in the population vectors with the same index. The vector
with the lower objective function value is selected as a member of the next gen-
eration. The survivors of the Np pairwise competitions become parents for the
next generation in the evolutionary cycle. The evolutionary cycles are repeated
until a termination criteria is meet, for example the diameter of the population
becomes less than a small limit value ε or a maximum number of population
generations were generared.
The more detailed algorithm for determining the global minimum of a function

f(x) (with x an n dimensional vector) is as follows:
1) Initialization - Initialize the number of vectors Np, the search intervals for

each dimension (ai, bi), i = 1, . . . , n, the precision for the termination crite-
ria ε, the maximum number of iterations imax, the scale factor F ∈ (0, 1+),
the crossover probability Cr ∈ [0, 1). Initialize the positions of the particles
x(0)
i,j = aj + randi,j()(bj − aj), i = 1, . . . , Np j = 1, . . . , n randomly in the

search domain (the random number generator, rand(), returns a uniformly dis-
tributed random number from within the range [0, 1)). Initialize the iteration
count k = 0.
2) Mutation - differential mutation adds a scaled, randomly sampled, vector

difference to a third randomly sampled vector to create a mutant vector

v(k)
i = x(k)

r3 + F (x(k)
r1 − x(k)

r2) i = 1, . . . Np

168 Problems and Solutions

The scale factor, F ∈ (0, 1+), is a positive real number that controls the rate
at which the population evolves. While there is no upper limit on F , effective
values are seldom greater than 1. The base vector index, r3, can be determined
in a variety of ways, but for now it is assumed to be a randomly chosen vector
index that is different from the target vector index, i. Except for being distinct
from each other and from both the base and target vector indices, the difference
vector indices, r1 and r2, are also randomly selected once per mutant.
3) Crossover - to complement the differential mutation search strategy, DE also

employs uniform crossover. Sometimes referred to as discrete recombination,
(dual) crossover builds trial vectors out of parameter values that have been
copied from two different vectors. In particular, DE crosses each vector with a
mutant vector:

u(k)
i,j =

{
v(k)
i,j if rand()i,j < Cr or j = jrand

x(k)
i,j otherwise

i = 1, . . . , Np, j = 1, . . . , n

The crossover probability, Cr ∈ [0, 1), is a user-defined value that controls the
fraction of parameter values that are copied from the mutant. To determine
which source contributes a given parameter, uniform crossover compares Cr to
the output of a uniform random number generator. If the random number is less
than or equal to Cr, the trial vector component is inherited from the mutant
v(k)
i ; otherwise, the trial vector component is copied from the vector, x(k)

i . In
addition, the trial vector component with randomly chosen index, jrand, is taken
from the mutant to ensure that the trial vector does not duplicate x(k)

i . Because
of this additional demand, Cr only approximates the true probability, pCr , that
a trial parameter will be inherited from the mutant.
4) Selection - if the trial vector, u(k)

i , has an equal or lower objective function

value than that of its target vector, x(k)
i , it replaces the target vector in the next

generation; otherwise, the target retains its place in the population for at least
one more generation:

x(k)
i =

{
u(k)
i if f(u(k)

i) < f(x(k)
i)

x(k)
i otherwise

i = 1, . . . , Np

By comparing each trial vector with the target vector from which it inherits pa-
rameters, DE more tightly integrates recombination and selection than do other
Evolutionary Algorithms.
5) Termination - check the termination conditions: the diameter of the pop-

ulation is less then the preset precision ε, or the maximum preset number of
generations imax was reached. If yes then terminate, else increment the itera-
tion count k and go to 2).

Particle Swarm Optimization 169

Determine the global minimum of the function

f(x, y) = 3(1− x)2e−(x2+(y+1)2) − 10(
x

5
− x3 − y5)e−(x2+y2) − 1

3
e−((x+1)2+y2)

where
−4 ≤ x ≤ 4, −4 ≤ y ≤ 4

by applying the DE method. The required precision is 10−4.

Solution 4. The following C# program gives a solution implementation.

// DE.cs

using System;

namespace Optimization

{

// Differential Evolution

class DE

{

public delegate double Func(double x, double y);

public DE(Func func,double a1,double b1,double a2,double b2,int N,

double eps,double c,double f)

{

_func = func;

_a1 = a1; _b1 = b1; _a2 = a2; _b2 = b2;

_N = N;

_eps = eps;

_c = c;

_f = f;

}

public double Xbest { get; set; }

public double Ybest { get; set; }

public double Fbest { get; set; }

public int Iter { get; set; }

public void Calculate()

{

if(_calculated)

{

// already calculated

return;

}

_calculated = true;

Random rnd = new Random();

170 Problems and Solutions

int i;

int r0, r1, r2, jrand;

double diameter = 2.0 * _eps;

double xmin, xmax, ymin, ymax;

double diameterx = _b1 - _a1;

double diametery = _b2 - _a2;

// function values

double[] f = new double[_N];

double[] x = new double[_N];

double[] y = new double[_N];

double[] ux = new double[_N];

double[] uy = new double[_N];

for(i=0; i<_N;i++)

{

x[i] = _a1 + rnd.NextDouble() * diameterx;

y[i] = _a2 + rnd.NextDouble() * diametery;

f[i] = _func(x[i], y[i]);

}

double temp;

Iter = 0;

while(true)

{

for(i=0;i<_N;i++)

{

// r0 != r1 != r2 != i

do r0 = rnd.Next(_N); while (r0 == i);

do r1 = rnd.Next(_N); while ((r1==r0) || (r1==i));

do r2 = rnd.Next(_N); while ((r2==r1) || (r2==r0) || (r2==i));

jrand = rnd.Next(2);

if((rnd.NextDouble() < _c) || (jrand == 0))

{

ux[i] = x[r0] + _f * (x[r1] - x[r2]);

// Check the bounds

if(ux[i] < _a1) { ux[i] = _a1; }

if(ux[i] > _b1) { ux[i] = _b1; }

}

else { ux[i] = x[i]; }

if((rnd.NextDouble() < _c) || (jrand == 1))

{

uy[i] = y[r0] + _f*(y[r1]-y[r2]);

// Check the bounds

if(uy[i] < _a2) { uy[i] = _a2; }

if(uy[i] > _b2) { uy[i] = _b2; }

}

else { uy[i] = y[i]; }

}

// Select the next generation

for(i=0;i<_N;i++)

Particle Swarm Optimization 171

{

temp = _func(ux[i], uy[i]);

if(temp < f[i])

{ x[i] = ux[i]; y[i] = uy[i]; f[i] = temp; }

}

Fbest = Double.MaxValue;

for(i=0; i<_N;i++)

{

if(f[i] < Fbest) { Fbest = f[i]; Xbest = x[i]; Ybest = y[i]; }

}

Iter++;

//The new diameters

xmin = Double.MaxValue;

xmax = -Double.MaxValue;

ymin = Double.MaxValue;

ymax = -Double.MaxValue;

for(i=0;i<_N;i++)

{

if(x[i] < xmin) { xmin = x[i]; }

if(x[i] > xmax) { xmax = x[i]; }

if(y[i] < ymin) { ymin = y[i]; }

if(y[i] > ymax) { ymax = y[i]; }

}

diameterx = xmax - xmin;

diametery = ymax - ymin;

diameter = Math.Sqrt(diameterx*diameterx + diametery*diametery);

if(diameter < _eps) // Stop condition

{ break; }

}

}

public void Print()

{

Console.WriteLine("Xbest = " + Xbest);

Console.WriteLine("Ybest = " + Ybest);

Console.WriteLine("Fbest = " + Fbest);

Console.WriteLine("Iter = " + Iter);

}

private int _N;

private double _a1; private double _b1;

private double _a2; private double _b2;

private double _eps;

private double _c;

private double _f;

private Func _func;

private bool _calculated = false;

172 Problems and Solutions

public static void Main(String[] args)

{

// anonymous function

Func func = delegate(double x, double y)

{

double onemx = 1.0 - x;

double xp1 = x + 1.0;

double yp1 = y + 1.0;

double x2 = x*x;

double y2 = y*y;

return 3.0*onemx*onemx*Math.Exp(-(x2+yp1*yp1)) -

10.0*(x/5.0-x*x2-y2*y2*y)*Math.Exp(-(x2+y2)) -

Math.Exp(-(xp1*xp1+y2))/3.0;

};

int N = 30;

double a1 = -4.0, b1 = 4.0;

double a2 = -4.0, b2 = 4.0;

double eps = 1.0e-4;

double c = 0.9;

double f = 0.9;

DE de = new DE(func,a1,b1,a2,b2,N,eps,c,f);

de.Calculate();

de.Print();

Console.ReadLine();

}

}

}

The results among runs vary due to the stochastic characteristics of the method.
Typical output results:

Xbest = 0.228278198063108
Ybest = -1.62553510473607
Fbest = -6.55113333283091
Iter = 76

Particle Swarm Optimization 173

Bibliography

Steeb W.-H., Hardy Y., Hardy A. and Stoop R.
Problems and Solutions in Scientific Computing with C++ and Java Simula-
tions
World Scientific Publishing, Singapore (2004)

Steeb W.-H.
The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks,
Genetic Algorithm, Gene Expression Programming, Wavelets, Fuzzy Logic, fifth
edition
World Scientific Publishing, Singapore 2011
ISBN 978-981-4335-77-5
http://www.worldscibooks.com/chaos/8050.html

Hardy Y., Kiat Shi Tan and Steeb W.-H.
Computer Algebra with SymbolicC++

World Scientific Publishing, Singapore 2008
ISBN-13: 978-981-283-360-0
http://www.worldscibooks.com/mathematics/6966.html

Steeb W.-H.,
Mathematical Tools in Signal Processing with C++ and Java Simulations
World Scientific Publishing, Singapore 2005
ISBN 981 256 500 0
http://www.worldscibooks.com/engineering/5939.html

174

http://www.worldscibooks.com/chaos/8050.html
http://www.worldscibooks.com/mathematics/6966.html
http://www.worldscibooks.com/engineering/5939.html

Index

B-spline basis function, 105

Arithmetic mean, 87

Ballot numbers, 43
Bell numbers, 59
Bernoulli numbers, 45

Cantor pairing function, 27
Catalan constant, 8
Cesáro sum, 135
Chinese remainder theorem, 32
Cross-correlation coefficient, 113

Difference operator, 12
Division algorithm, 35
Doppler shift, 102
Dyk word, 95

Fermat numbers, 48
Ferrer’s diagram, 58
Freudenstein equation, 104
Frobenius symbol, 46

Gauss elimination, 74
Generalized integration by parts, 24
Generating function, 97
Geometric means, 87
Givens transform, 74

Hankel matrix, 77
Harmonic series, 103
Hessian matrix, 111
Hough transform, 23

Lambert W function, 104
Levenberg-Marquardt algorithm, 111

Levenshtein distance, 124

Mandelbrot set, 149
minmax solution, 121
Modulus operator, 112

Nobles, 48

Padé approximant, 31
Palindome, 49
Partition of unity, 106
Partitions, 41
Perfect number, 43
Permanent, 82
Poisson’ summation formula, 8
Polygon, 112

Resultant, 77

Sinc function, 5
Stirling number, 61

Toeplitz matrix, 65
Tridiagonal form, 74

175

	Preface
	Notation
	Quickies
	Bitwise Operations
	Maps and Functions
	Number Manipulations
	Combinatorical Problems
	Matrix Calculus
	Recursion
	Numerical Techniques
	Random Numbers
	Optimization Problems
	String Manipulations
	Programming Problems
	Applications of STL in C++
	Particle Swarm Optimization
	Bibliography
	Index

