
HTML, XML and JavaScript

by
Willi-Hans Steeb
International School for Scientific Computing

email addresses of the author:

steeb_wh@yahoo.com

Willi-Hans.Steeb@fhso.ch

whs@na.rau.ac.za

Contents

1 HTML 1
1.1 Introduction . 1
1.2 HTML Tags . 3
1.3 Main Commands . 4
1.4 Linking to other Documents . 8
1.5 Forms and CGI Programming . 9
1.6 Images . 14
1.7 HTML Sound Tags . 15
1.8 Tables . 17
1.9 Examples . 18
1.10 Applets . 22

2 XML 25
2.1 Introduction . 25
2.2 Schema . 32
2.3 Document Type Definition . 34
2.4 Displaying XML using Data Binding 36
2.5 Displaying XML Using XSL . 38
2.6 Using org.w3c.dom.* . 45

3 JavaScript 47
3.1 Introduction . 47
3.2 Document Object . 49
3.3 Window Object . 51
3.4 Data Types . 52
3.5 Special Characters . 54
3.6 Arithmetic Operations . 56
3.7 Comparison Operators . 57
3.8 Bitwise Operators . 58
3.9 Program Flow . 60
3.10 Recursion . 66
3.11 Other JavaScript Constructs . 67
3.12 Functions . 68
3.13 Creating New Objects . 70
3.14 Predefined Core Objects . 71

i

3.15 Object object . 78
3.16 Date Object . 82
3.17 Regular Expression . 84
3.18 Prompts . 88
3.19 Events . 89
3.20 Java Applets and JavaScript . 95
3.21 JavaScript and XML . 97
3.22 Loading a js-file . 98

4 Resources and Web Sites 101

Bibliography 103

Index 103

ii

Preface
Chapter 1 covers the basics of HyperText Markup Language (HTML). HTML tells a
Web browser how to lay out a Web page. JavaScript is an object-oriented scripting
language created by Netscape Communications Corporation for developing Internet
applications. XML stands for Extensible Markup Language. XML allows the author
to define his own tags and his own document structure. An introduction to XML is
given in chapter 2. Chapter 3 gives an introduction to JavaScript. Finally chapter
4 lists important Web sites for HTML, XML and JavaScript.

The level of presentation is such that one can study the subject early on in ones
education in programming. There is a balance between practical programming and
the underlying language. The book is ideally suited for use in lectures on Java and
object-oriented programming. The beginner will also benefit from the book. The
reference list gives a collection of textbooks useful in the study of the computer
language Java. There are a number of good textbooks for Java available [1], [2]. For
applications of Java in science we refer to Tan Kiat Shi, W.-H. Steeb and Yorick
Hardy [6] and Steeb [5]. Comprehensive introductions into JavaScript are given by
[3] and [4].

iii

Without doubt, this book can be extended. If you have comments or suggestions,
we would be pleased to have them. The email addresses of the author are:

whs@na.rau.ac.za

steeb_wh@yahoo.com

The web sites of the author are:

http://zeus.rau.ac.za

http://issc.rau.ac.za

iv

Chapter 1

HTML

1.1 Introduction

Hypertext Markup Language (HTML) is a system for marking up documents with
tags that indicate how text in the documents should be presented and how the doc-
uments are linked together. Hypertext links are quite powerful. Within the HTML
markup scheme lies the power to create interactive, cross-platform, multimedia,
client-server applications. Such a system is the World Wide Web (also known as
WWW or just simply, the Web).

The Web is an interlinked collection of living documents containing formatted text,
images, and sound. These documents are organized into webspaces. A webspace
is typically structured around a home page with links to other pages or documents
both in and outside of the webspace. A home page functions as a virtual meet-
ing place in cyberspace for the exchange of information. We write a home page in
HTML.

There are many home pages with information about HTML and the World Wide
Web, HTML is a language under construction. The continuing development of
HTML is conducted on the Web in an open process. New tools and techniques ap-
pear frequently and are quickly spread throughout the community of Web authors.

HTML is not a programming language and an HTML document is not a computer
program. A computer program is a series of procedures and instructions applied,
typically, to external data. An HTML document, however, is the data. The defini-
tion of HTML specifies the grammar and syntax of markup tags that, when inserted
into the data, instruct browsers - computer programs that read HTML documents
- how to present the document.

1

2 CHAPTER 1. HTML

Technically, HTML is defined as a Standard Generalized Markup Language (SGML)
Document Type Definition (DTS). An HTML document is said to be an instance
of a SGML document. SGML orginated as GML (General Markup Language) at
IBM in the late 1960s as an attempt to solve some of the problems of transporting
documents across different computer systems. The term markup comes from the
publishing industry. SGML is generalized, meaning that instead of specifying ex-
actly how to present a document, it describes document types, along with markup
languages to format and present instances of each type. GML become SGML when
it was accepted as a standard by the International Standards Organization (ISO) in
Geneva, Switzerland (reference number ISO 8879:1986).

An SGML document has three parts. The first describes the character set and, most
importantly, which characters are used to differentiate the text from the markup
tags. The second part declares the document type and which markup tags are ac-
cepted as legal. The third part is called the document instance and contains the
actual text and the markup tags. The three parts need not be in the same physical
file. All HTML browsers assume the same information for the SGML character-set
and document-type declarations, so we only have to work with HTML document
instances - simple text files.

The base character set of an HTML document is Latin-1 (ISO 8859/1). It is an 8-
bit alphabet with characters for most American and European languages. Plain old
ASCII (ISO 646) is a 7-bit subset of Latin-1. There is no obligation to use anything
but the 128 standard ASCII characters in an HTML document. In fact, sticking
to straight ASCII is encouraged as it allows an HTML document to be edited by
any text editor on any computer system and be transported over any network by
even the most rudimentary of e-mal and data transport systems. To make this pos-
sible, HTML includes character entities for most of the commonly used non-ASCII
Latin-1 characters. These character entities begin with the ampersand character
(&), followed by the name or number of the character, followed by a semicolon. In
the next section we describe the HTML language. Almost all of the development
work on HTML is done on the Internet in form of discussion groups, which post
proposed changes and issue requests for comments. The complete specifications of
HTML (the SGML DTS) can always be found on the Web. The Web is also the
place to look for the most up-to-date HTML and SGML documentation, most of it
in hypertext.

Extensible Markup Language, or XML for short, is a new technolgy for web appli-
cations. XML is a World Wide Web Consortium standard that let us create our
own tags. HTML tags decribe how something should render. They do not contain
any information about what the data is, they only describe how it should look. An
XML element is made up of a start tag, an end tag and data between. The start
and end tags describe the data within tags, which is considered the value of the
element. An element can optionally contain one or more attributes. An attribute is
a name-value pair separated by an equal sign (=). XML is case-sensitive.

1.2. HTML TAGS 3

1.2 HTML Tags

HTML works as a system of tags, one word or coded commands surronded by right-
angle parenthese (<>). Most tags has a front and a back form which encases the
text and instructs the browser software or computer server on how that text should
appear and what functions it might activate. All web pages begin and end with
the <HTML> tags. After the initial <HTML> tag, the <HEAD> </HEAD> tags reside and
contain the <TITLE> </TITLE> tags between which resides the title of the page that
is displayed on the top bar of the browser screen. Next the <BODY> </BODY> tags
are placed before and after all the text included in the page, and within body tag
are specifications for text and background colors. The ordinary text is diplayed as
text. The tags (also called elements) are special instructions. Tags are identified by
their names enclosed in angle brackets. The special symbols (also called entities)
are code punctuation marks such as the ampersand & and the quotation marks ".

Thus HTML markup tags are delimited by the angle brackets,

< ... >

They appear either singularly, like the tag <P> to indicate a paragraph break in the
text, or as a pair of starting and ending tags that modify the content contained. For
example

 Attention!

is an instruction to present the text string Attention! in a bold typeface. Other
examples are

<COMMENT> This is a comment </COMMENT>

which is a comment on an HTML file and

<CENTER> ... </CENTER>

will centre the text or image. There are

tags for formatting text,

tags for specifying hypertext links,

tags for including sound and picture elements,

tags for defining input fields for interactive pages.

That’s all there is to Hypertext Markup Language – character entities and markup
tags. However, this system of entities and tags is evolving. HTML is not case-
sensitive.

4 CHAPTER 1. HTML

1.3 Main Commands

As described above an HTML program (also called an HTML script) is a sequence
of three kinds of tokens

ordinary text characters, tags, and special symbols.

The main commands in HTML are

Structure Tags

<HTML> ... </HTML> Encloses the entire HTML document

<HEAD> ... </HEAD> Encloses the head of the HTML document

<BODY> ... </BODY> Encloses the body (text and tags)

of the HTML document

An attribute is

BGCOLOR="..."

Headings and Title

<H1> ... </H1> A first-level heading

<H2> ... </H2> A second-level heading

<H3> ... </H3> A third-level heading

<H4> ... </H4> A fourth-level heading

<H5> ... </H5> A fifth-level heading

<H6> ... </H6> A sixth-level heading

<TITLE> ... </TITLE> Indicates the title of the document.

Used with <HEAD>

All heading tags accept the attribute

ALIGN="..." Possible values are CENTER, LEFT, RIGHT

Comments

<COMMENT> ... </COMMENT> Comments

<!- ... -> Comments

Paragraphs and Regions

<P> ... </P> A plain paragraph.

The closing tag (</P>) is optional

Attribute

ALIGN="..." Align text to CENTER, LEFT, RIGHT

<DIV> ... </DIV> A region of text to be formatted.

Attribute

ALIGN="..." Align text to CENTER, LEFT, RIGHT

1.3. MAIN COMMANDS 5

Lists

 ... An ordered (numbered) list (items marked with)

 ... An unordered (bulleted) list (items marked with)

<MENU> ... </MENU> A menu list of items

<DIR> ... </DIR> A directory listing

 A list item of use with , , <MENU>, <DIR>

<DL> ... </DL> A definition or glossary list

Blocks of Text

<BLOCKQUOTE> ... </BLOCKQUOTE> Extended quotation

<ADDRESS> ... </ADDRESS> Address often used for document

author identification

Character Formatting

<CODE> ... </CODE> Code sample (usually Courier)

 ... Boldface text

<I> ... </I> Italic text

<TT> ... </TT> Typewriter text

 ... Emphasis (usually italic)

<CITE> ... </CITE> A citation

<PRE> ... </PRE> Preformatted text (preserves linebreak)

<BIG> ... </BIG> Test is slighly smaller than normal

<SMALL> ... </SMALL> Test is slighly smaller than normal

_{...} Subscript

^{...} Superscript

<KBD> ... </KBD> Keyboard entry

Other Elements

<HR> A horizontal rule line

Attributes

SIZE="..." The thickness of the rule, in pixels

WIDTH="..." The width of the rule, in pixels

ALIGN="..." How the rule line will be aligned on the page

NOSHADE="..." Causes the rule line to be drawn as a solid line

 A line break

<CENTER> ... </CENTER> Centers text or images

<BLINK> ... </BLINK> Causes the enclosed text to blink irritatingly

 ... Changes the size of the font for the enclosed text

Attributes

SIZE="..." The size of the font

COLOR="..." Changes the color of the text

FACE="..." Name of font to use

6 CHAPTER 1. HTML

Tables

<TABLE> ... </TABLE> Creates a table that can contain a caption

(<CAPTION>) and any number of rows (<TR>)

<CAPTION> ... </CAPTION> The caption of the table

<TR> ... </TR> Defines a table row, containing headings and data

<TH> ... </TH> Defines a table heading cell

<TD> ... </TD> Defines a table data cell

Images, Sounds, and Embedded Media

 Inserts an inline image into the document

Attributes

SRC="..." The URL of the image

ALIGN="..." Determines the alignment of the given image

VSPACE="..." The space between the image and the text above or

below it

HSPACE="..." The space between the image and the text to its

left or right

WIDTH="..." The width in pixels of the image

HEIGHT="..." The height in pixels of the image

Links

<A> ... With the HREF attribute, creates a link to another

document or anchor; with the NAME attribute, creates

an anchor that can be linked to.

Attributes

HREF="..." The URL of the document to be called when the link is

activated

NAME="..." The name of the anchor

Forms

<FORM> ... </FORM> Indicates an input form

Attributes

ACTION="..." The URL of the script to process this form input

METHOD="..." How the form input will be sent to the gateway

on the server side. Possible values are GET and POST

<INPUT> Input element with a specific type and symbolic name

Attributes

TYPE="..." The type for this input widget. Possible values are

CHECKBOX, HIDDEN, RADIO, RESET, SUMBIT, TEXT, SEND,

1.3. MAIN COMMANDS 7

FILE, IMAGE

NAME="..." The name of this item, as passed to the gateway script

as part of a name/value pair

VALUE="..." For a text or hidden widget, the default value;

for a check box or radio button,

the value to be submitted with the form;

for Reset or Submit buttons,

the label for the button itself

SRC="..." The source file for an image

SIZE="..." The size, in characters, of a text widget

<TEXTAREA> Text area (lines of editable text)

<SELECT> Select element with symbolic name

<OPTION> Option element used with SELECT

Applets and Scripting

<APPLET> ... </APPLET>

Attributes

CLASS="..." The name of the applet

SRC="..." The URL of the directory where the compiled applet

can be found

ALIGN="..." Indicates how the applet should be aligned with

any text that follows

WIDTH="..." The width of the applet output area in pixels

HEIGHT="..." The height of the applet output area in pixels

<SCRIPT> ... </SCRIPT> An interpreted script program

Attributes

LANGUAGE="..." For example JavaScript

SRC="..." Specifies the URL of a file that includes the script

program

The escape sequences

< > & "

are used to enter characters such as <, >, and & and " into HTML documents. The
mnemonics of the original four sequences from HTML 2.0 stand for Less Than,
Greater Than, AMPersand, and double QUOTe. HTML 3.2 adds NonBreaking
SPace, REGistered trademark and COPYright

&NBSP ® ©

For example,
 will display as
.

8 CHAPTER 1. HTML

1.4 Linking to other Documents

HTML defines hypertext links which enables us to link regions of text, files or
graphics objects to our document. We do this via the HTML anchor tab. For
example, the following snippet from an HTML document

The International School for Scientific Computing

at the Rand Afrikaans University offers a

 Diploma in

has two links to other HTML documents. The first is to SciSchool.html which
must reside in the same directory as the current HTML document. The first anchor
tag contains the information for the document and the text between this tag and
the is displayed by the Web browser in a different colour (normally blue). If
the user clicks with the mouse onto this highlighted text, the browser will fetch
the corresponding document. The second anchor tag is a file diploma.html which
resides in a directory diploma situated at one branch lower in the directory hierarchy.
Thus if the current document is in the directory c:\webdocs\scschool then the
Web browser will search for c:\webdocs\diploma\diploma.html. It is a good idea
to make all links relative, so that if we move the web site to a different location,
all links will remain intact. We can also establish links to documents on other web
sites. For example

 ISSC

Of course we can also establish a link to a specific page other than the home page
of another web site. For huge HTML documents it can be very useful to be able
to jump to a specific section within that document. This is achieved by supplying
a named anchor within that document and using the hash character # to specify a
jump to a named anchor.

...

 Introduction

 First Section

...

If the user clicks on the link the web browser shows the corresponding section of the
document.

<H3> Introduction </H3>

This is the body of the introduction ...

<P>

<H3> First Section </H3>

This is the body of the first section ...

1.5. FORMS AND CGI PROGRAMMING 9

1.5 Forms and CGI Programming

HTTP is the protocol of the Web, by which Servers and Clients (typically browsers)
communicate. An HTTP transaction comprises a Request sent by the Client to the
Server, and a Response returned from the Server to the Client.

The HTML FORM is the most-frequently used format in a Web page for collecting
data and interacting with the user. The <FORM> tag is used to start an HTML form
and to specify the URL location and the CGI (Common Gateway Interface) script
that we want to run. For the task, we assign the URL to the ACTION attribute within
the <FORM> tag. To end a form, we put the ending tag </FORM> in the HTML code.
Here, the ACTION attribute is given the URL of the CGI script called for example
chtml.exe. CGI itself is not a language. It is just an interface between a client and
a server across the Internet. The CGI script refers to a program that supports CGI
and is written in a computing language such as C, C++ or Perl.

POST and GET are two methods used to send data collected from an HTML form to
the CGI scripts running on the Web server.

GET method: a form method that sends the user’s request into the program as
command line arguments (equivalent to argc and argv[] in C++ and C).

POST method: a form method that sends the user’s request to a cgi-bin program as
stdin (standard input). The user’s request can be retrieved by the cgi-bin program
using any stdin routine, for example in C the function gets() and in C++ the
function cin.getline(). The function char* gets(char* s) gets a string from
stdin. The function istream& getline(char*,int,char) extracts characters into
the given streambuffer until the delimiter is encountered. The delimiter is not copied
to buffer.

For example the HTML file on the client site could be

<HTML>

<COMMENT> File name: c3test.html </COMMENT>

<HEAD><TITLE> Password for access </TITLE></HEAD>

<BODY BGCOLOR=’pink’>

Enter password for access

<FORM METHOD="POST"

ACTION="http://zeus.rau.ac.za/scripts/chtml.exe">

<P> <INPUT TYPE = "text" NAME = "pass" > </P>

<P> <INPUT TYPE = "submit" NAME = "submit" > </P>

</FORM>

</BODY>

</HTML>

The exe-file chtml.exe is on the server site with the URL given by

10 CHAPTER 1. HTML

http://zeus.rau.ac.za

scripts is a pointer to the sub-directory where chtml.exe is located.

Non-whitespace characters or non-alphanumeric characters that need to be sent over
HTTP to and from our script need to be encoded to allow their transmission The
alphanumeric characters are given by

AB...YZab...yz01...9

Anything except alphanumeric characters gets encoded. Spaces are encoded by a +.
The others are coded as hex values for their ASCII value, led by %.

The HTML server will send the data in the following format:

mailtoname=MAIL_STRING&emailad=EMAIL_STRING&message=MESSAGE_STRING

The parts in capitals are the variable information coming from the user (client). The
lowercase are the names of the variables followed by the equal sign = and separated
by the ampersand &. Each variable except the last one will end with an ampersand
& sign to identify it. The final variable ends with a carriage return \n. There will be
an equal sign before the actual user value. All variables are send as a single string.
Spaces are replaced by + signs. For example,

Willi & Hans Steeb

is encoded as

Willi+%26+Hans+Steeb

where 26 (hex) is the ASCII value for the ampersand & and %26 is the HTML form
of &.

The following Perl program does the URL encoding and decoding.

url.pl

sub url_encode

{

my $text = shift;

$text =~ s/([^a-z0-9_.!~*’() -])/sprintf "%%%02X",ord($1)/egi;

$text =~ tr/ /+/;

return $text;

}

sub url_decode

1.5. FORMS AND CGI PROGRAMMING 11

{

my $text = shift;

$text =~ tr/\+/ /;

$text =~ s/%([a-f0-9][a-f0-9])/chr(hex($1))/egi;

return $text;

}

my $url = "willi-hans & steeb @ ISSC";

my $enc = url_encode($url);

my $dec = url_decode($enc);

print "original = $url\n";

print "encoded = $enc\n";

print "decoded = $dec\n";

The underlying C++ program for the exe-file chtml.exe on the server site could
be as follows

// chtml.cpp

#include <iostream.h>

#include <string.h>

const int numpass = 3;

const char* passlist[numpass] = { "123", "456" , "789" };

void main(void)

{

int accepted = 0;

int i;

// assume password no more than 1023 characters

char password[1024];

// expect "pass=_password_" from stdin

cin.getline(password,1024,’=’);

// get entered password

cin.getline(password,1024,’&’);

for(i=0;i<numpass;i++)

accepted = (strcmp(password,passlist[i])==0)?1:accepted;

// generate HTML output

cout << "Contents-type: text/html\n\n";

12 CHAPTER 1. HTML

cout << "<HTML>\n";

cout << "<HEAD><TITLE>\n";

if(accepted) cout << "Password accepted\n";

else cout << "Password incorrect\n";

cout << "</TITLE></HEAD>\n";

cout << "<BODY>\n";

// if accepted add line to automatically send to next webpage

if(accepted)

{

cout << "Password accepted\n";

cout << "<A HREF=" << "\"http://zeus.rau.ac.za/openme.html\">"

<< "openme" << "\n";

}

else cout << "Password incorrect.\n";

cout << "</BODY>\n";

cout << "</HTML>\n";

}

The HTML commands are embedded as a string in cout. Obviously the HTML file
openme.html is on the server site.

There are various advantages of CGI:

1) Simplicity. CGI provides a simple way of running programs on the server when
a request is received and it is conceptually easy to understand the underlying process.

2) Process Isolation. Since CGI applications run in separate processes, buggy ap-
plications will not crash the Web server or access the server’s private internal state.

3) Portability. CGI is an open standard. CGI is not tied to any particular (such
as single- or multi-threaded) server architecture. CGIs are far more portable over
other alternatives such as server extension APIs.

4) Language independency. CGI applications can be written in any language.

5) Support. CGI is a proven technology, and some form of CGI has been imple-
mented on almost every Web server on a variety of platforms. There are many CGI
scripts available for free for a variety of applications: as user-friendly front-ends
to databases, search engines, scientific analysis tools, traditional inventory systems,
gateways to network services such as gopher and whois.

1.5. FORMS AND CGI PROGRAMMING 13

The INPUT tag has the form

<INPUT NAME="name" TYPE="checkbox |hidden |image |password |radio

reset |submit |text">

where "text" is the default. The pushbutton "submit" causes the current form to
be packaged up into a query URL and sent to a remote server.

Inside <FORM> ... </FORM> any number of SELECT tags are allowed, freely intermixed
with other HTML elements (including INPUT and TEXTAREA elements) and text but
no additional forms. Unlike INPUT, SELECT has both opening and closing tags. Inside
SELECT, only a sequence of OPTION tags each followed by an arbitrary amount of
plain text. For example

<SELECT NAME = "books">

<OPTION> First option.

<OPTION> Second option.

</SELECT>

The attribute NAME is the symbolic name for the SELECT element. This must be
present, as it is used when putting together the query string for the submitted form.

The TEXTAREA tag can be used to place a multiline text entry field with optional
default contents in a fill-out form. The attribute NAME is the symbolic name of
the text entry field. The attribute ROWS is the number of rows (vertical height
in characters) of the text entry field. COLS is the number of columns (horizontal
width of characters) of the text entry field. The TEXTAREA element requires both
an opening and a closing tag. TEXTAREA fields automatically have scrollbars; any
amount of text can be entered in them. A TEXTAREA with no default contents looks
like this

<TEXTAREA NAME = "foo" ROWS=4 COLS=40></TEXTAREA>

A TEXTAREA with default contents looks like this

<TEXTAREA NAME = "foo" ROWS = 4 COLS = 40>

The default contents go here

The default contents must be straight ASCII text. Newlines are respected.

14 CHAPTER 1. HTML

1.6 Images

Images can be created in two ways - with the tag and with the Image()

constructor. are placed on the form and have a whole set of properties
that can be used to format their position, size and appearance. The images are
automatically formed into the array images[], and numbered in the order of their
position in the document. Thus the first image can be referred to as

document.images[0]

Images must be in gif or jpg format. The command

 inserts an inline image into the document

attributes

SRC="..." the URL of the image

An example is given by

<IMG SRC=

"http://www.paris.org/Musees/Louvre/Treasures/gifs/Mona_Lisa.jpg">

We can also use the following options (attributes):

ALIGN = "left/center/right"

ALT = "description"

WIDTH = "how wide is the picture"

HEIGHT = "how tall is the picture"

BORDER = "border around the picture"

HSPACE = "horizontal distance between picture and text"

VSPACE = "vertical distance between the picture and the text"

The option ALIGN sets the position of the image across the page. The option ALT is
the text to display if the image is not loaded into a browser.

We can tile a page with the

BACKGROUND = "filename"

option in the <BODY> tag. The image is repeated to fill the window. For example

<BODY BACKGROUND="mypicture.gif" ALIGN=right ALT="My picture to watch">

1.7. HTML SOUND TAGS 15

1.7 HTML Sound Tags

Not all browsers support every sound tag and not every computer has the proper
install and configuration of a sound card, sound card drivers, and multimedia play-
ers such as Quick Time and Windows Media Player. If the volume setting for the
tag is set low and the computer’s volume setting is low, no sound may be heard.
Finally, if our web page visitor does not have a sound capability, they may be get
annoying error messages for any automatically started sound. Thus, it is still best
to let the visitor to our page control the sound (no hidden controls or auto starts).

The background sound tag

<BGSOUND SRC="URL">

<BGSOUND SRC="URL" LOOP=n>

identifies a .wav, .au, .mid or .aif resource that will be played when the page is
opened. The optional LOOP attribute will cause the resource to be played n times.
The command LOOP="INFINITE" will cause the resource to be played continuously
as long as the page is open.

The embed element

<EMBED SRC="URL">

is used to embed a plugin into a document. The OBJECT tag can also be used to
embed objects.

The META tag can also be used to play sound.

<HTML>

<HEAD>

<TITLE> SOUND1 </TITLE>

</HEAD>

<BODY>

<H2 ALIGN="center">

wav file in HTML document

</H2>

<BGSOUND SRC="hello.wav" AUTOSTART="true" LOOP="true">

</BODY>

</HTML>

16 CHAPTER 1. HTML

<HTML>

<HEAD>

<TITLE> SOUND2 </TITLE>

</HEAD>

<BODY>

<H2 ALIGN="center">

au file in HTML document

</H2>

<META HTTP-EQUIV="Refresh" CONTENT="1; URL=hello.au">

</BODY>

</HTML>

<HTML>

<HEAD>

<TITLE> SOUND3 </TITLE>

</HEAD>

<BODY>

<H2 ALIGN="center">

aiff file in HTML document

</H2>

<EMBED SRC="hello.aiff" AUTOSTART="true" LOOP="false"

HIDDEN="true" HEIGHT="0" WIDTH="0">

</BODY>

</HTML>

<HTML>

<HEAD>

<TITLE> SOUND4 </TITLE>

</HEAD>

<BODY>

<H2 ALIGN="center">

au file in HTML document

</H2>

<OBJECT DATA="hello.au" TYPE="AUDIO/BASIC"></OBJECT>

</BODY>

</HTML>

1.8. TABLES 17

1.8 Tables

Tables are not just for tables of data. They are also a convenient way to present
sets of images, or to lay out images and related text.

A table begins and ends with the <TABLE> </TABLE> tags. Tables rows are defined
by <TR> </TR>; header cells by <TH> </TH>; and data cells by <TD> </TD>. A
table must have at least one row and one cell. An optional table sub-element,
<CAPTION> </CAPTION> supplies a caption for the table. A simple example is given
by

<TABLE BORDER>

<TD> Row One - Column One </TD>

</TABLE>

Typically, a table with a border is cosmetically more appealing.

A more advanced example is given in the following program

<HTML>

<COMMENT> Table.html </COMMENT>

<BODY>

<TABLE>

<CAPTION> Table Items </CAPTION>

<TR><TH></TH>

<TH> Lunch </TH> <TH> Dinner </TH>

<TR> <TH> Kitchen </TH> <TD> 23 <TD> 30 </TD> </TR>

<TR> <TH> Dining Room </TH> <TD> 31 </TD> <TD> 45 </TD> </TR>

</TABLE>

</BODY>

</HTM>

18 CHAPTER 1. HTML

1.9 Examples

Let us assume the file name of this HTML program is mona.html and the file is on
the C drive. To run it at your favorite browser Netscape’s Navigator or Microsoft’s
Internet Explorer type at the address:

C:\mona.html

Then we press enter.

<HTML>

<HEAD>

<TITLE> An Example of an HTML File Structure </TITLE>

</HEAD>

<BODY BGCOLOR=’pink’>

Good Morning Egoli !

Let’s do mathematics.

<MATH>

∫_a_^b^{f(x)<over>1+x</over>} dx

</MATH>

<COMMENT> verbatim </COMMENT>

<PRE>

#include < iostream.h >

int main()

{

int a = 7;

int b = 2*a;

cout << "b = " << b;

return 0;

}

</PRE>

<IMG SRC=

"http://www.paris.org/Musees/Louvre/Treasures/gifs/Mona_Lisa.jpg">

</BODY>

</HTML>

1.9. EXAMPLES 19

Next we give the HTML file of the web site of the International School for Scientific
Computing. It shows how and <A> ... is applied.

<HTML>

<HEAD>

<TITLE> ISSC Certificate Courses </TITLE>

</HEAD>

<BODY BACKGROUND="../breadc2.gif" >

<CENTER>

<H1>Certificate Courses in Scientific Computing

and Software Engineering</H1>

<H4>presented by the</H4>

<H1>International School for Scientific Computing</H1>

</CENTER>

<CENTER>

</CENTER>

<HR>

Currently the ISSC offers the following certificate courses:

<P>

 Core Courses

Object-Oriented Programming in C++

Object-Oriented Analysis and Design using UML

Programming in Java, HTML and JavaScript

 Advanced Java

 Assembly Language and C++

 Scientific Courses

Neural Networks, Genetic Algorithms and Optimization

Fuzzy Logic with C++ and Hardware Implementations

20 CHAPTER 1. HTML

 Numerical Methods for Science and Engineering

 Computational Graph & Transport Theory

with Applications and C++ Implementations

 Algebraic Computing using

SymbolicC++, Mathematica, Maple and Reduce

Programming Microprocessors & Embedded Systems

Information Theory and Maximum Entropy Inference

 Fibre Optics with Applications in Communications

Digital Electronics, Programmable Logic Devices and VHDL

 Microprocessor Based Mobile Robots

Unix, Shell Programming and Perl

Classical and Quantum Computing

 Specialized Courses

Distributed Objects with CORBA and Java

Artificial Intelligence using Lisp and C++

Programming for Windows using Visual C++.

 SQL, Oracle and ABAP/4

 Commerce, Economics and Administration

Computational Methods for Finance and Economics

<HR>

All lectures are presented in English.

Each certificate course includes about 15 hours of formal lectures

and up to 15 hours of practicals after which you will write an exam.

Should you not pass the exam the first time, you will be offered an

opportunity to rewrite the exam (free of charge). After successful

completion you will receive a certificate from the International

School for Scientific Computing certifying that you completed the

1.9. EXAMPLES 21

particular course successfully.

At any stage you may decide to enroll for the

Diploma in Scientific Computing and Software Engineering.

You will be given credits for certificate courses that you have

already completed.

<P> <CENTER>

<H2>Timetable and Enrollment Form 2000</H2>

</CENTER>

<HR>

<P> For further information contact

 Prof. Willi-Hans Steeb

<ADDRESS>

 Telephone: (+27) (011) 489-2331.

 Fax: (+27) (011) 489-2616.

 E-Mail:

whs@na.rau.ac.za

</ADDRESS>

 Prof. Charles Villet

<ADDRESS>

 Telephone: (+27) (011) 489-2316.

 Fax: (+27) (011) 489-2616.

 E-Mail:

cmv@na.rau.ac.za

</ADDRESS>

<HR>

<MAP NAME="ToHomeMap">

<AREA SHAPE=RECT COORDS="0,0,600,150"

HREF="../scschool/scschool.html">

</MAP>

<CENTER>

</CENTER>

<HR>

</BODY>

</HTML>

22 CHAPTER 1. HTML

1.10 Applets

The key methods of the Applet class are:

void init()

void start()

void stop()

void destroy()

The method init() is called whenever an applet is loaded by a browser. It is called
before the start() method and is normally used to initialize variables. The method
start() is called after the initialization of the applet. While the init() method
is only called when the web browser is loaded, the start() method is called every
time that the page is loaded and restarted. When we go to another page and then
return, the start() method is called. The stop() method is called whenever the
browser leaves a page and goes to another page. The destroy() method is called
just before an applet finishes, if, for example the browser is shut down.

To run an applet from a web page, we first have to create an HTML program.
Consider the applet (filename Greetings.java)

import java.applet.Applet;

import java.awt.Graphics;

public class Greetings extends Applet

{

public void paint(Graphics g)

{

g.drawString("Good Morning Egoli",50,50);

g.drawString("Good Night Egoli",100,100);

}

}

Next we give a minimal HTML program from which we can run the applet.

<HTML>

<APPLET CODE="Greetings.class" width=300 height=150></APPLET>

</HTML>

Enter this code into a separate text file named Greetings.html. Then execute the
following two JDK commands at the command prompt

javac Greetings.java

appletviewer Greetings.html

1.10. APPLETS 23

The javac command compiles the applet producing the class file Greetings.class.
The appletviewer command launches a special program provided in the JDK that
runs HTML programs just like a Web browser. In this case, the appletviewer runs
the two-line HTML program that we entered with Greetings.html The HTML pro-
gram tells the appletviewer to run the Java code contained in the Greetings.class
file, using a panel of 300 pixels wide and 150 pixels high.

The HTML program consists of a single applet tag. This tag has three attributes:
CODE="Greetings.class" width=300 height=150. These are like arguments passed
to a method of function, providing information about what is to be done. The ac-
tion to be performed is the execution of a Java applet. The appletviewer needs to
know the name of the applet CODE="Greetings.class" and the size of the panel
(width=300 height=150) to use. The code </APPLET> signals the end of the tag.

<HTML>

<COMMENT> File name: mona1.html </COMMENT>

<HEAD>

<TITLE> An Example of an HTML File Structure </TITLE>

</HEAD>

<BODY BGCOLOR=’pink’>

Good Morning Egoli !

<APPLET CODE="Greetings.class" width=300 height=150>

</APPLET>

<IMG SRC=

"http://www.paris.org/Musees/Louvre/Treasures/gifs/Mona_Lisa.jpg">

</BODY>

</HTML>

We saw in chapter 2 that we can pass arguments to a Java application when it
starts running. We can do a similar thing with applets, but it requires co-operation
between a Java applet and the HTML file. Within the <APPLET> </APPLET> pair,
the name of the Java class file and the width and height of the applet drawing
area are specified. To pass information to the applet, the names and values of the
parameters are passed using PARAM NAME and VALUE.

24 CHAPTER 1. HTML

For example

<HTML>

<HEAD>

</HEAD>

<BODY>

<APPLET CODE="PassArg.class" width = 350 height = 150>

<PARAM NAME = first VALUE = "Willi">

<PARAM NAME = second VALUE = "Hans">

</APPLET>

</BODY>

</HTML>

Next we have to write some Java statements in our applet to receive these arguments.
We put them inside the init() method. For example

// PassArg.java

import java.applet.Applet;

import java.awt.Graphics;

public class PassArg extends Applet

{

public String firstPar, secondPar;

public void init()

{

firstPar = getParameter("first");

secondPar = getParameter("second");

}

public void paint(Graphics g)

{

g.drawString(firstPar,50,50);

g.drawString(secondPar,100,100);

g.drawString(firstPar.concat(secondPar),150,150);

}

}

Chapter 2

XML

2.1 Introduction

XML stands for Extensible Markup Language. XML is a public standard developed
and maintained by the World Wide Web Consortium (W3C). The W3C develops
inter operable technologies (specifications, guidelines, software and tools) to increase
the potential of the Web as a forum for information, commerce, communication and
collective understanding. XML is a text-based markup language that is fast becom-
ing the standard for data interchange on the Web. It was designed to describe data.
XML is a markup language much like HTML. As with HTML, we identify data
using tags (identifiers enclosed in angle brackets). XML tags are not predefined in
XML. We must define our own tags. XML is self describing. XML uses a DTD
(Document Type Definition) to formally describe the data. XML was designed to
describe data and to focus on what data is. HTML was designed to display data
and to focus how data looks. HTML is about displaying information, XML is about
describing information.

The tags used to markup HTML documents and the structure of HTML documents
are predefined. For example the HTML tag ... renders the text in bold
font style. The author of HTML documents can only use tags that are defined in
the HTML standard. XML allows the author to define his own tags and his own
document structure.

XML can keep data separated from our HTML. XML can be used to store data
inside HTML documents. XML can be used as a format to exchange information.
XML can be used to store date in files or in databases. Thus we can use XML
to create an unlimited number of our own custom tags and attributes, assign a
data type to each tag and attribute, access values associated with the tags, and
accomplish all of this in a custom structured format that we have also created.

25

26 CHAPTER 2. XML

As described above, HTML pages are used to display data. Data are often stored
inside HTML pages. With XML this data can now be stored in a separate XML file.
This way we can concentrate on using HTML for formatting and display, and be sure
that changes in the underlying data will not force changes to any of our HTML code.

However, XML can store data inside HTML documents as so-called data islands.

Computer systems and databases contain data in incompatible formats. One of the
big problems is to exchange data between such systems over the Internet. Convert-
ing data to XML can greatly reduce this complexity and create data that can be
read by different types of applications.

XML can also be used to store data in files or in databases. Applications can be
written to store and retrieve information from the store, and generic applications
can be used to display the data.

An XML document is an ordered, labeled tree: character data leaf nodes contain the
actual data (text strings) where usually, character data nodes must be non-empty
and non-adjacent to other character data nodes

elements nodes, are each labeled with a name (often called the element type), and
a set of attributes, each consisting of a name and a value. These nodes can have
child nodes.

In addition, XML trees may contain other kinds of leaf nodes: processing instruc-
tions - annotations for various processors

comments - as in programming languages

document type declaration.

In general, we should avoid attributes. Attributes cannot contain multiple values
(elements can). Attributes are not expandable (for future changes). Attributes
cannot describe structures (like child elements can). Attributes are more difficult
to manipulate by program code. Attribute values are not easy to test against DTD
(Document Type Definition).

2.1. INTRODUCTION 27

XML documents may be encoded in a range of character sets. For multi-language
support XML supports 16-bit Unicode (ISO/IEC 10646). Unicode supports all
spoken languages including the European, Semitic, Arabian, Indian, Japenese and
Chinese language. Of the roughly 40 000 characters defined by Unicode about
20 000 characters are used for Mandarin and other Chinese languages, 11 000 for
Hangul (Korean). The remaining 9 000 characters suffice for most characters of the
remaining spoken languages of the world.

Any combination or repeated occurances of space characters, horizontal tabs, line
feeds and/or carriage returns is treated in XML as a single white space. All white
space characters within the content of elements is preserved by parsers while multiple
white space characters within element tags and attribute values may be removed
and replaced with a single white space character.

There are three commonly used end-of-line delimiters, namely carriage-return (CR),
line-feed (LF) or carriage-return + line-feed (CR+LF). To simplify processing, XML
parsers were required to replace all end-of-line delimiters with a single line feed.

The following conditions for an XML document must be satisfied.

1) All XML elements must have a closing tag.

2) XML tags are case sensitive. Opening and closing tags must therefore be written
with the same case. For example, an XML parser interprets <BOOK> and <book> as
two different tags. Recall that HTML tags are not case sensitive.

3) All XML elements must be properly nested.

4) All XML documents must have a root tag. Recall that an XML document is an
ordered, labeled tree.

5) Attributes must always be quoted. XML elements can have attributes in name/value
pair just like in HTML. In XML the attribute value must always be quoted. XML
attributes are normally used to describe XML elememts, or to provide additional
information about elements.

XML names may only start with a letter, an underscore character or a colon. The
subsequent characters may include the latter plus numerals, dashes and full-stops.
Colons should, however, be used for namespace delimiters. Furthermore, XML
names should not start with the three letters XML in any case (xml, Xml, xmL, ...).
Names starting with these characters are reserved for W3C use only. Note that
XML names are case-sensitive.

28 CHAPTER 2. XML

Since spaces are not allowed in elements names, the underscore (_) is a common
symbol used to add space between words. Capitalizing the first letter of each word in
the element is another way to delineate separate words. Our tags can be composed
of almost any string of characters, with certain limitations: The first character of
an XML tag must be an upper or lower case letter, the underscore, or a colon. The
remaining characters can be composed of any combination of upper or lower case
letters, colons, hyphens, numbers, periods, or underscores.

The very first line of every XML document must be the XML declaration. For
example

<?xml version="1.0" standalone="yes" encoding="ISO-8859-1"?>

where <? begins a processing instruction. xml declares this to be an XML instruc-
tion. version identifies the version of XML specification in use. Version 1.0 is the
only current version so the value must be 1.0. The markup standalone states if
this file is completely by itself. A no value signals the parser that it should im-
port other mark-up files, such as an external DTD (Document Type Definition).
Since well-formed XML docs are complete by itself, this attribute value would be
yes. The command encoding indicates which international character set is used.
ISO-8859-1 is the default and is essentially the English character set. The markup
?> terminates the processing instruction.

A comment is given by

<!-- This is a comment -->

XML documents require a root element. The root element appears only once and
encapsulates the entire XML elements and data in the document, in the same way
<HTML> ... </HTML> contains the contents of an HTML document.

Since XML uses certain characters for its own syntax, these characters must be sup-
plied in another way. For this reason XML introduces five standard entity references

< >

These entity references must be used for literal left and right angle brackets which
are used in XML as element tag delimiters.

' "

These entity references must be used for single and double quotes which are used in
XML as element tag delimiters.

&

& must be used for literal ampersands. Ampersands are used in XML for entity
references.

2.1. INTRODUCTION 29

In the following we give an example. The first line is the XML declaration. It
defines the XML version of the document. Furthermore library is the root element
appearing only once and containing all the other elements. We save the XML with
any filename and an .xml extension. Then we load the file onto an XML-parser
such as IE 6, NetScape 6, Opera 4+, Ice Browser, or Mozilla.

<?xml version="1.0" standalone="yes"?>

<?xml-stylesheet type="text/xsl" href="library.xsl"?>

<!-- File name: library.xml -->

<!-- address: file://c:\books\java\library.xml -->

<library>

<book>

<title> SymbolicC++ </title>

<subtitle> An Introduction to Computer Algebra </subtitle>

<author> Tan Kiat Shi, Willi Hans Steeb, Yorick Hardy </author>

<ISBN> 1852332603 </ISBN>

<publisher> Springer </publisher>

<city> London </city>

<year> 2000 </year>

</book>

<book>

<title> Classical and Quantum Computing </title>

<subtitle> with C++ and Java Simulations </subtitle>

<author> Yorick Hardy and Willi Hans Steeb </author>

<ISBN> 3764366109 </ISBN>

<publisher> Birkhauser Publishing </publisher>

<city> Basel </city>

<year> 20001 </year>

</book>

</library>

If we consider the XML file from an SQL table point of view then each

<book> ... </book>

block would be one row in the table library.

30 CHAPTER 2. XML

The following example shows how to use an attribute. The attribute is sex.

<?xml version="1.0" standalone="yes"?>

<people>

<person sex="male">

<lastname> Steeb </lastname>

<firstname> Willi Hans </firstname>

<profession> Professor </profession>

</person>

<person sex="female">

<lastname> de Sousa </lastname>

<firstname> Nela </firstname>

<profession> Lecturer </profession>

</person>

</people>

We can rewrite it without using an attribute.

<?xml version="1.0" standalone="yes"?>

<people>

<person>

<sex> male </sex>

<lastname> Steeb </lastname>

<firstname> Willi Hans </firstname>

<profession> Professor </profession>

</person>

<person>

<sex> female </sex>

<lastname> de Sousa </lastname>

<firstname> Nela </firstname>

<profession> Lecturer </profession>

</person>

</people>

2.1. INTRODUCTION 31

The polynomial

p(x, y) = 2x3y2 − 4y5

could be encoded in XML as

<?xml version="1.0"?>

<polynomial>

<term>

<factor> 2 </factor>

<variable>

<name> x </name>

<exponent> 3 </exponent>

</variable>

<variable>

<name> y </name>

<exponent> 2 </exponent>

</variable>

</term>

<term>

<factor> -4 </factor>

<variable>

<name> x </name>

<exponent> 0 </exponent>

</variable>

<variable>

<name> y </name>

<exponent> 5 </exponent>

</variable>

</term>

</polynomial>

32 CHAPTER 2. XML

2.2 Schema

A schema is a formal way of defining and validating the content of an XML docu-
ment. A well-formed XML document that conforms to its schema is said to be valid.
The schema is how we assign the data types to each tag and any attributes that are
contained in the XML document. A schema is a structured document which must
obey XML syntax rules. It is composed of a series of predefined tags and attributes
that are part of the XML language and are used to set the data types for the values
associated with our custom tags. Not only do we get to create custom XML tags,
but we can also denote that an XML data value is, for example, an integer data
type. Thus we can assign specific data types to specific XML data values. A schema
can be part of the XML document or a separate file.

The XML tags and attributes to create a schema are:

The Schema tag serves as a container element that delimits the beginning and end
of the schema. This tag must be closed.

The xmlns attribute is used to declare the data types of the schema XML namespace.
The value is a URL or URN address that the browser will access to get information
on the data types to allow code validation.

The xmlns:dt attribute is used to declare the data types of the schema XML names-
pace. The value is a URL (Uniform Resource Locator) or URN (Uniform Resource
Name) address that the browser will access to get information on the data types to
allow code validation. If we are using IE 5 to view our XML document, then we
must include the xmlns and the xmlns:dt attributes exactly as displayed below

<Schema xmlns="urn:schema-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

...

</Schema>

The AttributeType tag is used to declare the data type for an attribute of an XML
tag. This tag must be closed.

The name attribute provides the name of the attribute.

The dt:type attribute dictates the data type of the attribute.

2.2. SCHEMA 33

The permitted values are:

binary boolean byte date

decimal double float int

integer long negativeInteger

nonNegativeInteger nonPositiveInteger

positiveInteger recurringInstant

short string time timeDuration

timeInstant

unsignedByte unsignedShort unsignedInt unsignedLong

The attribute tag is used to associate a previously data typed attribute to a tag.
This tag must be closed.

The type attribute provides the data type of the custom attribute.

The ElementType tag is used to declare the data type for a custom XML tag. The
tag must be closed.

The content attribute describes the intended content of the XML tag. There are
four permitted values:

Type Description

======= ===============================

eltOnly contains only elements

empty contains no content

mixed contains both elements and text

textOnly contains only text

==

The name attribute provides the name of the tag (element).

The dt:type attributes dictates the data type of the tag (element). There are 23
permitted values (see above).

The element tag is used to associate a previously data typed tag to an element.
This tag must be closed.

The type attribute provides the type of the custom XML element.

34 CHAPTER 2. XML

2.3 Document Type Definition

The purpose of Document Type Definition (DTD) is to define the legal building
blocks of an XML document. A DTD can be declared inline in our XML document
or as an external reference. An example with an external reference is given below.
XML provides an application independent way of sharing data. With a DTD, in-
dependent groups of developers can agree to use a common DTD for interchanging
data. Our application can use a standard DTD to verify that data that we receive
from the outside world is valid. We can also use a DTD to verify our own data.

XML documents (and HTML documents) are made up by the following building
blocks:

Elements, Tags, Attributes, Entities, PCDATA, CDATA

Attributes provide extra information about elements. Attributes are placed inside
the start tag of an element. Attributes come in name/value pairs. PCDATA means
parsed character data. We think of character data as the text found between the
start tag and the end tag of an XML. PCDATA is text that will be parsed by a
parser. Tags inside the text will be treated as markup and entities will be expanded.
CDATA also means character data. CDATA is text that will not be parsed by a
parser. Tags inside the text will NOT be treated as markup and entities will not be
expanded. Entities are variables used to define common text. Entities references are
references are references to entities. For example, the HTML entity reference
is used to insert an extra space in an HTML document. Entities are expanded when
a document is parsed by an XML parser.

<?xml version="1.0"?>

<!-- familytree.dtd -->

<!-- PCDATA parseable character data -->

<!-- attributes keyword ATTLIST -->

<!-- DTD describing an individual person -->

<!ENTITY % reference "person IDREF #REQUIRED">

<!ELEMENT person (name | father)*>

<!ATTLIST person id ID #REQUIRED sex (m | f) #IMPLIED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT father EMPTY>

<!ATTLIST father %reference;>

2.3. DOCUMENT TYPE DEFINITION 35

The XML file is given by

<?xml version="1.0"?>

<!-- familytree.xml -->

<!-- Each person is identified by a unique ID -->

<!DOCTYPE familytree SYSTEM "familytree.dtd">

<familytree>

<person id="p1" sex = "m">

<name> Olaf </name>

</person>

<person id="p2" sex = "m">

<name> Theo </name>

<father person = "p1" />

</person>

<person id="p3" sex = "m">

<name> Ario </name>

<father person = "p1" />

</person>

<person id="p4" sex = "m">

<name> Carl </name>

<father person = "p2" />

</person>

</familytree>

Each person is identified by a unique id. This will be invaluable for later processing
of individuals. For processing the XML file we have to provide an XSL file.

36 CHAPTER 2. XML

2.4 Displaying XML using Data Binding

Internet Explorer 5 and 6 contain a DSO (Data Source Object) that permits dis-
playing the data in an XML document on an HTML page by using the technology
of client-side data binding. This involves taking the XML data from the server-side,
transferring the data to the client side for future access, and binding the data to an
HTML tag. The data is treated like a record set in ADO (ActiveX Data Object)
and the data can be manipulated by using the various methods and properties of the
ADO Recordset object. In our example, we use these features to navigate through
our data. Once the data is bound to an HTML tag, it can be viewed on IE 5 and
6. There are fifteen HTML tags that can be used for data binding:

a applet button div frame iframe img input

label marquee object select span table textarea

These fifteen tags can use two special proprietary attributes, datasrc and datafld,
that are only recognized on IE 4, IE 5 and IE 6.

 or <div> elements can be used to display XML data.

The datasrc attribute allows the linking of the HTML tag to the XML data docu-
ment. The datafld attribute is used to name the XML data field that we wish to
display.

These attributes are very easy to use and only require one line of code to access an
XML data value. The sign # signifies a link. Note that this is a complete HTML
element with both an opening and closing tag.

For our data binding example we use the MyXML.xml file with the library example.
We want to create an HTML page that displays the XML data for the

title subtitle author ISBN publisher city year

We want to be able to scroll through the list of books using navigation buttons
and see the data for any book. To do so, we use the src attribute of an inline xml

element to link our HTML page to the XML document. We use the HTML span

tag for the data binding. We use the datasrc attribute to link each span element
to the xml element. We use the datafld attribute to bind the specified XML data
value to the span element. We use previous and next input buttons to call data
navigation functions. We use MoveNext() and MovePrevious() ADO methods to
navigate our data. We apply RecordCount and AbsolutePosition ADO properties
to limit our data navigation so that we never go to BOF or EOF.

2.4. DISPLAYING XML USING DATA BINDING 37

<HTML>

<TITLE> Data Binding </TITLE>

<BODY>

<xml id="xmlLibrary" src="file://c:\books\java\library.xml">

</xml>

 Use the buttons to scroll up and down the library

TITLE:

SUBTITLE:

AUTHOR:

ISBN:

PUBLISHER:

CITY:

YEAR:

<input type="button" value="Previous" onclick="Previous()">

<input type="button" value="Next" onclick="Next()">

<SCRIPT LANGUAGE="JavaScript">

function Previous()

{

if(xmlLibrary.recordset.AbsolutePosition > 1)

xmlLibrary.recordset.movePrevious();

}

function Next()

{

if(xmlLibrary.recordset.AbsolutePosition <

xmlLibrary.recordset.RecordCount)

xmlLibrary.recordset.moveNext();

}

</SCRIPT>

</BODY>

</HTML>

38 CHAPTER 2. XML

2.5 Displaying XML Using XSL

XSL is the acronym for the Extensible Stylesheet Language which is an application
of XML. XSL is a powerful styling language that uses special stylesheets to create
templates to display the data contained in an XML page in a variety of ways. We
use XSL to transform an XML document into an HTML page that can be viewed on
Internet Explorer. We do this by creating a separate XSL document that is linked
to the XML document. XSL is composed of two parts: XSLT which stands for XSL
Transformation and is used to transform from an XML doucment to another format
which may be HTML, PDF or LaTEX. XSLFO which stands for XSL Formatting
which is the native XML equivalent of Cascading Style Sheets (CSS). XSLFO is
thus reponsible for rendering information in a visual way.

This technology can be used with IE 5 and IE 6. The Microsoft version and XSL
does not fully support all the recommendations set for this language by the World
Wide Web Consortium (W3C). However, XSL can be used on the server-side so that
the output is browser independent.

XSL is not a large language. It is composed of twenty tag-like elements and asso-
ciated attribute-like methods. Like XML, all XSL elements must have an opening
and closing tag. All XSL tags have the same namespace prefix, xsl:, to denote
that this is an XSL element. Notice the use of the colon. After the prefix, the suffix
designates the tag’s purpose.

In order to display our XML document, we only need three of the XSL elements.

xsl:template

The xsl:template element is used to define a template. It can also be used as a
container element to declare the start and stop of an XSL coding sequence. We use
it in this manner in our example. In order for this to work in IE 6, we must use the
following code exactly

<xsl:template xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

The next element we use is

xsl:for-each

This element is used to create a for ... each loop which allows looping through
all the values for an XML data field. We use the select attribute to specify the
name of the XML data element.

xsl:value-of

The xsl:value-of element is used to insert the value of the XML data field into
the template. We use the select attribute to specify the name of the XML data
field. The xsl:value-of element allows us to display the data value for an XML
tag.

2.5. DISPLAYING XML USING XSL 39

An example is given in the following. The Library.xml file is given by

<?xml version="1.0" standalone="yes"?>

<?xml-stylesheet type="text/xsl" href="library.xsl"?>

<!-- File name: library.xml -->

<!-- address: file://c:\books\java\library.xml -->

<library>

<book>

<title> SymbolicC++ </title>

<subtitle> An Introduction to Computer Algebra </subtitle>

<author> Tan Kiat Shi, Willi Hans Steeb, Yorick Hardy </author>

<ISBN> 1852332603 </ISBN>

<publisher> Springer </publisher>

<city> London </city>

<year> 2000 </year>

</book>

<book>

<title> Classical and Quantum Computing </title>

<subtitle> with C++ and Java Simulations </subtitle>

<author> Yorick Hardy and Willi Hans Steeb </author>

<ISBN> 3764366109 </ISBN>

<publisher> Birkhauser Publishing </publisher>

<city> Basel </city>

<year> 20001 </year>

</book>

</library>

40 CHAPTER 2. XML

The file library.xsl is given by

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<HTML>

<BODY>

<xsl:for-each select="library/book">

<DIV>

TITLE: <xsl:value-of select="title"/>

AUTHOR: <xsl:value-of select="author"/>

YEAR: <xsl:value-of select="year"/>

<HR/>

</DIV>

</xsl:for-each>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

2.5. DISPLAYING XML USING XSL 41

To put an conditional if test against the content of the file, we simply add an
xsl:if element to our document. In the example we consider the table for a sporting
competition

name points

======================

Snowbird John 6234

Adler Jack 3234

Eagle Carl 134

======================

Each row of the table is identified as a

<result> ... </result>

block for the xml-file. We only want the display the table for the participants who
have more than 200 points.

The file if.xml is given by

<?xml version="1.0"?>

<!-- File name: If.xml -->

<!-- address: file://c:\books\java\if.xml -->

<?xml-stylesheet type="text/xsl" href="if.xsl"?>

<ranking>

<result>

<name> Snowbird John </name>

<points> 6234 </points>

</result>

<result>

<name> Adler Jack </name>

<points> 3234 </points>

</result>

<result>

<name> Eagle Carl </name>

<points> 134 </points>

</result>

</ranking>

42 CHAPTER 2. XML

The if.xsl-file is given by

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- address: file://c:\books\java\if.xsl -->

<xsl:template match="/">

<HTML>

<BODY>

<TABLE border="2">

<TR>

<TH> Name </TH>

<TH> Points </TH>

</TR>

<xsl:for-each select="ranking/result">

<xsl:if test="points > 200">

<TR>

<TD><xsl:value-of select="name"/></TD>

<TD><xsl:value-of select="points"/></TD>

</TR>

</xsl:if>

</xsl:for-each>

</TABLE>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

2.5. DISPLAYING XML USING XSL 43

The following two programs show an application of xsl:sort. The attributes we
can use are

order = "ascending/descending"

lang = "..."

data-type = "text/number"

case-order = "upper-first/lower-first"

The file sort.xml is given by

<?xml version="1.0"?>

<!-- File name: Sort.xml -->

<!-- address: file://c:\books\java\sort.xml -->

<?xml-stylesheet type="text/xsl" href="sort.xsl"?>

<ranking>

<player>

<name> Snowbird </name>

<points> 723 </points>

</player>

<player>

<name> Adler </name>

<points> 323 </points>

</player>

<player>

<name> Eagle </name>

<points> 173 </points>

</player>

</ranking>

44 CHAPTER 2. XML

The file sort.xsl is given by

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<HTML>

<BODY>

<TABLE border="2">

<TR>

<TH> Name </TH>

<TH> Points </TH>

</TR>

<xsl:for-each select="ranking/player">

<xsl:sort select="points" order="descending" data-type="number"/>

<TR>

<TD><xsl:value-of select="name"/></TD>

<TD><xsl:value-of select="points"/></TD>

</TR>

</xsl:for-each>

</TABLE>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

2.6. USING ORG.W3C.DOM.* 45

2.6 Using org.w3c.dom.*

The Document Object Model (DOM) is a platform- and language-neutral interface
that will allow programs and scripts to dynamically access and update the content,
structure and style of documents. The document can be further processed and the
results of that processing can be incorporated back into the presented page. DOM,
the offical W3C API for XML, builds an internal model for the XML document
which is a tree. The web site is

http://www.w3.org

In order to construct the tree it has to read the XML document sequentially, extract-
ing elements, attributes and name space definitions as well as processing instructions.

In the Level 1 DOM, each object, whatever it may be exactly, is a Node. For
example

<P> This is Chapter 1 </P>

has created two nodes: an element P and a text node with the content This is

Chapter 1. The text node is inside the element, so it is considered a child node of
the element. Conversely, the element is considered the parent node of the text node.
If we consider

<P> This is Chapter 1 </P>

the element node P has two children, one of which has a child of its own.

<P>

|

| |

This is

|

Chapter 1

Next we show how to display image metadata with ImageIO as XML-file using DOM.
Given a jpeg-file Image0.jpg. IIOMetadata contains meta information about the
image, so not the actual pixels, but the compression, keywords, comments, etc. If
we convert from one format to another, we do not want to loose this information.
A ImageTranscoder understands this meta data and maps it onto another format.
Internally, Metadata is stored as a bunch of IIOMetadataNodes. They implement
the org.w3c.dom interface. The format of this DOM tree is plug-in dependent:
the native format (as format features are different), but plug-ins may support the
plug-in neutral format.

46 CHAPTER 2. XML

The following example program displays, using the XSLT transformation package,
the plug-in neutral format.

// Main.java

import javax.imageio.metadata.*;

import javax.imageio.stream.*;

import javax.imageio.*;

import java.awt.image.*;

import java.util.*;

import java.io.*;

import javax.xml.transform.stream.*;

import javax.xml.transform.dom.*;

import javax.xml.transform.*;

import javax.xml.parsers.*;

import org.w3c.dom.*; // for Node class

public class Main

{

public static void main(String []args) throws Exception

{

Iterator readers = ImageIO.getImageReadersByFormatName("jpg");

ImageReader reader = (ImageReader) readers.next();

ImageInputStream iis =

ImageIO.createImageInputStream(new File("Image0.jpg"));

reader.setInput(iis,true);

BufferedImage bi = reader.read(0);

IIOMetadata metadata = reader.getImageMetadata(0);

Node node =

(Node) metadata.getAsTree(metadata.getNativeMetadataFormatName());

// use the XSLT transformation package

// to output the DOM tree we just created

TransformerFactory tf = TransformerFactory.newInstance();

Transformer transformer = tf.newTransformer();

transformer.transform(new DOMSource(node),new StreamResult(System.out));

}

}

Chapter 3

JavaScript

3.1 Introduction

The HTML language used to create pages for the World Wide Web was originally
designed to produce plain and static documents, stuff like engineering notes and
long-winded arguments by scientist types. When the Web first started, the only
browsing software available for it was text-based.

JavaScript makes HTML come alive. JavaScript is a scripting language for HTML
and the Netscape Navigator browser, version 2.0 and later. JavaScript is a cross-
platform, object-oriented language. Core JavaScript contains a core set of objects
as Array, Date, and Math, and a core set of language elements such as operators,
control structures, and statements. JavaScript “scripts” are small programs that in-
teract with Netscape and the HTML content of a page. We can create a JavaScript
program to add sound or simple animation, pre-validate a form before the user’s re-
sponse is sent to our company’s server, search through a small database, set options
based on user preferences, and much more. JavaScript performs the same function
as a macro in a word processor or electronic spreadsheet program. A macro is a
small program designed solely to run inside a program, automating some task or
enhancing a feature of the program. The difference here is that instead of a word
processor or electronic spreadsheet application, JavaScript is designed for use with
Netscape and surfing on the World Wide Web.

JavaScript is used in Netscape 2.0 and later versions, as well as in Microsoft Internet
Explorer 3.0 and later versions. As the co-developer of JavaScript, Netscape has
wanted to make JavaScript an open’standard, meaning that other companies can
use and implement JavaScript in their own Internet products. When JavaScript
was first announced in December of 1995, over two dozen companies jumped on the
bandwagon, promising to support it in future products.

47

48 CHAPTER 3. JAVASCRIPT

Thus JavaScript is an authoring language for the typical Web page designer. It
is a scripting language in which the program is embedded as part of the HTML
document retrieved by the browser.

A JavaScript program consists of one or more instructions (also referred to as code
or commands) included with the HTML markup tags that form our Web docu-
ments. When Netscape encounters a JavaScript instruction, it stops to process it.
For example, the instruction might tell Netscape to format and display text and
graphics on the page. Unlike a program witten in Java, JavaScript programs are
not in separate files (though this is an option using Netscape 3.0 and later). Instead,
the JavaScript instructions are mixed together with familiar HTML markup tags
such as <H1>, <P>, and .

Because JavaScript is embedded in HTML documents, we can use any text editor
or Web page editor to write our JavaScript programs. The only requirement is that
the editor must allow direct input.

Netscape needs to be told that we are giving it JavaScript instructions, and these
instructions are enclosed between

<SCRIPT> ... </SCRIPT>

tags. Within the script tag we can have only valid JavaScript instructions. We
cannot put HTML tags for Netscape to render inside the <SCRIPT> tags, and we
cannot put JavaScript instructions outside the <SCRIPT> tags.

JavaScript is designed on a simple object-based paradigm. An object is a construct
with properties that are JavaScript variables or other objects. An object also has
functions associated with it that are known as the object’s methods. In addition to
objects that are predefined in the Navigator client and the server, we can define or
own objects. A JavaScript object has properties associated with it. We access the
properties of an object with a simple notation

objectName.propertyName

Note that JavaScript is case-sensitive. Comments in JavaScript are the same as in
C, C++ and Java, namely

// ...

and

/* ... */

Core JavaScript can be extended for a variety of purposes by supplementing it with
additional objects; for example: Client-side JavaScript extends the core language
by supplying objects to control a browser and its Document Object Model. Server-
side JavaScript extends the core language by suppling objects relevant to running
JavaScript on a server.

3.2. DOCUMENT OBJECT 49

3.2 Document Object

The document object contains information about the current document, such as its
title, when it was last modified, and the color of the background.

The document methods interact with the document. The most commonly used
document method is

document.write("text");

and

document.writeln("text");

which writes text to the browers window. The document objects is itself a property
of the window object. JavaScript assumes that we mean the current window when
we use the syntax given above. Thus the write and writeln methods insert text
into the document. The two methods are identical, except that writeln appends a
new line character to the end of the string.

The command

document.bgColor = "red";

sets the background color to red. As an exmple of these two commands consider

<HTML>

<HEAD>

<TITLE> document.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

document.write("Hello Egoli");

document.write("\n");

str1 = "willi";

str2 = "hans";

document.write("<P> str1 = " + str1 + " str2 = " + str2);

document.bgColor = "red";

</SCRIPT>

</BODY>

</HTML>

50 CHAPTER 3. JAVASCRIPT

The concatention operator + concatenates two strings values together.

The following program shows that the prompt provides a string even if we enter
digits. Then + will do concatenation. Thus to obtain numbers we use the Number

object.

<HTML>

<SCRIPT>

n = prompt("enter n: ","");

m = prompt("enter m: ","");

x = n + m;

document.write("x = " + x,"
"); // concatenates strings n and m

u = Number(n);

v = Number(m);

r = u + v;

document.write("r = " + r,"
"); // addition of numbers

</SCRIPT>

</HTML>

3.3. WINDOW OBJECT 51

3.3 Window Object

The window object represents the contents of an entire browser window. The method
open() is a method to open a new window.

win = window.open("OpenMe.html");

fills it with the specified document. The user interface methods are special methods
of the window object. They all display a dialog box asking for user input. JavaScript
has three ready-made dialog boxes that we can use to interact with our visitors. All
three display a (fixed) title and a message, which we can set, and hold execution of
the script until the user responds. The dialog boxes are

alert(message) confirm(message) prompt(message,default)

The most important one is

alert("message");

We use this method whenever we wish to display a message. This message is diplayed
in a dialog box. The user reads the message and chooses OK to dismiss the dialog box.

The confirm(message) carries an OK and a Cancel button, and returns the value
true or false, depending upon which button was clicked. We apply it when we are
offering our visitor a simple Yes/No choice. We use confirm() in an if() test.

The dialog box prompt(message,default) carries a text box and OK and Cancel

buttons. It returns whatever text was entered. We use it to obtain information on
pages where we do not want to have a form.

<HTML>

<HEAD>

<TITLE> window.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

alert("System dialog boxes");

if(confirm("Do you want to do this?"))

alert("Let us begin")

else

alert("In any case we do it")

lnum = prompt("Enter your lucky number",""); // "" clears text box

</SCRIPT>

</BODY>

</HTML>

52 CHAPTER 3. JAVASCRIPT

3.4 Data Types

Data types must not be declared we just define them. JavaScript recognizes the
following types of values:

numbers, such as 18 or 2.81

logical (boolean) values, either true or false

strings such as willi. The String literal is zero or more characters enclosed in
double " or single ’ quotation marks.

null (null value). a special keyword denoting a null value. null is also a primitive
value. Since JavaScript is case sensitive, null is not the same as Null, NULL, or any
other variants. The null value behaves as 0 in numeric context and as false in
boolean context.

undefined, a top-level property whose value is undefined. undefined is also a prim-
itive value.

The assignment operator = assigns a value to its left operand based on the value of
its right operand. For example

i = 4;

x = 3.14159;

found = true;

nfound = false;

str = "xxxyyy";

c = ’X’;

Variables can also be declared using the keyword var. For example

var username;

var max = 500;

The first line creates the variable username, but without giving it a value; the sec-
ond creates max and assigns 500 to it.

The rules for variable names are the same as those for object names. Names must
start with a letter or underscore and may contain any combinations of letters and
digits. Spaces cannot be used.

3.4. DATA TYPES 53

<HTML>

<HEAD>

<TITLE> DataTypes.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

i = 4;

x = 3.14159;

c = ’X’;

found = true;

nfound = false;

str = "xy";

document.write("i = " + i,"
");

document.write("x = " + x,"
");

document.write("c = " + c,"
");

document.write("found = " + found,"
");

document.write("nfound = " + nfound,"
");

document.write("str = " + str,"
");

n = null;

document.write("n = " + n,"
"); // => null

div = n/4;

document.write("div = " + div,"
"); // => 0

r = "The answer is " + 60;

document.write("r = " + r,"
");

s = 60 + " is the answer";

document.write("s = " + s,"
");

myList = ["Berlin", , "London", "Singapore"];

document.write("myList[1] = " + myList[1],"
"); // => undefined

</SCRIPT>

</BODY>

</HTML>

54 CHAPTER 3. JAVASCRIPT

3.5 Special Characters

A string literal is zero or more characters enclosed in double " or single ’ quotation
marks. In addition to ordinary characters, we can also include special characters in
strings. The special characters are

Character Meaning

========= =========

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\’ apostrophe or single quote

\" double quote

\\ backslash character \

\XXX character with the Latin-1 encoding specified by up

three octal digits XXX between 0 and 377.

\251 is the octal sequence for the copyright symbol

\xXX character with the Latin-1 encoding specified by the

two hexadecimal digits XX between 00 and FF.

\xA9 is the hexadecimal sequence for the copyright

symbol.

===

The following program shows an application

<HTML>

<HEAD>

<TITLE> Special.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

str1 = "one line \n another line";

document.write("str1 = " + str1,"
"); // one line another line

s = "one line
 another line";

document.write("s = " + s,"
"); // s = one line

// another line

str2 = "a tab \t in a string";

document.write("str2 = " + str2,"
");

str3 = "She reads \"The Nonlinear Workbook\" by W.-H. Steeb"

3.5. SPECIAL CHARACTERS 55

document.write("str3 = " + str3,"
");

symbol1 = "\251"

document.write("symbol1 = " + symbol1,"
"); // @

symbol2 = "\xA9"

document.write("symbol2 = " + symbol2,"
"); // @

</SCRIPT>

</BODY>

</HTML>

56 CHAPTER 3. JAVASCRIPT

3.6 Arithmetic Operations

The arithmetic operations are

+ addition

- subtraction

* multiplication

/ division

% modulus (remainder)

++ increment operator

-- decrement operator

As in C, C++ and Java the operators ++ and -- have a preincrement (predecrement)
and postincrement (postdecrement) version. We notice that division is floating
point division. Thus 1/4 returns 0.25. JavaScript also has the shorthand opera-
tors x += y for x = x + y etc. The following program shows how the arithmetic
operators are used.

<HTML>

<HEAD>

<TITLE> JSArith.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

i = 7;

j = -3;

k = i + j;

document.write("
 k = " + k + "
");

m = i - j;

document.write("
 m = " + m + "
");

n = i*j;

document.write("
 n = " + n + "
");

p = i/j;

document.write("
 p = " + p + "
");

r = i%j;

document.write("
 r = " + r + "
");

i++;

document.write("
 i = " + i + "
");

j--;

document.write("
 j = " + j + "
");

</SCRIPT>

</BODY>

</HTML>

3.7. COMPARISON OPERATORS 57

3.7 Comparison Operators

A comparison operator compares its operands and returns a logical value based on
whether the comparision is true. The operands can be numerical or string values.
Strings are compared based on the standard lexicographical ordering (ASCII table).
The following table describes the comparision operators

Operator Name Description

======== ============ ==

== equal returns true if the operands are equal

!= not equal returns true if the operands are not equal

> greater than returns true if the left operand is

greater than the right operand

>= greater than returns true if the left operand is

or equal greater than or equal to the right operand

< less than returns true if the left operand is

less than the right operand

<= less than returns true if the left operand is

or equal less or equal to the right operand

===

<HTML>

<HEAD>

<TITLE> Comparison.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

result1 = (3 == 3);

document.write("result1 = " + result1,"
"); // => true

result2 = (3 != 3);

document.write("result2 = " + result2,"
"); // => false

result3 = (4 > 2);

document.write("result3 = " + result3,"
"); // => true

</SCRIPT>

</BODY>

</HTML>

58 CHAPTER 3. JAVASCRIPT

3.8 Bitwise Operators

Bitwise operators treat their operands as a set of 32 bits (zeros and ones). For
example the decimal number 14 has the binary representation

14 -> 00000000 00000000 00000000 000001110

The bitwise operators are the bitwise AND &, the bitwise OR |, the bitwise XOR ^,
and the bitwise NOT ~. Furthermore we have the left shift <<, the sign-propagating
right shift >> and the zero-fill right shift >>>.

<HTML>

<HEAD>

<TITLE> Bitwise.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

m = 9;

n = 16;

p1 = m & n; // AND

p2 = m | n; // OR

p3 = m ^ n; // XOR

p4 = ~m; // NOT

p5 = ++p4; // increment by 1

document.write("p1 =" + p1,"
"); // => 0

document.write("p2 =" + p2,"
"); // => 25

document.write("p3 =" + p3,"
"); // => 25

document.write("p4 =" + p4,"
"); // => -9

document.write("p5 =" + p5,"
"); // => -9

q1 = 31 >> 2;

document.write("q1 =" + q1,"
"); // => 7

q2 = 3 << 3;

document.write("q2 =" + q2,"
"); // => 24

q3 = -9 >> 2;

document.write("q3 = " + q3,"
"); // => -3

q4 = -9 >>> 2;

document.write("q4 = " + q4,"
"); // => 1073741821

</SCRIPT>

</BODY>

</HTML>

The following program shows how the bitwise operation & and the shift operations
are applied for the Russian farmer multiplication.

3.8. BITWISE OPERATORS 59

<HTML>

<SCRIPT>

x = prompt("Enter m: ","");

y = prompt("Enter n: ","");

m = Number(x);

n = Number(y);

if(m == 0) document.write("0","
");

if(n == 0) document.write("0","
");

if(m == 1) document.write(n,"
");

if(n == 1) document.write(m,"
");

temp = 0;

while(m != 0)

{

document.write(m,"
");

document.write(n,"
");

if((m & 1) == 1)

temp = n + temp;

document.write("temp:" + temp,"
");

m = m >> 1; n = n << 1;

}

document.write(temp);

</SCRIPT>

</HTML>

60 CHAPTER 3. JAVASCRIPT

3.9 Program Flow

JavaScript supports a compact set of statements we can use to control the program
flow. They are

conditional statements: if ... else and switch

loop statements: for, while, do ... while, label, break, continue. Note that
label is not itself a looping statement, but is frequently used with these statements.

There is no goto in JavaScript.

The if ... else, switch, for, while, do ... while conditions have the form as
in Java.

The logical operators

&& logical AND

|| logical OR

! logical NOT

also have the same form as in Java, C and C++. Furthermore the relational opera-
tors are

== equal to < less than <= less than or equal to

!= not equal to > greater than >= greater than equal to

An example is

if((i%3) == 0) { ... }

The for loop and while loop are the same as in Java. For example

...

for(n=1;n<10;n++)

{

x = i*n;

}

The break statement provides a way of escaping from for or while loops. For
example

for(count=0;count<5;count++)

{

answer = 4;

if(answer == (count*count))

break;

}

3.9. PROGRAM FLOW 61

The following program uses two for loops to generate a triangle of asterisks.

<HTML>

<COMMENT> asterisk.html </COMMENT>

<SCRIPT>

n = 9;

for(i=1;i<n;i++)

{

for(j=1;j<=i;j++)

{

document.write("*");

}

document.write("
");

}

</SCRIPT>

</HTML>

A switch statement allows a program to evaluate an expression and attempt to
match the expression’s value to a case label. If a match is found, the program exe-
cutes the associated statement.

<HTML>

<COMMENT> MSwitch.html </COMMENT>

<SCRIPT>

MArray = [3, 4, 1, 1, 4, -3, 1, 6];

for(j=0;j<MArray.length;j++)

{

switch(MArray[j])

{

case 1: document.write("number is 1","
")

break;

case 3: document.write("number is 3","
")

break;

default: document.write("number is not 1 or 3","
")

break;

}

}

</SCRIPT>

</HTML>

<HTML>

62 CHAPTER 3. JAVASCRIPT

<COMMENT> SSwitch.html </COMMENT>

<SCRIPT>

s = new String("bella");

for(j=0;j<s.length;j++)

{

c = s.charAt(j);

document.write("j = " + j, "
");

switch(c)

{

case ’a’: document.write("character is ’a’","
")

break;

case ’b’: document.write("character is ’b’","
")

break;

default: document.write("character is not ’a’ or ’b’","
")

break;

}

}

</SCRIPT>

</HTML>

The continue statement inside a for loop or while loop skips over any remaining
lines and loops round again.

3.9. PROGRAM FLOW 63

The following HTML file gives an example how the for loop and the while loop is
used.

<HTML>

<HEAD>

<TITLE> JSLoop.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

document.write("Hello Egoli");

for(i=1;i<=10;i++)

{

if((i%2) == 0)

{

document.write("<P>Loop: " + i + "</P>");

}

}

alert("We are leaving the first Script block");

</SCRIPT>

 Now we use a script again

<SCRIPT>

sum = 0;

count = 0;

while(count < 10)

{

sum += count;

count++;

}

document.write("
 sum = " + sum);

</SCRIPT>

 Again we enter script to set the background colour

<SCRIPT>

document.bgColor = "red";

</SCRIPT>

</BODY>

</HTML>

64 CHAPTER 3. JAVASCRIPT

JavaScript also has a for ... in statement. It uses it to manipulate objects. The
form is

for(varname in objname)

{ forbody }

The following program shows an example of the for ... in statement.

<HTML>

<TITLE> forin.html </TITLE>

<BODY>

<SCRIPT>

languages = ["C++", "Java", "C", "Lisp"];

var language = "C";

var label = 0;

for(var i in languages)

{

if(language == languages[i])

{

document.write("language in list on position: " + i,"
");

label = 1;

}

}

document.write("label = " + label,"
");

if(label == 0)

{ document.write("language not in list"); }

</SCRIPT>

</BODY>

</HTML>

3.9. PROGRAM FLOW 65

The purpose of the with statement in JavaScript is to permit a number of object
references to be made to the same object (or instance) without having to repeat the
name of that object. A with statement looks as follows

with(object)

{

statements

}

The following with statement specifies that the Math object is the default object.

<HTML>

<HEAD>

<TITLE> with.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

var a = 3.0;

var b = 7.0;

var result1;

var result2;

with(Math)

{

result1 = PI*a*b;

result2 = sin(a)*sin(a) + cos(b)*cos(b);

}

document.write("result1 = " + result1,"
");

document.write("result2 = " + result2,"
");

</SCRIPT>

</BODY>

</HTML>

66 CHAPTER 3. JAVASCRIPT

3.10 Recursion

Recursion plays a central role in computer science. A recursive function is one whose
definition includes a call to itself. More generally, a recursive method is a method
that calls itself either directly or indirectly through another method. A recursion
needs a stopping condition. JavaScript allows recursion.

The following program shows how to use recursion for the generatimg of the Fi-
bonacci numbers.

<HTML>

<COMMENT> recursion.html </COMMENT>

<SCRIPT>

x = prompt("Enter the position of the Fibonacci number","");

n = Number(x);

function fib(n)

{

if(n<=2) return 1;

else return (fib(n-1)+fib(n-2));

}

result = fib(n);

document.write("Fibonacci number is: " + result,"
");

</SCRIPT>

</HTML>

3.11. OTHER JAVASCRIPT CONSTRUCTS 67

3.11 Other JavaScript Constructs

The new operator creates a new copy of an object. We can use the new operator
to create an instance of a user-defined object type or one of the predefined object
types

Arrays, Boolean, Date, Functions, Image, Number, Object,

Option, RegExp, String

An example is

mystring = new String("xxyy");

now = new Date();

JavaScript also has the this pointer which refers to the current object. In general,
this refers to the calling object in a method. The syntax is

this

this.object

The object name helps to disambiguate what this means. The this keyword is
also often used to define a new property in a user-defined object. When combined
with the FORM property, this can refer to the current object’s parent form.

We use the var statement to explicitly declare a variable. We may also define a
value for the variable at the same time we declare it, but this is not necessary. The
var statement also sets the scope of a variable when a function is defined inside a
function. For example

var name1 = "value";

name1 = "value";

Used outside of a user-defined function, both of these do exactly the same. Both
create a global variable. A global variable can be accessed from any function in any
window or frame that is currently loaded. If we use var name1 inside a user-defined
function it is local in scope, we only can see it inside the function.

The void operator specifies an expression to be evaluated without returning a value.

The delete operator deletes an object, an object’s property, or an element at a
specified index in an array.

68 CHAPTER 3. JAVASCRIPT

3.12 Functions

JavaScript allows the use of functions indicated by the keyword function. The var

statement inside a function makes the variable local, i.e. it goes out of scope when
we leave the function.

The following HTML file show how functions are used within JavaScript. The
program opens a window where we see

Type something here

a textbox and a button called ClickMe. We enter some text in the textbox, for
example Egoli-Gauteng. Then we click at the Button ClickMe. The method alert

opens a dialog box and displays

The value of the textbox is: Egoli-Gauteng

Then click OK to close the dialog box.

<HTML>

<COMMENT> MyForm.html </COMMENT>

<BODY>

<SCRIPT LANGUAGE="JavaScript">

function testMe(form)

{

Ret = form.box.value;

alert("The value of the textbox is: " + Ret);

}

</SCRIPT>

<FORM>

Type something here <INPUT TYPE="text" NAME="box"><P>

<INPUT TYPE="button" NAME="button" VALUE="ClickMe"

onClick = "testMe(this.form)">

</FORM>

</BODY>

</HTML>

3.12. FUNCTIONS 69

In the following example we show the use of two functions. The HTML commands
to display a table of the square roots of the integers from 1 to 20 are embedded in
the JavaScript code.

<HTML>

<COMMENT> Function.html </COMMENT>

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

function sqrttable(myWindow)

{

myWindow.document.write(" Square Root Table
");

myWindow.document.write("<HR>");

myWindow.document.write("<TABLE BORDER=1 CELLSPACING=5>");

myWindow.document.write("<TR><TD>Number</TD><TD>Squareroot</TD></TR>");

for(var i=1;i<=20;i++)

{

myWindow.document.write("<TR><TD>" + i + "</TD><TD>" + Math.sqrt(i) +

"</TD></TR>");

}

myWindow.document.write("</TABLE>");

myWindow.document.write("<HR>");

}

function display()

{

var dynWindow = window.open("","Title","width=200,height=300,scrollbars",

+ "resizable");

sqrttable(dynWindow);

}

</SCRIPT>

</HEAD>

<BODY>

<FORM name="Show it">

<input type=button value="show table" onClick="display()">

</FORM>

</BODY>

</HTML>

70 CHAPTER 3. JAVASCRIPT

3.13 Creating New Objects

Using a constructor function we can create an object with the following two steps

1. Define the object type by writing a constructor function

2. Create an instance of the object with new

To define an object, create a function for the object type that specifies its name,
properties, and methods. The following HTML file gives an example.

<HTML>

<COMMENT> car.html </COMMENT>

<BODY>

<SCRIPT>

function car(make,model,year)

{

this.make = make

this.model = model

this.year = year

}

mycar = new car("BMW","Z3",2000)

yourcar = new car("Volkswagen","Beetle",1999)

hiscar = new car("Audi","A6",2000)

document.write("<P> mycar = " + mycar.model)

document.write("<P> yourcar = " + yourcar.year)

document.write("<P> hiscar = " + hiscar.make)

</SCRIPT>

</BODY>

</HTML>

3.14. PREDEFINED CORE OBJECTS 71

3.14 Predefined Core Objects

JavaScript provides the predefined core objects

Array, Boolean, String, Math, Number

In the following programs we show how the predefined objects are used.

An array is an ordered set of values that we refer to with a name and an index. The
Array object has methods for manipulating arrays in various ways, such as joining,
reversing, and sorting them. It has a property for determing the array length and
other properties.

An array can be created as follows:

arrayObjectName = new Array(element0,element1,...,elementN)

or

arrayObjectName = new Array(arrayLength)

Array literals are also Array objects. For example the following literal is an Array

object

cities = ["London", "Paris", "Berlin"]

The first program shows how the predefined core object Array is used.

72 CHAPTER 3. JAVASCRIPT

<HTML>

<HEAD>

<TITLE> Array.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

myArray = new Array("C++", "Lisp", "Java");

document.write(myArray.join(),"
");

document.write(myArray.reverse(),"
");

yourArray = new Array(3);

yourArray = myArray.sort();

document.write("yourArray = " + yourArray,"
");

newArray = new Array("Assembler", "VHDL");

concatArray = new Array(5);

concatArray = myArray.concat(newArray);

document.write("concatArray = " + concatArray,"

");

x = new Array(2);

x[0] = 2;

x[1] = 5;

result = x[0]*x[1];

document.write(result,"

"); // => 10

document.write("length = " + x.length,"

"); // => 2

a = new Array(4)

for(i=0;i<4;i++)

{

a[i] = new Array(4)

for(j=0;j<4;j++)

{

a[i][j] = "["+i+","+j+"]"

}

}

for(i=0;i<4;i++)

{

str = "Row "+i+": "

for(j=0;j<4;j++)

{

3.14. PREDEFINED CORE OBJECTS 73

str += a[i][j];

}

document.write(str,"<P>")

}

</SCRIPT>

</BODY>

</HTML>

The Boolean object is a wrapper around the primitive Boolean data type.

<HTML>

<HEAD>

<TITLE> Boolean.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

r = Math.random();

if(r < 0.5)

{

b = new Boolean(true);

}

else

{

b = new Boolean(false);

}

document.write("b = " + b,"
");

</SCRIPT>

</BODY>

</HTML>

74 CHAPTER 3. JAVASCRIPT

The String object is a wrapper around the string primitive data type. We should
not confuse a string literal with the String object. For example

s1 = "egoli"; // creates a string literal value

s2 = new String("egoli"); // creates a String object

We can call any of the methods of the String object on a string literal value.
JavaScript automatically converts the string literal to a temporary String object,
calls the method, and then discards the temporary String object.

The following program shows an application of several methods of the String object.

<HTML>

<HEAD>

<TITLE> String.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

mystring = new String("Hello Egoli");

lgth = mystring.length;

document.write("lgth = " + lgth,"

"); // => 11

ch = mystring.charAt(3);

document.write("ch = " + ch,"

"); // => l

chcode = mystring.charCodeAt(3);

document.write("chcode = " + chcode,"

"); // => 108

sub = mystring.substring(2,6);

document.write("sub = " + sub,"

"); // => llo

lower = mystring.toLowerCase();

document.write("lower = " + lower,"

"); // => hello egoli

yourstring = new String("willi-hans");

upper = yourstring.toUpperCase();

document.write("upper = " + upper,"

"); // => WILLI-HANS

string1 = new String("carl-");

string2 = new String("otto");

string3 = string1.concat(string2);

document.write("string3 = " + string3,"

"); // => carl-otto

3.14. PREDEFINED CORE OBJECTS 75

str = new String("12 34 45");

myarray = new Array(3);

myarray = str.split(" ");

document.write("myarray[0] = " + myarray[0],"
"); // => 12

document.write("myarray[1] = " + myarray[1],"
"); // => 34

document.write("myarray[2] = " + myarray[2],"
"); // => 45

</SCRIPT>

</BODY>

</HTML>

The top-level predefined function eval evaluates a string of JavaScript code without
reference to a particular object. The syntax is

eval(expr)

where expr is a string to be evaluated.

<HTML>

<HEAD>

<TITLE> Eval.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

s1 = "3 + 3";

s2 = new String("3 + 3");

document.write("result1 = " + eval(s1),"
"); // => 6

document.write("result2 = " + eval(s2),"
"); // => 3 + 3

</SCRIPT>

</BODY>

</HTML>

76 CHAPTER 3. JAVASCRIPT

The predefined Math object has properties for mathematical constants and functions.
Standard mathematical functions are methods of Math. For example

abs, sin, cos, tan, acos, asin, atan, exp, log

ceil, floor, min, max, pow, round, sqrt

An application is as follows:

<HTML>

<HEAD>

<TITLE> Math.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

document.write(Math.sin(1.14159),"
");

document.write(Math.sin(Math.PI),"

");

r = 2.0; theta = 1.0;

with(Math)

{

a = PI*r*r;

y = r*sin(theta)

x = r*cos(theta)

}

document.write("a = " + a,"
");

document.write("y = " + y,"
");

document.write("x = " + x,"
");

z = Math.random();

document.write("z = " + z,"
");

r1 = Math.max(3,4,2,7,1);

document.write("r1 = " + r1,"
"); // 7

r2 = Math.min(3,1,10,20,2,3,9);

document.write("r2 = " + r2,"
"); // 1

</SCRIPT>

</BODY>

</HTML>

3.14. PREDEFINED CORE OBJECTS 77

The Number object has properties for numerical constants, such as maximum value,
not-a-number (NaN), and infinity. We cannot change the values of these constants.

<HTML>

<HEAD>

<TITLE> Number.html </TITLE>

</HEAD>

<BODY>

<SCRIPT>

biggestNum = Number.MAX_VALUE;

document.write("biggestNum =" + biggestNum,"
");

smallestNum = Number.MIN_VALUE;

document.write("smallestNum = " + smallestNum,"
");

diff = biggestNum - smallestNum;

document.write("diff = " + diff,"
");

infiniteNum = Number.POSITIVE_INFINITY;

document.write("infiniteNum = " + infiniteNum,"
");

negInfiniteNum = Number.NEGATIVE_INFINITY;

document.write("negInfiniteNum = " + negInfiniteNum,"
");

notANum = Number.NaN;

document.write("notANum = " + notANum,"
");

</SCRIPT>

</BODY>

</HTML>

78 CHAPTER 3. JAVASCRIPT

3.15 Object object

JavaScript supports a generic Object() object, which we can use to make new
objects. The following two programs show how to create and use one-dimensional
arrays using the Object object. In the first program we enter the colour and click
the Find button. The hextriplet is displayed. In the second program we enter the
name of the customer and click the Find button. This provides us with the complete
information about the customer. The method

String toLowerCase()

converts a string to all lowercase.

<HTML>

<HEAD>

<TITLE> DataBase.html </TITLE>

</HEAD>

<BODY>

<SCRIPT LANGUAGE="JavaScript">

Colour = new Object()

Colour[0]=10

Colour[1]="aliceblue"

Colour[2]="antiquewhite"

Colour[3]="aqua"

Colour[4]="aquamarine"

Colour[5]="azure"

Colour[6]="beige"

Colour[7]="bisque"

Colour[8]="black"

Colour[9]="blanchedalmond"

Colour[10]="blue"

Data = new Object()

Data[1]="f0f8ff"

Data[2]="faebd7"

Data[3]="00ffff"

Data[4]="7fffd4"

Data[5]="f0ffff"

Data[6]="f5f5dc"

Data[7]="ffe4c4"

Data[8]="000000"

Data[9]="ffebcd"

Data[10]="0000ff"

3.15. OBJECT OBJECT 79

function checkDatabase()

{

var Found = false;

var Item = document.testform.color.value.toLowerCase();

Count = 1;

while(Count <= Colour[0])

{

if(Item == Colour[Count])

{

Found = true;

alert("The hex triplet for ’" + Item + "’ is #" + Data[Count]);

break;

}

Count++;

} // end while

if(!Found)

alert("The color ’" + Item +"’ is not listed in the database");

}

</SCRIPT>

<FORM NAME="testform" onSubmit="checkDatabase()">

Specify a color name, then click the

"Find" button to see its hex triplet:

<INPUT TYPE="text" NAME="color" VALUE="" onClick=0> <P>

<INPUT TYPE="button" NAME="button" VALUE="Find"

onClick="checkDatabase()">

</FORM>

</BODY>

</HTML>

80 CHAPTER 3. JAVASCRIPT

<HTML>

<HEAD>

<TITLE> DataBase2.html </TITLE>

</HEAD>

<SCRIPT LANGUAGE="JavaScript">

Names = new Object()

Names[0]=6

Names[1]="cooper"

Names[2]="smith"

Names[3]="jones"

Names[4]="michaels"

Names[5]="avery"

Names[6]="baldwin"

Data = new Object()

Data[1]="Olli|Cooper|44 Porto Street|666-000"

Data[2]="John|Smith|123 Main Street|555-1111"

Data[3]="Fred|Jones|PO Box 5|555-2222"

Data[4]="Gabby|Michaels|555 Maplewood|555-3333"

Data[5]="Alice|Avery|1006 Pike Place|555-4444"

Data[6]="Steven|Baldwin|5 Covey Ave|555=5555"

function checkDatabase()

{

var Found = false; // local variable

var Item = document.testform.customer.value.toLowerCase();

for(Count=1;Count<=Names[0];Count++)

{

if(Item == Names[Count])

{

Found = true;

var Ret = parser(Data[Count], "|");

var Temp = "";

for(i=1;i<=Ret[0];i++)

{

Temp += Ret[i] + "\n";

}

alert(Temp);

break;

}

}

if(!Found)

alert("Sorry, the name ’" + Item +"’ is not listed in the database.")

3.15. OBJECT OBJECT 81

} // end function checkDatabase()

function parser(InString,Sep)

{

NumSeps=1;

for(Count=1;Count<InString.length;Count++)

{

if(InString.charAt(Count)==Sep)

NumSeps++;

}

parse = new Object();

Start=0; Count=1; ParseMark=0;

LoopCtrl=1;

while(LoopCtrl==1)

{

ParseMark = InString.indexOf(Sep,ParseMark);

TestMark = ParseMark+0;

if((TestMark==0) || (TestMark==-1))

{

parse[Count]= InString.substring(Start,InString.length);

LoopCtrl=0;

break;

}

parse[Count] = InString.substring(Start,ParseMark);

Start=ParseMark+1;

ParseMark=Start;

Count++;

}

parse[0]=Count;

return (parse);

} // end function parser()

</SCRIPT>

<FORM NAME="testform" onSubmit="checkDatabase()">

Enter the customer’s name, then click the "Find" button:

<INPUT TYPE="text" NAME="customer" VALUE="" onClick=0> <P>

<INPUT TYPE="button" NAME="button" VALUE="Find"

onClick="checkDatabase()">

</FORM>

</BODY>

</HTML>

82 CHAPTER 3. JAVASCRIPT

3.16 Date Object

The Date object is used to work with dates and times. We create an instance of the
Date object with the new keyword. To store the current date in a variable called
my_date:

my_date = new Date()

After creating an instance of the Date object, we can access all the methods of the
object from the my_date variable. We have to keep in mind that the method

getMonth()

returns the month of a Date object from 0-11, where 0=January, 1=February, etc.

The following program shows an example.

<HTML>

<HEAD> </HEAD>

<!-- File name: Today.html -->

<BODY>

<SCRIPT LANGUAGE="JavaScript">

document.write("<CENTER><H2> Today is </H2>
");

var date = new Date();

var dd = date.getDate();

var mm = date.getMonth() + 1;

var yy = date.getYear();

if(dd < 10) dd = "0" + dd;

if(mm < 10) mm = "0" + mm;

if(yy < 10) yy = "0" + yy;

document.write("" + dd + "." + mm + "." + yy + "");

document.write("</CENTER>");

</SCRIPT>

</BODY>

</HTML>

3.16. DATE OBJECT 83

In the second program we test whether the present time is am or pm.

<HTML>

<HEAD>

<TITLE> clockset.html </TITLE>

</HEAD>

<SCRIPT LANGUAGE="JavaScript">

function setClock()

{

now = new Date();

var CurHour = now.getHours();

var CurMinute = now.getMinutes();

now = null;

if(CurHour >= 12)

{

CurHour = CurHour - 12;

Ampm = "pm";

}

else

Ampm = "am";

if(CurHour == 0)

CurHour = "12";

if(CurMinute < 10)

CurMinute = "0" + CurMinute

else

CurMinute = "" + CurMinute

CurHour = "" + CurHour;

Time = CurHour + ":" + CurMinute + Ampm

document.clocktext.clock.value = Time;

setTimeout("setClock()",1000*30)

}

</SCRIPT>

</HEAD>

<BODY onLoad = "setClock()">

<FORM NAME = "clocktext">

<INPUT TYPE="text" NAME="clock" VALUE="" SIZE=8>

</FORM>

</BODY>

</HTML>

84 CHAPTER 3. JAVASCRIPT

3.17 Regular Expression

Regular expressions are patterns used to match character combinations in strings.
In JavaScript, regular expressions are also objects. These patterns are used with
the exec and test methods of RegExp, and the match, replace, search and split

methods of String. We can construct regular expression either using the constructor
function of the RegExp object, for example

re = new RegExp("abc+de")

or using an object initializer, for example

re = /abc+de/

Using the constructor function provides runtime compilation of the regular expres-
sion. Regular expression have two optional flags that allow for global and case
insensitive searching. To indicate a global search we use the g flag. To indicate
a case insensitive search we use the i flag. These flags can be used separatly or
together in either order, and are included as part of the regular expression.

The methods that use regular expressions are:

exec A RegExp methods that executes a search for a match in a string.

It returns an array of information.

test A RegExp method that tests for a match in a string.

It returns true or false.

match A String method that executes a search for a match in a string.

It returns an array of information or null on a mismatch.

search A String method that tests for a match in a string.

It returns the index of the match, or -1 if the search fails.

replace A String method that executes a search for a match in a string,

and replaces the matched substring with the replacement

substring.

split A String method that uses a regular expression or a fixed

string to break a string into an array of substrings.

Pattern matching in JavaScript and Perl is closely related.

3.17. REGULAR EXPRESSION 85

There are a large number of special characters in regular expressions. In the follow-
ing we list some of them.

The backslash \ indicates that the next character is special and not to be interpreted
literally. For example, /b/ matches the character b. However /\b/ means match a
word boundary.

The character ^ indicates matches at the beginning of input or line. For example,
/^X/ does not match the X in "in X" but does match it in "Xenia".

The character $ indicates matches at end of input or line. For example, t$ does not
match the t in "otto", but does match it in "art".

Using the asterisk * we can test whether the preceding characters matches 0 or more
times.

The + indicates matches of the preceding characters 1 or more times.

Using ? we can find the matches of the preceding characters 0 or 1 time. For exam-
ple, /el?le?/ matches the "el" in "angel" and "le" in "angle".

The command (x) matches "x" and remembers the match. Thus including paren-
theses in a regular expression pattern causes the corresponding submatch to be
remembered. For example, /x(y)x/ matches the string "xyx" and remembers y.

The commmand x | y matches either x or y.

Let n be a positive integer. Then {n} matches exactly n occurrences of the preceding
character.

[xyz] is a character set. It matches any one of the enclosed characters. We can
specify a range of characters by using a hyphen. For example, [abcd] is the same
as [a-d]. The expression [^xyz] is a negated or complemented character set. It
matches anything that is not included in the brackets. Again we can specify a range
of characters by using a hyphen.

The command [\b] matches a backspace and \b matches a word boundary such
as space. The command \d matches a digit character. This is equivalent to [0-9].
With the command \D we match any non-digit character. This is equivalent to
[^0-9]. The command \f matches a form-feed, \n a line-feed, \r a carriage return,
\t a tab.

With \w we can match any alphanumeric character including underscore. It is
equivalent to [A-Za-z0-9_].

86 CHAPTER 3. JAVASCRIPT

<HTML>

<COMMENT> RegExp.html </COMMENT>

<BODY>

<SCRIPT>

re0 = /xyx/

result0 = re0.exec("czxyyyxer")

document.writeln(result0)

// => null

re1 = /xyx/

result1 = re1.exec("czxyxer")

document.writeln(result1)

// => xyx

re2 = /^X/

result2 = re2.exec("Xylon")

document.writeln(result2)

// => X

re3 = /^X/

result3 = re3.exec("ylonX")

document.writeln(result3)

// => null

re4 = /t$/

result4 = re4.exec("art")

document.writeln(result4)

// => t

re5 = /t$/

result5 = re5.exec("otto")

document.writeln(result5)

// => null

re6 = /le?/

result6 = re6.exec("angle")

document.writeln(result6)

// => le

re7 = new RegExp("a+")

result7 = re7.exec("Cbaabbaxc")

document.writeln(result7)

// => aa

3.17. REGULAR EXPRESSION 87

re8 = /xy+x/

result8 = re8.exec("czxyyyxer")

document.writeln(result8)

// => xyyyx

re9 = /x(y+)x/

result9 = re9.exec("czxyyyxer")

document.writeln(result9)

// => xyyyx, yyy

re10 = /xx aa$\n/

result10 = re10.test("yybb ++")

document.writeln(result10)

// => false

// \w matches any alphanumeric characters

// \s matches a single character other than white space

re11 = /(\w+)\s(\w+)/

str1 = "willi hans"

result11 = str1.replace(re11,"$2,$1")

document.writeln(result11)

// hans willi

re12 = new RegExp("[a-z]")

result12 = re12.exec("12345ac")

document.writeln(result12)

// => a

</SCRIPT>

</BODY>

</HTML>

88 CHAPTER 3. JAVASCRIPT

3.18 Prompts

The prompt is a special method of the window object. It displays a dialog box with
a single-text box and Cancel and OK buttons

prompt(message,defaultText)

The word prompt tells JavaScript that a dialog box will appear on the screen. The
word message is the text that is displayed in the prompt box. Lastly, the word
defaultText is the text displayed in the text box.

<HTML>

<HEAD>

<COMMENT> prompt.html </COMMENT>

</HEAD>

<BODY bgcolor=yellow text=black>

<SCRIPT LANGUAGE="JavaScript">

var i;

var j;

var k;

i = 1;

j = 1;

document.write("<H4>");

var m = prompt("enter the number of Fibonacci numbers:",0);

document.write(i + "
");

document.write(j + "
");

k = i + j;

document.write(k + "
");

for(var n=3;n<=m-1;n++)

{

i = j;

j = k;

k = i + j;

document.write(k + "
");

}

</SCRIPT>

</BODY>

</HTML>

3.19. EVENTS 89

3.19 Events

JavaScript programs are typically event-driven. Events are actions that occur on
the Web page, usually of something the user does. Examples are: a button click is
an event, giving focus to a form element, resizing the page, submitting a form.

An event, then, is the action which triggers an event handler. The event handler
specifies which JavaScript code to execute. Often, event handlers are placed within
the HTML tag which creates the object on which the event acts. For example, a
hyperlink is subject to a mouseover event, meaning that its event handler will be
triggered when a mouse passes over the link. The JavaScript which is called by the
event handler may be any valid JavaScript code: a single statement or a series of
statements, although most often it is a function call.

The set of all events which may occur, and the particular page elements on which
they can occur, is part of the Document Object Model (DOM), and not of JavaScript
itself. Thus, Netscape and Microsoft do not share the exact same set of events, nor
are all page elements subject to the same events between browsers.

The table below displays some of the most commonly used events supported in both
DOM’s.

Event Occurs when ... Event Handler

========== =========================== =============

click User clicks on form or link onclick

change User changes value of text, onchange

textarea, or select element

focus User gives form element onfocus

input focus

blur User removes input focus onblur

from form element

mouseover User moves mouse pointer onmouseover

over a link or anchor

mouseout User moves mouse pointer onmouseout

off of link or anchor

select User selects form element’s onselect

input field

submit User submits a form onsubmit

resize User resizes the browser onresize

window

load User loads the page in the onload

Navigator

unload User exits the page onunload

==

90 CHAPTER 3. JAVASCRIPT

The following program shows an example.

<HTML>

<COMMENT> Event1.html </COMMENT>

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

window.onresize = message;

function message()

{

alert("The window has been resized!");

}

</SCRIPT>

</HEAD>

<BODY>

Please resize the window.

</BODY>

</HTML>

3.19. EVENTS 91

In the following example we demonstrate the onBlur event and can see how it is
possible to force a user to enter valid information into a form. The user is forced to
enter a number from 0 to 9.

<HTML>

<COMMENT> onblur.html </COMMENT>

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

function isDigit(c)

{

return ((c >= "0") && (c <= "9"))

}

function checkValue(field)

{

if(!isDigit(field.value))

{

alert("You must enter a digit from 0 to 9.");

field.focus();

}

if((field.value.length < 0) || (parseInt(field.value) >= 10))

{

alert("You did not enter a digit from 0 to 9");

field.focus();

}

}

</SCRIPT>

<FORM>

Please enter a number from 0 to 9:

<INPUT TYPE=TEXT NAME="number" SIZE=3 onBlur="checkValue(this);">

Please enter your name:

<INPUT TYPE=TEXT NAME="name" SIZE=25>

</FORM>

</BODY>

</HTML>

92 CHAPTER 3. JAVASCRIPT

The following example demonstrates the onChange event. We built a pulldown menu
that allows users to jump to different websites or URLs.

<HTML>

<COMMENT> onchange.html </COMMENT>

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

function jumpTo(URL_List)

{

var URL = URL_List.options[URL_List.selectedIndex].value;

window.location.href = URL;

}

</SCRIPT>

<FORM>

<SELECT NAME="site" onChange="jumpTo(this);">

<OPTION VALUE="http://www.fhso.ch/~steeb"> Applied University Solothurn

<OPTION VALUE="http://issc.rau.ac.za"> ISSC

</SELECT>

</FORM>

</BODY>

</HTML>

3.19. EVENTS 93

The following example demonstrates the onClick event.

<HTML>

<COMMENT> onclick.html </COMMENT>

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

function informuser()

{

alert("I told you not to press that button");

}

</SCRIPT>

<FORM>

<INPUT TYPE=button NAME="button" VALUE="Do not press this button"

onClick="informuser();">

</FORM>

</BODY>

</HTML>

94 CHAPTER 3. JAVASCRIPT

The following example demonstrates the onFocus event.

<HTML>

<COMMENT> onfocus.html </COMMENT>

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

var alreadyWarned = false;

function displayHelp()

{

if(!alreadyWarned)

{

alert("Enter your phone number in (xx) xxx-xxxx format");

alreadyWarned = true;

}

}

</SCRIPT>

<FORM>

<INPUT TYPE=text NAME="phonenumber" SIZE=15

onFocus = "displayHelp();">

</FORM>

</BODY>

</HTML>

3.20. JAVA APPLETS AND JAVASCRIPT 95

3.20 Java Applets and JavaScript

JavaScript can be used to control the behaviour of a Java applet without knowing
much about the design of the applet. All public variables, methods, and proper-
ties are available for JavaScript access. Each applet in a document is reflected in
JavaScript as

document.appletName

where appletName is the value of the NAME attribute of the <APPLET> tag.

The following Java program Welcome.java and the HTML program Welcome.html

show an application. We define a

public void setString(String s)

method that accepts a string argument, assigns it to myString, and calls the
repaint() method. The file Welcome.java is given by

// Welcome.java

import java.applet.Applet;

import java.awt.Graphics;

public class Welcome extends Applet

{

String myString;

public void init()

{

myString = new String("Welcome to ISSC")

}

public void paint(Graphics g)

{

g.drawString(myString,25,25);

}

public void setString(String s)

{

myString = s;

repaint();

}

}

96 CHAPTER 3. JAVASCRIPT

The HTML file is given by

<HTML>

<COMMENT> Welcome.html </COMMENT>

<BODY>

<APPLET CODE="Welcome.class" NAME="Welcome" WIDTH=275 HEIGHT=135>

</APPLET>

<SCRIPT>

function insert()

{

document.Welcome.setString(document.myform.str.value)

}

</SCRIPT>

<FORM NAME="myform">

<INPUT TYPE="button" VALUE="SET STRING" onClick="insert()">

<INPUT TYPE="text" SIZE="20" NAME="str">

</FORM>

</BODY>

</HTML>

3.21. JAVASCRIPT AND XML 97

3.21 JavaScript and XML

The Document Object Model (DOM) is the model that describes how all elements
in the HTML page, like input fields, images, paragraphcs etc., are related to the
topmost structure: the document itself. By calling the elements by its proper DOM
name, we can influence it. The Level 1 DOM Recommendation has been developed
by the W3C to provide any programming language with access to each part of an
XML document. Thus we can use JavaScript to parse an XML document. Notice
that DOM is based on a tree structure. Our XML file describes a polynomial. Our
polynomial consists of two terms, namely

p(x, y) = 2x3y2 − 4y5 .

<?xml version="1.0"?>

<!-- poly.xml -->

<polynomial>

<term>

<factor> 2 </factor>

<variable>

<name> x </name>

<exponent> 3 </exponent>

</variable>

<variable>

<name> y </name>

<exponent> 2 </exponent>

</variable>

</term>

<term>

<factor> -4 </factor>

<variable>

<name> x </name>

<exponent> 0 </exponent>

</variable>

<variable>

<name> y </name>

<exponent> 5 </exponent>

</variable>

</term>

</polynomial>

98 CHAPTER 3. JAVASCRIPT

Knowing the exact structure of the DOM tree, we can walk through it in search of
the element we want to find using the commands

parentNode, childNodes[0], childNodes[1], ... , firstChild, lastChild

The following HTML-file with the embedded JavaScript code finds elements in the
tree structure of the polynomial.

<!-- polynomials -->

<HTML>

<HEAD>

<SCRIPT LANGUAGE="JavaScript" FOR="window" EVENT="ONLOAD">

Document = polynom.XMLDocument;

factor1.innerText=

Document.documentElement.firstChild.firstChild.text;

name1.innerText=

Document.documentElement.firstChild.childNodes[1].firstChild.text;

factor2.innerText=

Document.documentElement.lastChild.firstChild.text;

</SCRIPT>

</HEAD>

<BODY>

<xml id="polynom" src="file://c:\books\java\poly.xml"></xml>

Factor 1:

Name 1:

Factor 2:

</BODY>

</HTML>

The output is:

Factor 1: 2

Name 1: x

Factor 2: -4

3.22 Loading a js-file

Given a js file, for example the file asterik.js

3.22. LOADING A JS-FILE 99

n = 9;

for(i=1;i<n;i++)

{

for(j=1;j<=i;j++)

{

document.write("*");

}

document.write("
");

}

The file is loaded in a HTML file as follows

<HTML>

<SCRIPT type="text/javascript">

function staticLoad(url)

{

document.write(’<script src="’,url,

’"type="text/JavaScript"><\/script>’);

}

staticLoad("asterisk.js");

</SCRIPT>

</HTML>

In the following two programs display.html and display.js we display the time
with the time interval of 1000ms (1 second).

<HTML>

<!-- display.js -->

<SCRIPT src="display.js">

</SCRIPT>

<BODY onload="show_time(); window.setInterval(show_time,1000);">

</BODY>

</HTML>

The display.js file is

function show_time()

{

document.open();

100 CHAPTER 3. JAVASCRIPT

document.write(

"<HTML> \n" +

" \n" +

"<SCRIPT src=\"display.js\"> \n" +

"<\/SCRIPT> \n" +

" \n" +

"<BODY onload=\"window.setInterval(show_time,1000);\"> \n" +

" \n" +

" Date: <\/B>
" + Date() + "

 \n" +

" \n" +

"<FORM> \n" +

"<\/FORM> \n" +

" \n" +

"<\/BODY> \n" +

"<\/HTML>");

document.close(); // force render

}

Chapter 4

Resources and Web Sites

There are a large number of web sites which provide information, news and tutorials
of Java, HTML and JavaScript. Furthermore there are web sites to download new
versions of Java, HTML and JavaScript.

The main web sites of SUN Microsystems for Java are

http://java.sun.com/

http://java.sun.com/jdc/

http://developer.java.sun.com/

Another useful web site for Java, HTML and JavaScript is “The Web Developer’s
Virtual Library”

http://wdvl.com/WDVL/About.html

The WDVL has more than 2000 pages and some 6000 links.

The web site

http://www.niu.edu/acad/english/htmlref.html

provides an HTML reference guide. The web site

http://developer.netscape.com/docs/

provides links to technical manuals and articles for Java, JavaScript and HTML.

The offical word on the latest standard in HTML can be found on the web site

http://www.w3.org/pub/WWW/MarkUp/MarkUp.html

101

102 CHAPTER 4. RESOURCES AND WEB SITES

Information about XML can be found on the web sites

http://www.w3.org/XML/

http://www.w3schools.com/

Bibliography

[1] Horton Ivor, Beginning Java 2, WROX Press, Birmingham, UK, 1999

[2] Jaworski Jamie, Java 1.2 Unleashed, SAMS NET, Macmillan Computer Pub-
lishing, USA, 1998

[3] Johnson Marc, JavaScript Manual of Style, Macmillan Computer Publishing,
USA, 1996

[4] McComb Gordon, JavaScript Sourcebook, Wiley Computer Publishing, New
York, 1996

[5] Willi-Hans Steeb, The Nonlinear Workbook: Chaos, Fractals, Cellular Au-
tomata, Neural Networks, Genetic Algorithms, Fuzzy Logic with C++, Java,
SymbolicC++ and Reduce Programs, World Scientific, Singapore, 1999

[6] Tan Kiat Shi, Willi-Hans Steeb and Yorick Hardy, SymbolicC++: An Intro-
duction to Computer Algebra Using Object-Oriented Programming, 2nd edition
Springer-Verlag, London, 2000

103

Index

alert, 51
document, 49
function, 68
prompt, 88
var, 68

Alphanumeric characters, 10

Data islands, 26
DOM, 89

Extensible Stylesheet Language, 38

GET, 9

HTML, 1

JavaScript, 47

POST, 9

Rational operators, 60
Recursion, 66
Regular expression, 84
Russian farmer multiplication, 58

Schema, 32

Table, 17
Tags, 3

104

