Problems of the Month: October 2015

International School for Scientific Computing Mathematical Physics and Scientific Computing

Problem 1. Let b^{\dagger} , b be Bose creation and annihilation operators, respectively, with $[b, b^{\dagger}] = I$ (I identity operator). Find the Lie algebra generated by

$$b^{\dagger}b, \quad \sqrt{b^{\dagger}b}, \quad b^{\dagger}+b.$$

Problem 2. The $n \times n$ primary permutation matrix P is given by

$$P = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

The eigenvalues of P are given by $\lambda^0 = 1, \lambda^1, \lambda^2, \ldots, \lambda^{n-1}$ with $\lambda := \exp(2\pi i/n)$. The spectral decomposition of U is

$$P = \sum_{j=0}^{n-1} \lambda^j \Pi_j.$$

The projection matrix Π_j can be expressed using P^k . Find the skew-hermitian matrix K such that $P = \exp(K)$. Then study P^2 , P^3 etc.

Problem 3. The logistic map $x_{t+1} = 4x_t(1 - x_t)$ with $x_0 \in [0, 1]$ and t = 0, 1, ... is the most studied map with chaotic behaviour. Consider the three coupled logistic maps

$$x_{1,t+1} = 4x_{2,t}(1 - x_{2,t}), \quad x_{2,t+1} = 4x_{3,t}(1 - x_{3,t}), \quad x_{3,t+1} = 4x_{1,t}(1 - x_{1,t})$$

where t = 0, 1, ... and $x_{1,0}, x_{2,0}, x_{3,0} \in [0, 1]$. First find the fixed points and study their stability. Can one find hyperchaotic behaviour? Is the system ergodic? Is the system mixing?

Problem 4. Consider the circle around (0, 0, 0) in the $x_1 - x_2$ plane

$$\mathbf{r}_{1}(t) = \begin{pmatrix} x_{1,1}(t) \\ x_{1,2}(t) \\ x_{1,3}(t) \end{pmatrix} = \begin{pmatrix} \cos(t) \\ \sin(t) \\ 0 \end{pmatrix}, \quad t \in [0, 2\pi]$$

and the circle around (0, 1, 0) in the $x_2 - x_3$ plane

$$\mathbf{r}_{2}(s) = \begin{pmatrix} x_{2,1}(s) \\ x_{2,2}(s) \\ x_{2,3}(s) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 + \cos(s) \\ \sin(s) \end{pmatrix}, \quad s \in [0, 2\pi].$$

Then the derivatives are

$$\frac{d\mathbf{r}_1(t)}{dt} = \begin{pmatrix} -\sin(t)\\ \cos(t)\\ 0 \end{pmatrix}, \qquad \frac{d\mathbf{r}_2(s)}{ds} = \begin{pmatrix} 0\\ -\sin(s)\\ \cos(s) \end{pmatrix}.$$

Calculate (Gauss formula)

$$\frac{1}{4\pi} \oint \oint dt ds \left(\frac{d\mathbf{r}_1(t)}{dt} \times \frac{d\mathbf{r}_2(s)}{ds} \right) \cdot \frac{\mathbf{r}_1(t) - \mathbf{r}_2(s)}{|\mathbf{r}_1(t) - \mathbf{r}_2(s)|^3}$$

where \times denotes the vector product, \cdot denotes the scalar product and contour integrations run from 0 to 2π .