
Inline Assembler

Willi-Hans Steeb and Yorick Hardy

International School for Scientific Computing
e-mail: steebwilli@gmail.com

Abstract

We provide a collection of inline assembler programs.

1 Using the EAX register

The EAX register is also known as the accumulator. The EAX register is always

involved when we perform multiplication and division. It is also the most efficient

register to use for some arithmetic, logical, and data-movement operations.

The lower 16 bits of the register can be referenced using the name AX. The lower

8 bits of the AX register are also known as the AL register (for A-Low), and the

upper 8 bits of the AX-register are also known as the AH register (for A-High). This

can be convenient for handling byte-sized data, since it allows AX to serve as two

separate registers.

The LAHF transfers the low byte of the flags word to AH. The bits, from MSB to LSB,

are sign, zero, indeterminate, auxiliary carry, indeterminate, parity, indeterminate,

and carry.

// EAX.cpp

#include <iostream>

using namespace std;

int main()

{

unsigned char r;

_asm

{

XOR EAX, EAX

XOR EBX, EBX

XOR ECX, ECX

MOV EBX, 3

MOV ECX, -4

ADD EBX, ECX

LAHF

MOV r, AH

}

cout << "r = " << (int) r << endl; // 134 in binary 10000110

return 0;

}

2 Using the EBX register

The EBX register is a general purpose register so it can be used for logical and arith-

metic operations. Furthermore, the EBX register can point to memory locations.

A 32-bit value stored in EBX can be used as a part of the address of a memory

location to be accessed. The lower 16 bits of the register can be referenced using

the name BX. The lower 8 bits of the BX register are also known as the BL register

(for B-Low), and the upper 8 bits of the BX-register are also known as the BH

register (for B-High). This can be convenient for handling byte-sized data, since

it allows BX to serve as two separate registers.

By default, when EBX is used as a memory pointer, it points relative to the DS

segment register (DS = Data Segment).

It is square bracket [EBX} that indicates that the memory location pointed to by

EBX, rather than EBX itself, should be the source operand.

// EBX.cpp

// pointers

#include <iostream>

using namespace std;

int main()

{

unsigned int value = 81;

unsigned int r;

_asm

{

LEA EBX, value

MOV EDX, [EBX]

ADD EDX, [EBX]

MOV r, EDX

}

cout << "r = " << r << endl; // 81+81 = 162

return 0;

}

3 Using the ECX register

The ECX register is a general purpose register so it can be used for logical and

arithmetic operations. It is also called the counting register. The ECX register’s

speciality is counting and looping. Do not use the ECX register for other purposes

when loops are involved. Counting down and looping is a frequently used pro-

gram element, so the Pentium provides a special instruction to make loops faster

and more compact. Not surprisingly, that instruction is called LOOP. The LOOP

instruction decrements the count register ECX without changing any of the flags.

The condition is then checked whether ECX is not 0. Thus the loop instruction

subtracts 1 from ECX and jumps if ECX is not 0. The loop-functions loope, loopz,

loopne, loopnz impose certain conditions, for example ZF = 1 (ZF = zero flag).

The lower 16 bits of the register can be referenced using the name CX. The lower

8 bits of the CX register are also known as the CL register (for C-Low), and the

upper 8 bits of the CX-register are also known as the CH register (for C-High). This

can be convenient for handling byte-sized data, since it allows CX to serve as two

separate registers.

// ECX.cpp

#include <iostream>

using namespace std;

int main(void)

{

unsigned int sum = 0;

_asm

{

XOR EBX, EBX

MOV ECX, 20

}

L:
_asm

{

ADD EBX, 5

LOOP L

MOV sum, EBX

}

cout << "sum = " << sum << endl; // => 100

return 0;

}

4 Using the EDX register

The EDX register is a general purpose register, so it can be used for logical and

arithmetic operations. The EDX register is the only register that can be used as an

I/O address pointer with the IN and OUT instructions. IN transfers a data byte or

data word from the port numbered by the second operand into the register (AL,

AX, or EAX) specified by the first operand. OUT transfers a data byte or data word

from the register (AL, AX, or EAX) given as the second operand to the output port

numbered by the first operand. The other unique properties of EDX relate to divi-

sion and multiplication.

The function MUL performs unsigned multiplication. A doubleword operand is

multiplied by EAX and the result is left in the register pair

EDX:EAX

EDX contains the high-order 32 bits of the product. The carry and overflow flags

are set to 0 if EDX is 0; otherwise they are set to 1.

The function DIV performs an unsigned division. The dividend is implicit; only

the divisor is given as an operand.

The function CDQ converts the signed doubleword in EAX to a signed 64-bit integer

in the register pair EDX:EAX by extending the most significant bit of EAX (the sign

bit) into all the bits of EDX.

// EDX.cpp

#include <iostream>

using namespace std;

int main(void)

{

unsigned long value = 171;

unsigned long r1;

unsigned long r2;

_asm

{

MOV EAX, value

XOR EBX, EBX

XOR EDX, EDX

MOV EBX, 7

DIV EBX

MOV r1, EAX

MOV r2, EDX

}

cout << "r1 = " << r1 << endl; // => 24

cout << "r2 = " << r2 << endl; // => 3 (remainder)

return 0;

}

5 Using the EDI register

The ESI register is also the called source-index register. Like the EBX register, the

ESI register can be used as a memory pointer. This can be very effective when

accessing a sequential series of memory locations, such as a text string. Better

still, the string instructions can be made to automatically repeat their actions any

number of times, so a single instruction can perform hundreds or even thousands

of actions. The lower 16 bits of the register can be referenced using the name SI.

The function LOADS loads the AL, AX, or EAX register with the memory byte, word,

or doubleword at the location pointed to by the source-index register ESI. The

functions are LODSB, LODSW and LODSD.

The EDI register is also called the extended destination register. The EDI register

is much like the ESI register in that it can be used as a memory pointer and has

special properties when used with the powerful string instructions. The lower 16

bits of the register can be referenced using the name DI.

The instruction MOVS copies the byte or word at [(E)SI] to the byte or word

at ES:[(E)DI]. This means, MOVSB copies the byte at DS:[ESI] to ES:[EDI],

MOVSD copies the word at DS:[ESI] to ES:[EDI], MOVSD copies the doubleword

at DS:[ESI] to ES:[EDI]. After the data are moved, both (E)SI and (E)DI are

advanced automatically. MOVSB, MOVSW, and MOVSD are synonyms for the byte, word,

and doubleword MOVS instructions. If the direction flag is 0 (CLD was executed),

the registers are incremented; if the direction flag is 1 (STD was executed), the

registers are decremented. Bit 10 of the status register dictates the direction

(forward or backward) in which the Pentium processes a string. The setting of

this flag causes the index register to be incremented or decremented by one. The

ES (extra segment) register points to an extra segment of memory if set up and

used in the program. Many string instructions use the DS and ES register to mark

the source and destination of string moves.

// EDI.cpp

#include <iostream>

using namespace std;

int main()

{

unsigned int* array = NULL;

array = new unsigned int[4];

array[0] = 45; array[1] = 56;

array[2] = 76; array[3] = 17;

cout << "array = " << array << endl; // 00322C10

cout << "&array = " << &array << endl; // 0012FF60

unsigned int* p;

unsigned int* q;

unsigned int sum = 0;

_asm

{

LEA EDI, array

MOV EBX, [EDI]

MOV q, EDI

MOV p, EBX

MOV ECX, [EBX]

ADD ECX, [EBX+4]

ADD ECX, [EBX+8]

ADD ECX, [EBX+12]

MOV sum, ECX

}

cout << "p = " << p << endl; // 00322C10

cout << "q = " << q << endl; // 0012FF60

cout << "sum = " << sum << endl; // 194

delete[] array;

return 0;

}

The ASCII table is utilized in the next program.

// charadd.cpp

#include <iostream>

using namespace std;

int main()

{

char str[5] = { ’s’, ’u’, ’s’, ’i’, ’\0’ };

unsigned int sum;

_asm

{

LEA ECX, str

XOR EDI, EDI

MOVSX EAX, BYTE PTR [ECX]

MOVSX EDX, BYTE PTR [ECX+1]

ADD EAX, EDX

MOVSX EDX, BYTE PTR [ECX+2]

ADD EAX, EDX

MOVSX EDX, BYTE PTR [ECX+3]

ADD EAX, EDX

MOV EDX, EAX

MOV sum, EDX

}

cout << "sum = " << sum; // 115+117+115+105=452

return 0;

}

The command CLD clears the direction flag. No other flags are affected. After

CLD is executed, string operations will increment the index registers (SI or DI)

that they use. The command REPNE (repeat while not equal) is applied to string

operations. The command SCASB (compare string data) subtracts the memory

byte at the destination register from the AL register. The result is discarded; only

the flags are set.

// stos.cpp

#include <iostream>

using namespace std;

int main()

{

char str[5] = { ’s’, ’u’, ’s’, ’i’, ’\0’ };

_asm

{

LEA EDI, str

CLD

REPNE SCASB

DEC EDI ; decrement pointer by 1

MOV AL, ’o’

STOS str

}

cout << str << endl; // ousi

return 0;

}

6 Using the ESP register

The ESP register, also known as the stack pointer, is the least general of the general-

purpose registers, for it is almost always dedicated to a specific purpose: main-

taining the stack. The stack is an area of memory into which values can be stored

and from which they can be retrieved on a last-in, first-out basis; that is, the last

value stored onto the stack is the first value we will get when we read a value from

the stack. The classic analogy for the stack is that of a stack of dishes. Since we

can only add plates at the top of the stack and remove them from the top of the

stack, it stands to reason that the first plate we put on the stack will be the last

plate we can remove.

The ESP register points to the top of the stack at any given time; as with the stack

of dishes, the top of the stack is the location at which the next value placed on

the stack will be stored. The action of placing a value on the stack is known as

pushing a value on the stack, and, indeed, the PUSH instruction is used to place

values on the stack. Thus execution of push causes the following to happen: a

copy a the source content is moved to the address specified by SS:ESP. The source

is unchanged. ESP is decreased by 4 Similarly, the action of retrieving a value

from the stack is known as popping a value from the stack, and the POP instruction

is used to retrieve values from the stack. Thus execution of POP causes this to

happen: the content of SS:ESP (the top of the stack) is moved to the destination.

ESP is increased by 4

Stack operations are supported by three registers:

Stack Segment (SS) Register. Stacks reside in memory. The number of stacks in

a system is limited only by the maximum number of segments. A stack can be

up to 4 gigabytes long, the maximum size of a segment. One stack is available

at a time – the stack whose segment selector is held in the SS register. This is

the current stack, often referred to simply as ”the” stack. The SS register is used

automatically by the processor for all stack operations.

Stack Pointer (ESP) Register. The ESP register holds an offset to the top-of-stack

(TOS) in the current stack segment. It is used by PUSH and POP operations, sub-

routine calls and returns, exceptions, and interrupts. When an item is pushed onto

the stack, the processor decrements the ESP register, then writes the item at the

new TOS. When an item is popped off the stack, the processor copies it from the

TOS, then increments the ESP register. In other words, the stack grows down in

memory toward lesser addresses.

Stack-Frame Base Pointer (EBP) Register. The EBP register typically is used to

access data structures passed on the stack. For example, on entering a subrou-

tine the stack contains the return address and some number of data structures

passed to the subroutine. The subroutine adds to the stack whenever it needs

to create space for temporary local variables. As a result, the stack pointer gets

incremented and decremented as temporary variables are pushed and popped. If

the stack pointer is copied into the base pointer before anything is pushed on the

stack, the base pointer can be used to reference data structures with fixed offsets.

If this is not done, the offset to access a particular data structure would change

whenever a temporary variable is allocated or de-allocated. When the EBP register

is used to address memory, the current stack segment is referenced (i.e., the SS

segment). Because the stack segment does not have to be specified, instruction

encoding is more compact. The EBP register also can be used to address the seg-

ments. Instructions, such as the ENTER and LEAVE instructions, are provided which

automatically set up the EBP register for convenient access to variables.

ENTER creates the stack frame required by most block-structured high-level lan-

guage, for example ENTER 12, 0. The first operand specifies the number of bytes

of dynamic storage allocated on the stack for the routines being entered. The

second operand gives the lexical nesting level (0 to 31) of the routine within the

high-level language source code. LEAVE reverses the actions of the ENTER instruc-

tion. By copying the frame pointer to the stack pointer (set ESP to EBP), LEAVE

releases the stack space used by a procedure for its local variables.

// ESP.cpp

#include <iostream>

using namespace std;

int main()

{

int a = 3;

int b = 4;

int c = 5;

_asm

{

MOV EAX, a

MOV EBX, b

MOV ECX, c

PUSH EAX

PUSH EBX

PUSH ECX

POP EAX

POP EBX

POP ECX

MOV a, EAX

MOV b, EBX

MOV c, ECX

}

cout << "a = " << a << endl; // => 5

cout << "b = " << b << endl; // => 4

cout << "c = " << c << endl; // => 3

int x = 6;

int y = 7;

int z = 8;

_asm

{

MOV EAX, x

MOV EBX, y

MOV ECX, z

SUB ESP, 12 ; 3*4 bytes = 12 bytes

MOV [ESP+8], EAX

MOV [ESP+4], EBX

MOV [ESP], ECX

POP EAX

POP EBX

POP ECX

MOV x, EAX

MOV y, EBX

MOV z, ECX

}

cout << "x = " << x << endl; // => 8

cout << "y = " << y << endl; // => 7

cout << "z = " << z << endl; // => 6

return 0;

}

// inc.cpp

#include <iostream>

using namespace std;

int main()

{

unsigned int j = 1;

_asm

{

SUB ESP, 8

MOV DWORD PTR [ESP+4], 5

MOV DWORD PTR [ESP], 6

INC DWORD PTR [ESP+4]

INC DWORD PTR [ESP]

MOV EDX, [ESP]

ADD EDX, [ESP+4]

MOV j, EDX

}

cout << "j = " << j << endl; // => 6+7=13

return 0;

}

7 Conditional and Unconditional Jumps

The command JMP transfers control to a different point in the instruction stream

without recording return information.

Command JGE: Jump if greater or equal.

Command JBE: Jump if below or equal.

Command CMP: Compare two operands. CMP subtracts the second operand from

the first but does not store the result; only the flags are changed. CMP is used in

conjunction with conditional jumps.

// sroot.cpp

#include <iostream>

using namespace std;

unsigned int isqrt(unsigned int square)

{

unsigned int r;

_asm

{

MOV ECX, square

MOV EBX, ECX

MOV EAX, 1

JMP SHORT zero_chk

}

loop1:

_asm

{

SUB ECX, EAX

ADD EAX, 2

}

zero_chk:
_asm

{

OR ECX, ECX

JGE loop1

SAR EAX, 1

MOV ECX, EAX

IMUL ECX

SUB EAX, ECX

INC EAX

CMP EAX, EBX

JBE finish

DEC ECX

}

finish:
_asm

{

MOV EAX, ECX

MOV r, EAX

}

return r;

}

int main()

{

unsigned int j;

j = isqrt(360001);

cout << "j = " << j << endl;

return 0;

}

// whileif.cpp

#include <iostream>

using namespace std;

int main()

{

unsigned long r = 65;

unsigned long m = 16;

while(r >= m) { r = r - m; }

cout << "r = " << r << endl; // => 1

unsigned long s = 65;

if(s >= m) { s = s - m; }

cout << "s = " << s << endl; // => 49

return 0;

}

The while and if can be implemented in embedded assembler as follows:

// whileif1.cpp

// JA jump if above

// JA causes program execution to branch to the

// operand address if both the carry and zero flags are clear.

// JBE jump if below or equal

// JBE causes program execution to branch to the

// operand address if either the carry or zero flag is set.

#include <iostream>

using namespace std;

int main()

{

unsigned long r = 65;

unsigned long m = 16;

_asm

{

MOV ECX, m

MOV EDX, r

CMP EDX, ECX

JBE L1

}

L2:
_asm

{

SUB EDX, ECX

MOV r, EDX

CMP EDX, ECX

JA L2

}

L1:

cout << "r = " << r << endl; // => 1

unsigned long s = 65;

_asm

{

MOV ECX, m

MOV EDX, s

CMP EDX, ECX

JBE L3

SUB EDX, ECX

MOV s, EDX

}

L3:

cout << "s = " << s << endl; // => 49

return 0;

}

8 Using XOR operation

XOR computes the exclusive OR of the two operands. Each bit of the result is 1 if the

corresponding bits of the operands are different; each bit is 0 if the corresponding

bits are the same. The answer replaces the first operand.

// swap.cpp

#include <iostream>

using namespace std;

int main()

{

int x = 8;

int y = -17;

_asm

{

MOV EBX, x

MOV ECX, y

XOR EBX, ECX

XOR ECX, EBX

XOR EBX, ECX

MOV x, EBX

MOV y, ECX

}

cout << "x = " << x << endl; // -17

cout << "y = " << y << endl; // 8

return 0;

}

9 Pointers

Pointer. A value that indicates the storage location (address) of a item of data.

Thus a pointer has an address and contains an address.

// pointer1.cpp

#include <iostream>

using namespace std;

int main(void)

{

unsigned int a = 14;

unsigned int* p = NULL;

p = &a; // address of a is assigned to p

*p = 23; // * is the dereference operator

// thus a is assigend to 23, i.e. 14 is overridden

cout << "a = " << a << endl;

return 0;

}

With inline assembler language the program would look as follows

// pointer1a.cpp

#include <iostream>

using namespace std;

int main(void)

{

unsigned int a = 14;

unsigned int* p = NULL;

_asm

{

LEA EBX, a ; p = &a

MOV p, EBX

MOV EBX, p ; *p = 23

MOV [EBX], 23

}

cout << "a = " << a << endl;

return 0;

}

Pointers to pointers are applied as follows

// pointer2.cpp

#include <iostream>

using namespace std;

int main(void)

{

int v = 9;

int* p = NULL; // p is a pointer to int

p = &v; // address of v is assigned to p

int** pp = NULL; // pp is a pointer to pointer

pp = &p; // address of p is assigned to pp

**pp = -11; // dereference pp twice

cout << "v = " << v << endl; // => -11

return 0;

}

With inline assembler language the program would look as follows

// pointer2a.cpp

#include <iostream>

using namespace std;

int main(void)

{

int v = 9;

_asm

{

PUSH EDI ; cannot use EBP, since

; it already describes the stack frame of main()

; which is used to find v

PUSH EBX

MOV EDI, ESP

SUB ESP, 4 ; int *p

; p == [EDI]

LEA EBX, v ; p = &v

MOV [EDI], EBX ;

SUB ESP, 4 ; int **PP = 0 (NULL)

; pp == [EDI-4]

LEA EBX, [EDI] ; pp = &p

MOV [EDI-4], EBX ;

MOV EBX, [EDI-4] ; **pp = -11

MOV EBX, [EBX] ;

MOV DWORD PTR [EBX], -11 ;

ADD ESP, 8 ; free pp, free p

POP EBX ; restore EBX

POP EDI ; restore EDI

}

cout << "v = " << v << endl; // => -11

return 0;

}

10 Floating Point Instructions

Floating point numbers can be stored as float (32 bits) or double (64 bits). ST

is the top of the stack; the register currently at the top of the stack. ST(1) is

a register in the stack i (0 ≤ j ≤ 7) stack elements from the top. ST(1) is the

next-on-stack register, ST(2) is below ST(1), etc.

The command FLD stands for load real. The command FADD stands for add real

with

FADD destination, source

The command FSTP stands for store real and pop.

// stack.cpp

#include <iostream>

using namespace std;

int main()

{

float a=4.0;

float b=5.0;

float c=6.0;

float d=7.0;

float result;

_asm

{

FLD a

FLD b

FADD

FLD c

FADD

FLD d

FADD

FSTP result

}

cout << "result = " << result; // => 22.0

return 0;

}

The command FLDPI stands for load pi. The command FMUL stands for multiply

real.

// fpi.cpp

#include <iostream>

using namespace std;

double pimul(double x,double y)

{
_asm

{

FLDPI

FMUL x

FMUL y

FSTP y

}

return y;

}

int main()

{

double a = 2.0;

double b = 4.5;

double result = pimul(a,b); // 4.5 x 2.0 x 3.14159

cout << "result = " << result << endl; // 28.2743

return 0;

}

The command FCOMP stands for compare real and pop. The command FSTSW

stands for store status word. This instruction is commonly used for conditional

branching. The command SAHF stands for store register AH into flags (opposite of

LAHF).

// fcomp2.cpp

#include <iostream>

using namespace std;

int fcomp(float x,float y)

{

int r;

_asm

{

FLD x

FCOMP y

FSTSW AX

SAHF

JE short L1

XOR EAX, EAX

JMP L2

}

L1:
_asm

{

MOV EAX, 1

}

L2:
_asm

{

MOV r, EAX

}

return r;

}

int main()

{

float a = 3.3;

float b = 3.2;

int result = fcomp(a,b);

cout << "result = " << result << endl; // => 0

return 0;

}

11 Inline assembler under the GNU compiler g++

The following small example shows how inline assembler under the GNU compiler

is used (AT & T style). Register names are prefixed with %. Source/destination

ordering: The source is always on the left and the destination is always on the

right. Compile and link with

g++ -fasm -o gnuasm gnuasm.cpp

// gnuasm.cpp

#include <iostream>

using namespace std;

int main(void)

{

int v = 11, s;

asm ("movl %1, %%eax\n"

"movl %%eax, %0\n"

"incl %0\n"

"negl %0\n"

: "=r"(s) /* s is output operand */

: "r"(v) /* v is input operand */

: "%eax"); /* %eax is clobbered register */

cout << "s = " << s << endl; // => -12

int w = 7, z = 15;

asm ("addl %%ecx, %%eax\n"

: "=a"(w)

: "a"(w), "c"(z)

);

cout << "w = " << w << endl; // => 22

cout << "z = " << z << endl; // => 15

int count = 0;

asm ("movl %%ecx, %%ecx\n"

"incl %%ecx\n"

: "=c"(count)

: "c"(count)

);

cout << "count = " << count << endl;

return 0;

}

