
Applied Mathematics 3B

Assignment #5 Solution

1.

(a) x⊗ I2 =


1 0
0 1
0 0
0 0

.

(b) I2 ⊗ x =


1 0
0 0
0 1
0 0

.

(c) x⊗ x∗ =

(
1
0

)
⊗ ( 1 0 ) =

(
1 0
0 0

)
and xx∗ =

(
1
0

)
( 1 0 ) =

(
1 0
0 0

)
(d) x∗ ⊗ x = ( 1 0 )⊗

(
1
0

)
=

(
1 0
0 0

)
and x∗x = ( 1 0 )

(
1
0

)
= 1

2. We find

I2 ⊗ σx =

(
1 0
0 1

)
⊗
(

0 1
1 0

)
=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


and 

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


∗

=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

Thus I2 ⊗ σx describes an observable. The characteristic equation is

det

λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 = det


λ −1 0 0
−1 λ 0 0
0 0 λ −1
0 0 −1 λ


= λdet

λ 0 0
0 λ −1
0 −1 λ

+ det

−1 0 0
0 λ −1
0 −1 λ


= λ(λ3 − λ) + (−λ2 + 1)

= λ2(λ2 − 1)− (λ2 − 1) = (λ2 − 1)2 = 0.

The measurement outcomes are 1 (twice) and -1 (twice). The eigenstates corresponding to the eigenvalue 1 are
given by

(I2 ⊗ σx)


x1
x2
x3
x4

 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



x1
x2
x3
x4

 =


x2
x1
x4
x3


i.e. x1 = x2 and x3 = x4: 

x1
x1
x3
x3

 .



Choosing x1 = 1 and x3 = 0 (respectively x1 = 0 and x3 = 1) and normalizing yields the orthonormal basis 1√
2


1
1
0
0

 ,
1√
2


0
0
1
1


 .

Other choices are also possible. The projection operator onto this eigenspace is given by

Π1 =
1√
2


1
1
0
0

 1√
2


1
1
0
0


∗

+
1√
2


0
0
1
1

 1√
2


0
0
1
1


∗

=
1

2


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 .

Try this with a different choice of orthonormal basis.

The eigenstates corresponding to the eigenvalue -1 are given by

(I2 ⊗ σx)


x1
x2
x3
x4

 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



x1
x2
x3
x4

 = −


x2
x1
x4
x3


i.e. x1 = −x2 and x3 = −x4: 

x1
−x1
x3
−x3

 .

Choosing x1 = 1 and x3 = 0 (respectively x1 = 0 and x3 = 1) and normalizing yields the orthonormal basis 1√
2


1
−1
0
0

 ,
1√
2


0
0
1
−1


 .

Other choices are also possible.
The projection operator onto this eigenspace is given by

Π−1 =
1√
2


1
−1
0
0

 1√
2


1
−1
0
0


∗

+
1√
2


0
0
1
−1

 1√
2


0
0
1
−1


∗

=
1

2


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 .

Try this with a different choice of orthonormal basis.

Can these results be expressed in terms of the eigenvalues and eigenvectors of σx?

The probability that measurement of a system described by the state (1, 0, 0, 0)T yields the outcome 1 is given

tr

Π1


1
0
0
0




1
0
0
0


∗ =

1

2
.

The probability that measurement of a system described by the state (1, 0, 0, 0)T yields the outcome -1 is given

tr

Π−1


1
0
0
0




1
0
0
0


∗ =

1

2
.

The probability that measurement of a system described by the state (1, 0, 0, 1)T /
√

2 yields the outcome 1 is
given

tr

Π1
1√
2


1
0
0
1

 1√
2


1
0
0
1


∗ =

1

2
.



The probability that measurement of a system described by the state (1, 0, 0, 1)T /
√

2 yields the outcome -1 is
given

tr

Π−1
1√
2


1
0
0
1

 1√
2


1
0
0
1


∗ =

1

2
.

3. Note that since {|0〉, |1〉} is an orthonormal basis on C2 we have I2 = |0〉〈0|+ |1〉〈1| (see assignment 3 nr. 5
2011). Suppose A is unitary then

A∗A =
(
α|b〉〈a|+ β|d〉〈c|

)(
α|a〉〈b|+ β|c〉〈d|

)
= |α|2|b〉〈a|a〉〈b|+ αβ|b〉〈a|c〉〈d|+ αβ|d〉〈c|a〉〈b|+ |β|2|d〉〈c|c〉〈d| = I2

AA∗ =
(
α|a〉〈b|+ β|c〉〈d|

)(
α|b〉〈a|+ β|d〉〈c|

)
= |α|2|a〉〈b|b〉〈a|+ αβ|a〉〈b|d〉〈c|+ αβ|c〉〈d|b〉〈a|+ |β|2|c〉〈d|d〉〈c| = I2

From 〈0|0〉 = 〈1|1〉 = 1 we find 〈a|a〉 = 〈b|b〉 = 〈c|c〉 = 〈d|d〉 = 1.

A∗A =
(
α|b〉〈a|+ β|d〉〈c|

)(
α|a〉〈b|+ β|c〉〈d|

)
= |α|2|b〉〈b|+ (α〈a|c〉β)|b〉〈d|+ (αβ〈c|a〉)|d〉〈b|+ |β|2|d〉〈d|
= |0〉〈0|+ |1〉〈1|

AA∗ =
(
α|a〉〈b|+ β|c〉〈d|

)(
α|b〉〈a|+ β|d〉〈c|

)
= |α|2|a〉〈a|+ (αβ〈b|d〉)|a〉〈c|+ (αβ〈d|b〉)|c〉〈a|+ |β|2|c〉〈c|
= |0〉〈0|+ |1〉〈1|

Consider the first equation, if b = d then we find

A∗A = (|α|2 + α〈a|c〉β + αβ〈c|a〉+ |β|2)|d〉〈d| 6= |0〉〈0|+ |1〉〈1|

since we either have |0〉〈0| in the expression or |1〉〈1| in the expression, but not both. Thus b 6= d. From
〈0|1〉 = 〈1|0〉 = 0 we deduce 〈b|d〉 = 〈d|b〉 = 0. Similarly from AA∗ = I2 we find a 6= c and 〈a|c〉 = 〈c|a〉 = 0.
The two equations become

A∗A = |α|2|b〉〈b|+ |β|2|d〉〈d| = |0〉〈0|+ |1〉〈1|,
AA∗ = |α|2|a〉〈a|+ |β|2|c〉〈c| = |0〉〈0|+ |1〉〈1|.

Since b 6= d and a 6= c we only require that |α|2 = |β|2 = 1. Thus we find the solution (a = 0, b = 0, c = 1 and
d = 1)

A = α|0〉〈0|+ β|1〉〈1|, |α| = |β| = 1

and the solution (a = 0, b = 1, c = 1 and d = 0)

A = α|0〉〈1|+ β|1〉〈0|, |α| = |β| = 1

The solution a = 1, b = 1, c = 0 and d = 0 is already provided by a = 0, b = 0, c = 1 and d = 1 and switching
α and β. The solution a = 1, b = 0, c = 0 and d = 1 is already provided by a = 0, b = 1, c = 1 and d = 0 and
switching α and β.

In general we need 4 terms:
U = α|0〉〈0|+ β|0〉〈1|+ γ|1〉〈0|+ µ|0〉〈1|.

Note that because we restrict ourselves to |0〉 and |1〉 4 terms are required, otherwise (from the spectral repre-
sentation) only 2 terms would be required.

4. Let

a :=

(
a1
a2

)
, b =

(
b1
b2

)



We have

a⊗ b− b⊗ a =


a1b1
a1b2
a2b1
a2b2

−

b1a1
b1a2
b2a1
b2a2

 =


0

a1b2 − a2b1
−(a1b2 − a2b1)

0

 =


0

det (a b )
−det (a b )

0

 .

Setting a⊗ b− b⊗ a = 0 yields det (a b ) = 0, i.e. a and b are linearly dependent. Consequently a = cb for
some c ∈ C and b ∈ C2.


