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where we used (4 — 2v/2)(3 — 2v/2) = 20 — 14y/2. The solution to the differential equation
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i.e. we have performed the Hadamard transform. Thus we find
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At t = 7 we find
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2. Since
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the matrix describes an observable. It is straightforward to determine that the eigenvalues of
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are 1, 1 and -1 with corresponding orthonormal eigenvectors
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Thus we have the measurement outcome 1 with probability
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and the outcome -1 with probability
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The corresponding projections are
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If the measurement outcome was 1 then the state after measurement is
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If the measurement outcome was -1 then the state after measurement is
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3. We have
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With eigenvalues 6, 0 and 0 and corresponding orthonormal eigenvectors
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The singular values are v/6, 0 and 0. Thus we have
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The first column of U follows from the first columns of V'
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and the second is chosen to be orthonormal to the first. It follows that
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The decomposition is obviously not unique, for example we can exchange the last two columns of V',
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or make a different choice for the second column of U
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amongst other possibilities.
. Let
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where a;j,b;j,¢5,d;; € C for 4,5 € {1,2}. We find

a11bin @bz ai2bin ai2bia

A® B = a11bar  a11baz  ai2bar  ai2b22

ao1b11  a21biz  agebir  azabia

a21ba1  a21baz  agebar  azabaa

and
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Equating these two matrices yields a11611 = 1 and ag2b22 = 1 which imply a1; # 0 and by; # 0. Conse-
quently the equation a1bs2 = 0 cannot be satisfied. Thus no such A and B can be found.
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where a1 and a are independent of each other, we find that
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leads to the equations

cndii=a+d  cndia=0 ci2di1 =0  cipdip=b—c
c11da1 =0 ciidog =a—d ciadoy =b+c ciaday =0
co1di1 =0 co1dia =b+c cpdin=a—d  cpdipa=0

co1da1 =b—c co1daa =0 coada; =0 Coadar = a+d

The existence of solutions depends on the choice of C' and D. In the following we assume C' # 0, and
D # 05 since C = 0y trivially provides the solution ¢ = b = ¢ = d = 0 (similarly for D = 05. This
possibility will be incorporated in the final solutions.

A solution exists provided

ciy 0 0 di2\ (0 ci2 diy 0\
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where 04 is the 4 x 4 zero matrix.

In other words C must be diagonal or have zeroes on the diagonal (similarly for D). Suppose C' is non-zero
and diagonal, then the above equation implies D is diagonal, b = ¢ = 0 and

1 1 1 1
a= 5011(6511 +da) = 5022(d11 +da2), d= icll(dll —da2) = *5022(6111 — da2).

For the above equalities to hold we must have C = al; and D = (15, or C' = ao, and D = (o, where
«, f € C are arbitrary.

Similarly if C has zeroes on the diagonal, then D has zeroes on the diagonal, a = d = 0 and
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b= 5012((112 +doy) = 5021(6112 +do1), c= §C1z(d21 —dig) = —5021(d21 —di2).

For the above equalities to hold we must have C = ao, and D = fo,, or C' = acy and D = o, where
«, 3 € C are arbitrary.

To summarize

C=aly,, D=7l a=af,b=c=d=0
C=ao,, D= o, b=af,a=c=d=0
C=aoy, D=_0oy c=af,a=b=d=0

C=a0,, D=0Fo, = d=af,a=b=c=0
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where a, 3 € C are arbitrary. For all other C' and D no solution exists.



