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At t = π we find
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i.e. we have performed the Hadamard transform. Thus we find
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The corresponding projections are
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If the measurement outcome was 1 then the state after measurement is
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If the measurement outcome was -1 then the state after measurement is
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3. We have (
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The singular values are
√

6, 0 and 0. Thus we have
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The first column of U follows from the first columns of V
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The decomposition is obviously not unique, for example we can exchange the last two columns of V ,
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or make a different choice for the second column of U
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amongst other possibilities.

4. Let

A :=
(
a11 a12

a21 a22

)
, B :=

(
b11 b12
b21 b22

)
, C :=

(
c11 c12
c21 c22

)
, D :=

(
d11 d12

d21 d22

)
where aij , bij , cij , dij ∈ C for i, j ∈ {1, 2}. We find

A⊗B =


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22


and

1
2

(I2 ⊗ I2 + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Equating these two matrices yields a11b11 = 1 and a22b22 = 1 which imply a11 6= 0 and b11 6= 0. Conse-
quently the equation a11b22 = 0 cannot be satisfied. Thus no such A and B can be found.

From

C ⊗D =


c11d11 c11d12 c12d11 c12d12

c11d21 c11d22 c12d21 c12d22

c21d11 c21d12 c22d11 c22d12

c21d21 c21d22 c22d21 c22d22


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and

a I2 ⊗ I2 + b σx ⊗ σx + c σy ⊗ σy + d σz ⊗ σz =


a+ d 0 0 b− c

0 a− d b+ c 0
0 b+ c a− d 0

b− c 0 0 a+ d

 ,

where a11 and a are independent of each other, we find that

C ⊗D = a I2 ⊗ I2 + b σx ⊗ σx + c σy ⊗ σy + d σz ⊗ σz

leads to the equations

c11d11 = a+ d c11d12 = 0 c12d11 = 0 c12d12 = b− c
c11d21 = 0 c11d22 = a− d c12d21 = b+ c c12d22 = 0
c21d11 = 0 c21d12 = b+ c c22d11 = a− d c22d12 = 0

c21d21 = b− c c21d22 = 0 c22d21 = 0 c22d22 = a+ d

The existence of solutions depends on the choice of C and D. In the following we assume C 6= 02 and
D 6= 02 since C = 02 trivially provides the solution a = b = c = d = 0 (similarly for D = 02. This
possibility will be incorporated in the final solutions.

A solution exists provided(
c11 0
0 c22

)
⊗
(

0 d12

d21 0

)
=
(

0 c12
c21 0

)
⊗
(
d11 0
0 d22

)
= 04

where 04 is the 4× 4 zero matrix.

In other words C must be diagonal or have zeroes on the diagonal (similarly for D). Suppose C is non-zero
and diagonal, then the above equation implies D is diagonal, b = c = 0 and

a =
1
2
c11(d11 + d22) =

1
2
c22(d11 + d22), d =

1
2
c11(d11 − d22) = −1

2
c22(d11 − d22).

For the above equalities to hold we must have C = αI2 and D = βI2, or C = ασz and D = βσz where
α, β ∈ C are arbitrary.

Similarly if C has zeroes on the diagonal, then D has zeroes on the diagonal, a = d = 0 and

b =
1
2
c12(d12 + d21) =

1
2
c21(d12 + d21), c =

1
2
c12(d21 − d12) = −1

2
c21(d21 − d12).

For the above equalities to hold we must have C = ασx and D = βσx, or C = ασy and D = βσy where
α, β ∈ C are arbitrary.

To summarize
C = αI2, D = βI2 ⇒ a = αβ , b = c = d = 0

C = ασx, D = βσx ⇒ b = αβ, a = c = d = 0

C = ασy, D = βσy ⇒ c = αβ, a = b = d = 0

C = ασz, D = βσz ⇒ d = αβ, a = b = c = 0

where α, β ∈ C are arbitrary. For all other C and D no solution exists.
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