TWK2A Section 4.1 Problems

- 1. Verify that $y = c_1 e^{4x} + c_2 e^{-x}$ is the general solution of y'' 3y' 4y = 0 on $(-\infty, \infty)$. Solve the IVP y(0) = 1, y'(0) = 2.
- 2. Verify that $y = c_1 + c_2 \cos x + c_3 \sin x$ is the general solution of y''' + y' = 0on $(-\infty, \infty)$. Solve the IVP $y(\pi) = 0, y'(\pi) = 2, y''(\pi) = -1$.
- 3. Given that $y = c_1 + c_2 x^2$ is a two-parameter family of solutions of xy'' y' = 0 on $(-\infty, \infty)$, show that constants c_1 and c_2 do not exist which satisfy y(0) = 0, y'(0) = 1. Explain why this does not violate Theorem 4.1.
- 4. The function $y = c_1 e^x \cos x + c_2 e^x \sin x$ is a solution of y'' 2y' + 2y = 0on $(-\infty, \infty)$. Determine whether or not constants c_1 and c_2 can be found satisfying (a) $y(0) = 1, y'(\pi) = 0$, (b) $y(0) = 1, y(\pi) = -1$, (c) $y(0) = 1, y(\frac{\pi}{2}) = 1$, (d) $y(0) = 0, y(\pi) = 0$.
- 5. Are $f_1(x) = x$, $f_2(x) = x^2$ and $f_3(x) = 4x 3x^2$ linearly independent on $(-\infty, \infty)$?
- 6. Are $f_1(x) = 5$, $f_2(x) = \cos^2 x$ and $f_3(x) = \sin^2 x$ linearly independent on $(-\infty, \infty)$?
- 7. Show that $\{x^2, x^3\}$ forms a fundamental set of solutions of $x^2y'' 6xy' + 12y = 0$ on $(0, \infty)$. What is the general solution?
- 8. Verify that $y_{p_1} = 3e^{2x}$ and $y_{p_2} = x^2 + 3x$ are, respectively, particular solutions of

$$y'' - 6y' + 5y = -9e^{2x}$$

$$y'' - 6y' + 5y = 5x^2 + 3x - 16$$

Hence, find particular solutions of

$$y'' - 6y' + 5y = 5x^2 + 3x - 16 - 9e^{2x}$$

and

$$y'' - 6y' + 5y = -10x^2 - 6x + 32 + e^{2x}.$$

9. (a) By inspection find a particular solution of

$$y'' + 2y = 10$$

(b) By inspection find a particular solution of

$$y'' + 2y = -4x.$$

(c) Find a particular solution of

$$y'' + 2y = -4x + 10.$$

(d) Find a particular solution of

$$y'' + 2y = 8x + 5.$$

- 10. Suppose that $y_1 = e^x$ and $y_2 = e^{-x}$ are solutions of a homogeneous linear differential equation. Explain why $y_3 = \cosh x$ and $y_4 = \sinh x$ are also solutions of the equation.
- 11. The function $y = c_1 x^2 + c_2 x^4 + 3$ is a solution of $x^2 y'' 5xy' + 8y = 24$ on $(-\infty, \infty)$. Determine whether or not constants c_1 and c_2 can be found satisfying (a) y(-1) = 0, y(1) = 4, (b) y(0) = 1, y(1) = 2, (c) y(0) = 3, y(1) = 4, (d) y(1) = 3, y(2) = 15.
- 12. Are $f_1(x) = 0$, $f_2(x) = x$ and $f_3(x) = e^x$ linearly independent on $(-\infty, \infty)$?
- 13. Are $f_1(x) = 2 + x$ and $f_2(x) = 2 + |x|$ linearly independent on $(-\infty, \infty)$?
- 14. Show that $\{e^{\frac{x}{2}}, xe^{\frac{x}{2}}\}$ forms a fundamental set of solutions of 4y'' 4y' + y = 0 on $(-\infty, \infty)$. What is the general solution?
- 15. Show that $\{\cos(\ln x), \sin(\ln x)\}$ forms a fundamental set of solutions of $x^2y'' + xy' + y = 0$ on $(0, \infty)$. What is the general solution?
- 16. Verify that $y = c_1 \cos x + c_2 \sin x + x \sin x + (\cos x) \ln (\cos x)$ is the general solution of $y'' + y = \sec x$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- 17. Verify that $y = c_1 x^{-\frac{1}{2}} + c_2 x^{-1} + \frac{1}{15} x^2 \frac{1}{6} x$ is the general solution of $2x^2 y'' + 5xy' + y = x^2 x$ on $(0, \infty)$.

- 18. Are $f_1(x) = \cos 2x$, $f_2(x) = 1$ and $f_3(x) = \cos^2 x$ linearly independent on $(-\infty, \infty)$?
- 19. Suppose that $y_1, y_2, ..., y_k$ are k nontrivial (i.e. $y_j \neq 0$) solutions of a homogeneous linear nth-order DE with constant coefficients, and that k = n + 1. Is the set $\{y_1, y_2, ..., y_k\}$ linearly dependent or independent on $(-\infty, \infty)$? Discuss.
- 20. Use the Wronskian to show that

$$\left\{e^x, e^{-2x}\right\}$$

are linearly independent on $(0, \infty)$.

21. Use the Wronskian to show that

 $\{1, \cos x, \sin x\}$

are linearly independent on $(-\infty,\infty)$. Note that

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = iae - afh - idb + dch + gbf - gce$$