Applied Mathematics APM01A1, 2017

March 13, 2017

Tutorial 5

Question 1

Study the following figure

- 1.a) Let $\overline{a} = \overline{EC}$. Write \overline{a} in component form. Then use the scalar product to calculate the angles α, β and γ that \overline{a} make with in the X-, Y- and Z- directions.
- 1.b) Use the scalar product to calculate the component of \overline{a} in the \overline{EG} direction. For this question, write the unit vector in same direction \overline{EG} as \hat{e} .

Question 2

Let \overline{a} and \overline{b} be vectors with magnitudes 24 and 20 respectively. Suppose $\overline{c} = \overline{a} + \overline{b}$ and \overline{c} makes an angle θ with \overline{b} , where $\cos(\theta) = 1/10$.

- 2.a) Solve for \overline{a} and use the scalar product to square both sides of this equation.
- 2.b) Solve for the magnitude of vector \overline{c} .

Question 3

Suppose that ABCD is a parallelogram such that $\overline{b} = \overline{AB} = 6\hat{x} + 2\hat{y} - 3\hat{z}$ and $\overline{c} = \overline{AC} = 8\hat{x} + 6\hat{y} - 2\hat{z}$. From the previous tutorial, you have already calculated \overline{BC} .

2.a) Use the scalar product to confirm that $\angle ABC = \angle ADC$.

2.b) Use the scalar product to confirm that $\angle DAB = \angle DCB$.

Question 4

Find, in component form, the projections of $\overline{a} = \hat{x} - 2\hat{y} + \hat{z}$ parallel and perpendicular to $\overline{b} = 4\hat{x} - 4\hat{y} + 7\hat{z}$.