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Chapter 1

Vector Algebra

1.1 Introduction

Vector algebra and vector analysis were developed in the nineteenth century and

has—in the past 50 years—become a necessary part of the mathematical back-

ground of mathematicians, physicists, engineers and other scientists. The rea-

sons for this are that these disciplines allow for the compact reformulation of the

mathematics associated with geometric and physical problems and facilitate the

formation of intuitive images of physical and mathematical concepts. The “vector

language” is in fact the most natural way of thinking in the physical sciences, and

students are encouraged to make this way of thinking their own.

This chapter develops vector algebra on the basis of simple geometric concepts

already known to the students. The algebraic rules that are developed in this

way are applied mainly to geometric problems by way of illustration. In chapter 2

the concepts of statics will then be developed in a comprehensive vector algebraic

manner.

1.2 Reference Systems

A concept that is very important in mechanics is that of the particle: a body,

which in a given situation, can be regarded as small enough to be described as

a mass at a geometrical point. Therefore, it is necessary to be able to establish
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4 CHAPTER 1. VECTOR ALGEBRA

the position of a geometrical point. To this end we make use of a fixed reference

system. Such a system is set up in a way that makes it possible for any point in

a relevant space to be labeled uniquely by means of a minimal set of numbers.

1.2.1 One-dimensional Reference System

As an example, consider a bead that moves on a wire (Figure 1.1). In this instance,

Figure 1.1

a reference system can, for example, be introduced as follows: a fixed point O on

the wire is chosen to serve as the so-called origin of the system. A choice is also

made regarding the direction in which the distances along the wire will be regarded

as positive distances. Note the convention that is used throughout in the sketches

in these notes: the positive direction of an axis of reference is always indicated

with an arrow. Then the distance s (with the correct sign), measured along the

wire, establishes P ’s position uniquely. In this case, we will refer to s as the s

coordinate of the relevant point.

However, we realise immediately that the O′X system can also serve as a

reference system for the relevant problem: the x coordinate is the distance (with

the correct sign) between the origin O′ and the perpendicular projection of P on

the X axis. Clearly, x is unique for a given position of P and vice versa.

The dimension (number of coordinates) of a reference system is unique; not

the choice of system.
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1.2.2 Two-dimensional Reference System

Consider a particle that moves in a plane surface (Figure 1.2). Here we can, for

Figure 1.2

example, use two mutually orthogonal, straight axes of reference through a fixed

origin O. Point P ’s position can then be determined by means of the choice of the

pair of numbers (x, y), where x and y are the distances (with the correct signs)

between the origin and the projections of P on the x and y axes respectively.

NB: A plane surface is not the only possibility of a two-dimensional space—

think about the surface of the earth, for instance.

1.2.3 Three-dimensional Reference System

This requires (for example) three mutually orthogonal axes of reference through a

fixed origin O (Figure 1.3). Note the way in which the three-dimensional figure

is represented on the two-dimensional surface of the page: the X and Y axes are

drawn to lie in the plane surface of the page. They are then drawn perpendicular

to each other and respectively parallel to the borders of the page. The Z axis,

which is normal to the page, is drawn so that its positive direction forms obtuse

angles with the positive directions of both the X and Y axes.

In keeping with the general convention, we will always use a right-hand system:

if the spiral part of a corkscrew with a right-handed thread is held perpendicular

to the XY plane and the handle is turned along the shortest route of the positive

X direction to the positive Y direction, the spiral part moves in the positive Z
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Figure 1.3

direction. It is easily established that this rule is consistent : if the permutations

X → Y → Z → X are made in the previous sentence, the sentence will still be

true.

A reference system, as described above, is called a rectangular right-handed

system or a Cartesian system. Figure 1.4 illustrate how the coordinates of a point

with regards to such a reference system are obtained. The x (y, z) coordinate of P

Figure 1.4

is determined by constructing a plane surface that contains P and is perpendicular

to the X (Y, Z) axis. The distance between the origin and the point where the

plane cuts the X (Y, Z) axis, with the correct sign, is then the x (y, z) coordinate

of P . We will indicate the coordinate of point P with the notation P (x, y, z).

(Note another convention that is used in drawings of three-dimensional figures: in

Figure 1.4, all the lines that would have been invisible if the planes in the figure
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Figure 1.5

were non-transparent are indicated by dotted lines.)

Problems

P1.2.1.

Draw sketches for the same choice of a reference system which shows the position

of the points with coordinates (1, 1, 1); (1,−1, 1); (1, 1,−1) and (−1,−1,−1).

1.3 Displacement

The concept of displacement is fundamental to the description of motion. If a

particle moves from point P1(x1, y1, z1, ) to point P2(x2, y2, z2), the nett change in

its position is determined uniquely by the initial point P1 and the end point P2.

The displacement of a particle is therefore characterised completely by the ordered

number pair P1P2. It is natural to represent this displacement on a sketch by

means of a directed line segment ; see Figure 1.5.

1.3.1 Notation

It is evident that the directed line segment that represents the displacement be-

tween P1 and P2 contains both a magnitude (measured in metres) and a direction.

For this reason, we will differentiate between a displacement and other quantities,

the magnitudes of which are the only important aspect, by means of notation. The
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displacement between P1 and P2 is indicated by means of a bar as follows: P1P2

(note the order of P1 and P2). As indicated in Figure 1.5, we will also indicate the

displacement with a single letter, and this letter is then differentiated from other

letters in the text. In hand-written text and in these notes, we use a bar over the

letter, for example a. Other notations in the literature include the use of bold face

symbols, for example, a, or
−−→
P1P2, ~a, ã, a. If we refer only to the magnitude of the

displacement in Figure 1.5, we will indicate it by
∣

∣P1P2

∣

∣, |a|, or a.

1.3.2 Magnitude and direction of displacement

Since the displacement P1P2 is determined uniquely by the position of P1 and P2,

we must be able to calculate both the magnitude and direction of the displacement

from the coordinates of the two points. For this purpose, we first define the x, y

and z components respectively, as follows:

ax .
.= x2 − x1, ay .

.= y2 − y1, az .
.= z2 − z1. (1.1a)

We note the order in the equation (1.1a): the coordinates of the initial point are

deducted from those of the end point.

The geometric significance of the displacement’s components is clear in Figure

1.6(a): the components of P1P2 are the side lengths of a rectangular volume which

has the displacement P1P2 as its diagonal. The magnitude of the displacement,

that is, the straight line distance between P1 and P2, can now be obtained with

the help of Pythagoras’ theorem. Firstly, it follows for △P1QT that

c2 = a2x + a2y,

and then for △P1TP2:

a2 = c2 + a2z = a2x + a2y + a2z

The magnitude of displacement P1P2 is therefore

a =
√

a2x + a2y + a2z. (1.1b)

Note that we take the positive root in (1.1b).
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(a)

(b)

Figure 1.6

A natural way of determining the direction of P1P2 is shown in Figure 1.6(b).

Angles α, β and γ are the angles between the forward direction of P1P2 and the

positive directions of the x, y and z axes respectively. These angles can be obtained

from the so-called direction cosines ℓ, m and n, which can be obtained directly

from the inspection of right-angled triangles △P1QP2, △P1RP2 and △P1SP2:

ℓ := cosα =
ax
a

m := cos β =
ay
a

n := cos γ =
az
a

(1.1c)

If we square both sides of (1.1c) and calculate the sum of all three equations, we
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Figure 1.7

obtain a very useful identity:

ℓ2 +m2 + n2 = 1. (1.1d)

Note that (1.1d) implies that α, β and γ are not independent of each other.

1.3.3 Composition of displacements

Figure 1.7 shows two successive displacements: displacement P1P2 followed by

displacement P2P3. It is clear that these two displacements together have the

same nett effect as one displacement, viz. P1P3. It is natural to express this

equivalence as follows:

P1P3 = P1P2 + P2P3. (1.2)

1.3.4 Dimensions

Unless otherwise indicated, distance will always be given in the SI unit, viz. metre.

Problems

P1.3.1. P and Q are points with coordinates (3,−2, 1) and (−1, 1, 1) respectively.

(a) What is the distance from P to Q?
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(b) Which angles does the directed line segment PQ make with the positive

direction of the axes of coordinates?

P1.3.2. A helicopter flies 100 metres vertically upwards, then 700 metres horizon-

tally south and then 300 metres horizontally east. How far is the helicopter from

its starting point?

P1.3.3. ABCD is the floor and EFGH the ceiling of a cubic room; all the

measurements are 4 metres and E, F , G and H lie vertically above A, B, C and

D respectively. L is a point in the centre of the ceiling and J is the centre point

of the floor. Choose the positive directions of the X, Y and Z axes to coincide

with the forward direction of directed line segments AB, AD and AE respectively.

Carry out the following for each of the directed line segments LD, JH, DF , HF ,

AE, CB, CD and AG:

1. Name the directed line segments on the floor and the ceiling, which are the

projections of the above line segments.

2. Calculate the lengths and direction cosines of the directed line segments with

regard to the XY Z system.

3. Calculate the angles that the line segments form with the X, Y and Z axes.

P1.3.4. In problem 3 there is a spider at A that notices an ant at point M on the

ceiling; the angle of elevation of the ant at A is θ where cos θ = 3√
17

and M lies

vertically above a line that forms an angle of 45◦ with the X axis.

1. Calculate

(a) The coordinates of M .

(b) The distance between A and M .

(c) The angles that AM forms with the positive direction of the coordinates.

2. The spider could use a large number of directed line segments to reach the

ant, for example, AD +DH +HM .

(a) List four more possibilities.
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(b) Which of these possibilities will give the spider the shortest distance to

the ant?

(c) Is this the smallest of all possiblities? If not, find the directed line

segments that represent the shortest distance if the spider maintains

constant contact with the floor, walls and ceiling.

P1.3.5. Point P (2, 5, d) is a distance of 5 metres from Q(−1, 1, 4). Find d.

P1.3.6. The positive X axis is horisontal and directed to the east, the positive

Y axis is vertical and directed upwards and the positive Z axis is horizontal and

directed to the south. An observer sits on the ground at the origin. The top-most

point of the church steeple has an angle of elevation of 30◦ with regard to the

origin and lies in a direction 50◦ east of south. Which angles does the line from

the observer to the steeple’s top-most point form with the coordinate axes?

P1.3.7. O is the origin and P is another point. Segment OP forms an angle of

60◦ with the positive X axis and an angle of 45◦ with the positive Y axis. What

could be said about the angle that it forms with the positive Z axis?

1.4 Vectors

We saw in §1.3 that displacement has both magnitude and direction. Many other

entities of the same nature are found in the physical sciences, for example, force,

velocity, acceleration, electrical field and magnetic field. As with displacement, it

is convenient to represent these quantities on a chosen scale by means of a directed

line segment or arrow. We refer to these quantities as vectors.

1.4.1 Definition

A vector is a quantity that can be represented by a directed line segment or arrow,

which has specific magnitude and direction.

Consider for instance arrow OP in Figure 1.8, drawn from O in a NW direction.

It is 4cm long. This arrow can now be used to represent:
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(a) A displacement of 400 kilometres in a NW direction on a scale of 1cm :

100km.

(b) A force of 16 Newton in a NW direction on a scale of 1cm : 4 Newton.

(c) A velocity of 4 metres per second in a NW direction on a scale of 1cm : 1

metre per second.

(d) A magnetic field of 4.0 × 10−5 tesla in a NW direction on a scale of 1 cm :

10−5.

Figure 1.8

1.4.2 Scalar

A scalar is a quantity that can be specified by a single number (positive, negative

or zero). Examples of such quantities are time, temperature, energy and mass.

1.4.3 Notation

The same notation used in §1.3.1 for displacements will be used for vectors.

1.4.4 Localised Vectors

It is sometimes customary to represent a vector by means of three symbols (x, y, z)

where x, y and z are the coordinates of the end point of the arrow representing
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a vector. In this case we assume implicitly that the vector is localised, that is,

that the initial point of the arrow is at the origin. In mechanics we deal with

vectors that do not necessarily take effect at the origin. Think about a group of

people pushing a car; the forces (vectors) take effect where their hands and the

car make contact. Therefore, we prefer to think about vectors in terms of directed

line segments because we can then represent the magnitude, direction and point of

action visually.

1.5 Algebraic rules for vectors

The algebraic rules for vectors are introduced on the basis of the geometric proper-

ties of displacements. From the definition of other vector quantities (for example,

velocity, acceleration, momentum, force) it could then be shown with the necessary

mathematical tools that these rules apply to all vector quantities.

1.5.1 Equality of vectors

Two vectors a and b are called equal vectors if they have the same magnitude and

direction. This means that they are represented by two arrows on the same scale

with the same length and direction (Figure 1.9). We shall indicate this equality

as follows:

a = b. (1.3)

1.5.2 Negative vectors

In Figure 1.10, a and b are the same magnitude but their directions are in oppo-

sition. We then say that a and b are opposites, and we indicate this as follows:

a = −b. (1.4)

The following is evident from this definition:

−(−a) = a. (1.5)
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Figure 1.9

Figure 1.10

1.5.3 Vector sum

The sum of two given vectors a and b is a third vector c, which is obtained as

though they were successive displacements. We denote the vector sum in Figure

1.11 as follows:

c = a+ b. (1.6)

Note the order: vector a appears first in a+b, so it is represented first ; vector b’s

representation is then drawn so that its initial point coincides with the end point

of a’s representation. The algebraic characteristics of the vector sum can all be

obtained from the definition contained in Figure 1.11:

(a) The vector sum is closed—the sum a+ b is also a vector.

(b) The vector sum is commutative—it follows from elementary geometric con-
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Figure 1.11

siderations in Figure 1.12 that

a+ b = b+ a. (1.7)

Figure 1.12

(c) The vector sum is associative—it follows from Figure 1.13 that

d = (a+ b) + c = a+ (b+ c). (1.8)
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Figure 1.13

1.5.4 Null vector

A displacement a followed by −a results in no displacement—this is called the null

displacement. Similarly, the sum of any vector and its opposite produces a vector

the magnitude of which is zero and the direction of which cannot be determined.

We call this vector the null vector and indicate it by 0 (0 in written work).

a+ (−a) = 0. (1.9)

If the null vector is added to any vector, the vector will obviously remain un-

changed:

a+ 0 = a. (1.10)

1.5.5 Vector difference

The difference between two vectors a and b is defined as

a− b .
.= a+ (−b) (1.11)

and is illustrated graphically in Figure 1.14. In this figure it is useful to remember

the definition with reference to △OAB. It is important to note that Figure 1.14

also contains a vector sum:

(a− b) + b = a. (1.12)
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Figure 1.14

This fact, together with properties (1.7) and (1.8) of the vector sum, implies that

vector expressions can be manipulated like scalar expressions with regard to the

+ and − operations.

1.5.6 Product of scalar and vector

The vector sum a + a + a is a vector that has the same direction as a, and its

magnitude is three times that of a. It is natural to represent this sum by 3a. This

leads us to the following definition. For p > 0, we define pa as a vector as follows:

pa ‖ a; |pa| = p |a|
(−p)a = −(pa)

0a = 0

(1.13)

This definition is represented visually in Figure 1.15 for p > 1. The algebraic

properties of this product once again follows from definition.

(a) Associativity—it follows from (1.13) that

p(qa) ‖ qa ‖ a

and

|p(qa)| = p |qa| = p (q |a|) = (pq) |a|
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Figure 1.15

and hence

p(qa) = (pq)a. (1.14)

(b) Distributivity—it follows from Figure 1.16 that since

(i) a ‖ pa,

(ii) b ‖ pb,

(iii)
|pa|
|a| =

|pb|
|b| = p,

that △OAB en △O′A′B′ are similar. It then follows that:

Figure 1.16

c ‖ (a+ b);
|c|

|a+ b| ;
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that is,

c = p(a+ b)

and hence

p(a + b) = pa+ pb. (1.15)

The properties (a) and (b) imply that the product of a scalar with a vector

can be manipulated in the same way as the product of two scalars.

1.6 Geometric applications

Since the definitions in §1.5 implicitly contain the properties of triangles, a great

number of geometric problems pertaining to triangles can be solved in a compact

way in terms of vector operations. We shall now discuss some examples.

Examples

V1.6.1. Show that if the midpoints of the successive sides of a quadrilateral are

connected, a parallelogram will be obtained.

Solution: We begin by writing the given information in vector form. The fact

that the line segments AB, BC, CD and DA are halved by E, F , G and H

respectively is made evident in Figure 1.17 by means of line segments of the same

length and direction, representing equal vectors. The fact that ABCD is a closed

Figure 1.17
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figure leads immediately to the following vector sum:

2a+ 2b+ 2c+ 2d = 0.

If the vector equation is now multiplied by 1
2

on both sides, we find with the help

of (1.15) that:

a+ b+ c+ d = 0.

Since we may manipulate the vectors in this equation with regard to the + and −
operations as we would scalars, we can rewrite this equation as

d+ a = −b− c.

If we inspect Figure 1.17, it follows immediately that e = f and we have show

that EFGH is a parallelogram.

V1.6.2. Show that the line that joins the centre points of two sides of a triangle

is parallel to the third side, and that the length of this line is half that of the third

side.

Figure 1.18

Solution: With the help of the same algebraic properties as those used in the

previous problem, it follows in Figure 1.18 that

d = a+ b =
1

2
(2a+ b) =

1

2
c.

V1.6.3. Here we derive an auxiliary result that enables us to represent the fact
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that three points lie on a straight line in vector form. In Figure 1.19, A, B, and

Figure 1.19

C are on a straight line so that

BC = αBA.

The vector differences in △OBC and △OBA are substituted in this equation:

c− b = α(a− b).

If c is now made the subject of the equation (for instance), a very useful result

follows:

c = αa− (1− α)b. (1.16)

We easily establish that we can also write the equation as

a = βb− (1− β)c.

As in (1.16), the sum of the coefficients on the right is equal to 1.

V1.6.4. Show that the diagonals of a parallelogram bisect each other.

Solution: In Figure 1.20, A, P and C lie on a straight line:

AP = αAC.
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Figure 1.20

Since D, P , and B are also on a straight line, it follows from (1.16) that:

βb+ (1− β)a = α(b+ a).

The algebraic properties of vectors now allow us to collect the terms in a and b:

(β − α)b = (α+ β − 1)a.

Since a and b do not have the same direction, this equation can be true only if

the null vector occurs on both sides, that is,

β − α = 0,

α + β = 1.

These simultaneous equations can be solved to obtain the values

α = β =
1

2

which then proves the result.

Problems

P1.6.1. Show graphically that −(a− b) = −a + b.

P1.6.2. A regular hexagon ABCDEF is formed by six directed line segments, all
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with the same length. Let FA and AB represent vectors a and b respectively. In

terms of a and b, find the other sides of the hexagon as well as AC, AD and AE.

P1.6.3. Consider any triangle △OAB with a point C on AB. Let a = AB,

b = OB and c = OC. It follows from (1.16) that c = λa + µb, where λ + µ = 1.

Find the values of λ and µ if

(a) C is the midpoint of AB.

(b) A is the midpoint of CB.

(c) C is between A and B with AC = 1
3
AB.

P1.6.4. If a and b are given vectors representing the diagonals of a parallelogram,

find the sides of the paralellogram.

P1.6.5. In △ABC, P , Q and R are the centre points of sides AB, BC and CA

respectively. Show that for any point O, OA+OB +OC = OP +OQ+OR.

P1.6.6. Show that there exists a triangle with sides which are the medians of any

given triangle.

P1.6.7. Show that the medians of a triangle meet in a common point which is a

point of trisection of the medians.

P1.6.8. In Figure 1.21, ABCD is a parallelogram with P and Q the midpoints

of sides BC and CD respectively. Show that AP and AQ trisect diagonal BD at

points E and F .

1.7 Component form of vectors

1.7.1 Unit vector

Consider the vector

q =

(

1

a

)

a.

It follows from definition that

|q| =
(

1

a

)

|a| = 1.
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Figure 1.21

Vector q is thus a vector with the same direction as a and magnitude 1. We shall

refer to this as a unit vector and indicate it by â. We shall also often use the

shorthand method of writing
a

a
instead of

(

1

a

)

a, that is,

â =

(

1

a

)

a .
.=

a

a
. (1.17)

It is sometimes useful to rewrite (1.17) as

a = aâ. (1.18)

In this form we can read directly the magnitude of a on the right, while vector â

is associated only with the direction of â. It is very convenient to write vector a

formally in this way as the “product of magnitude a and direction â”.

It is important to note that â is dimensionless: if a is a displacement given in

metres, the dimensions of both a and a in (1.18) are those of displacement, and â

must therefore be dimensionless. It is however true that â indicates the scale in

which the vector is represented. If the scale used in Figure 1.8 is 1 cm : 4 Newton,

for instance, PQ will represent 16 Newton because it is 4 cm long.

The unit vectors in the Cartesian coordinate directions are very important. We

shall refer to these as (x̂, ŷ, ẑ) and they are illustrated in Figure 1.22. Other nota-

tions that occur in literature are (i, j,k), (e1, e2, e3) or (ux,uy,uz), for instance.
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Figure 1.22

1.7.2 Components and projections of vectors

We became acquainted with components of displacements in §1.3.2. It is useful

to focus our attention here on triangle △P1QP2, found in Figure 1.6(b) and re-

produced in Figure 1.23. From the latter figure we have the following for the x

component of the displacement:

ax = a cosα

Following the above, we define the e component (for instance) of any vector a as

Figure 1.23

the product of a’s magnitude with the cosine of the smallest angle between a and

ê’s forward directions, and we denote it as ae. Therefore, for the vectors in Figure
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1.24, we write:

ae .
.= a cos θ. (1.19)

The projection of a in the e direction is a vector indicated by ae and defined as

Figure 1.24

ae = aeê. (1.20)

The geometric association between the representations of vectors and the repre-

sentations of their projections in a given direction is shown for different values of

θ in Figure 1.25. Note the association between the sign of a vector’s e component

Figure 1.25

and the direction of its e projection: for an acute (obtuse) θ, the component is

positive (negative) and the projection is parallel (opposite) to the vector.
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1.7.3 Summation of vectors in terms of components

The usefulness of the components of a vector is evident from the following impor-

tant result:

Theorem 1. The e component of the vector sum of two vectors is equal to the

sum of the e components of the vectors.

Figure 1.26

Proof. The following is valid in Figure 1.26:

ce = ae + be.

It then follows from definition (1.20) that

ceê = aeê + beê

The algebraic properties of the product of a scalar and a vector allow us to collect

the terms in ê on the right-hand side:

ceê = (ae + be)ê.

Since the magnitudes of the vectors on both sides of the equation must be equal,

the required result follows:

c = a+ b =⇒ ce = ae + be. (1.21)
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1.7.4 Component form

In Figure 1.27, the representation of vector a is shown with a chosen reference

system. It is evident that a is equal to the sum of its x, y and z projections:

a = axx̂+ ay ŷ + az ẑ. (1.22)

We shall refer to (1.22) as the component form of a vector. Since the components

of a are shown explicitly in this form, it will become obvious that there are huge

advantages to this representation of a vector. In fact, we can now reformulate a

number of algebraic properties of vectors in terms of the components of vectors.

(a) Magnitude and Direction: If Figure 1.27 is compared to Figure 1.6(b), it is

evident that the results in equations (1.1b) and (1.1c) can be obtained for

any vector. The magnitude and direction of a can therefore be calculated as

in (1.1), that is, the vector in (1.22) has the magnitude

a =
√

a2x + a2y + a2z, (1.23a)

while the direction thereof is contained in the direction cosines

ℓ .
.= cosα =

ax
a

m .
.= cos β =

ay
a

n .
.= cos γ =

az
a

(1.23b)

(b) Vector Equality: Let

a = b. (1.24a)

We write both vectors in component form:

axx̂+ ay ŷ + az ẑ = bxx̂+ by ŷ + bz ẑ.
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Standard manipulation yields

(ax − bx)x̂+ (ay − by)ŷ + (az − bz)ẑ = 0.

It follows from (1.19) that all the components of the null vector are zero,

and hence

ax = bx, ay = by, az = bz. (1.24b)

Vector equality implies that the corresponding components of vectors are the

same.

(c) Vector Sum: Let

c = a+ b. (1.25a)

We write the vectors on the right-hand side in component form and again

perform standard manipulation:

c = (axx̂+ ay ŷ + az ẑ) + (bxx̂+ by ŷ + bz ẑ)

= (ax + bx)x̂+ (ay + by)ŷ + (az + bz)ẑ.

It follows from (1.24) that

cx = ax + bx, cy = ay + by, cz = az + bz. (1.25b)

The Cartesian components of vectors add in the same way as the vectors

themselves; a result that is obviously only a special case of the theorem in

§1.7.3.

(d) Product of a Scalar and a Vector : In terms of the components of a, we have

λa = λ(axx̂+ ayŷ + az ẑ.

From the algebraic properties of the product of a scalar and a vector then

follows

λa = (λax)x̂+ (λay)ŷ + (λaz)ẑ (1.26)

Hence, if a vector is multiplied by a scalar λ each of its components is mul-
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tiplied by the factor λ.

(e) Components of Unit Vectors: Consider

â =

(

1

a

)

a =
(ax
a

)

x̂+
(ay
a

)

ŷ +
(az
a

)

ẑ

= ℓx̂+mŷ + nẑ.

(1.27)

The components of â are the direction cosines of a.

1.7.5 Position Vector

Figure 1.28

The position vector of P , indicated by r, is the vector that links the origin to

P , as shown in Figure 1.28. It is evident that r is a displacement. It follows from

(1.1a) for the components of r that:

rx = x− 0, ry = y − 0, rz = z − 0.

The position vector of P is thus a vector, the components of which are the coordi-

nates of P , that is,

r = xx̂+ yŷ + zẑ. (1.28)

Of course we can also write r formally in the form

r = rr̂, (1.29)
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where

r =
√

x2 + y2 + z2 (1.30)

is the distance between O and P , and where r̂ is a unit vector with the same direc-

tion as r. It is convenient to deal with displacements in terms of position vectors.

In Figure 1.29, we have the following for the displacement from P1(x1, y1, z1) to

P2(x2, y2, z2)

P1P2 = r2 − r1,

where

r1 = x1x̂+ y1ŷ + z1ẑ, r2 = x2x̂+ y2ŷ + z2ẑ,

so that

P1P2 = (x2 − x1)x̂+ (y2 − y1)ŷ + (z2 − z1)ẑ. (1.31)

Equation (1.31) is of course only an alternative way of writing (1.1a).

Figure 1.29

Examples

V1.7.1. Find the magnitude of the displacement from P1(−1, 3, 4) to P2(2,−3, 2)

as well as the angles that the directed line segment P1P2 forms with the coordinate

directions.

Solution: In Figure 1.29, the following applies to this special case

r1 = −x̂+ 3ŷ + 4ẑ; r2 = 2x̂− 3ŷ + 2ẑ.
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The displacement is then given in component form by

a .
.= P1P2 = r2 − r1 = {2− (−1)}x̂+ {−3− 3}ŷ + {2− 4}ẑ

= 3x̂− 6ŷ − 2ẑ.

The magnitude of the displacement is obtained by means of (1.23a):

a =
√

32 + (−6)2 + (−2)2 = 7

The direction cosines of a are obtained from (1.23b):

ℓ =
3

7
; m =

−6

7
; n =

−2

7
.

The angles that a forms with the positive X, Y and Z directions then are

α = 64.62◦; β = 149.00◦; γ = 106.60◦.

V1.7.2. Find, in component form, a unit vector with the same direction as the

position vector of point (2,1,-2).

Solution: We know that the components of the position vector of a point is

given by the coordinates of the point. Therefore, in this case we have

r = 2x̂+ ŷ − 2ẑ.

The magnitude of this vector follows immediately from (1.30):

r =
√

22 + 12 + (−2)2 = 3.

It follows from definition that

r̂ =
r

r
=

2x̂+ ŷ − 2ẑ

3

=

(

2

3

)

x̂+

(

1

3

)

ŷ −
(

2

3

)

ẑ.
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Problems

P1.7.1. Which requirements must â and b̂ meet so that â+ b̂ is also a unit vector?

P1.7.2. Solve the equation r = a1x̂+a2ŷ for a1 and a2 if r is a vector of magnitude

10, which is found in the first quadrant of the XY plane and forms an angle of

30◦ with the positive X direction.

P1.7.3. Find the magnitudes of the following vectors as well as the angles that

they form with the coordinate directions:

(a) −14x̂+ 7ŷ + 14ẑ

(b) −3x̂+ 6ŷ − 2ẑ

(c) 8x̂− 8ŷ + 14ẑ

P1.7.4. Vectors a, b and c are the position vectors of points (3,−1, 4), (−2, 4,−3)

and (1, 2,−1) respectively. Find:

(a) 2a− b+ 3c in component form,

(b) |a + b+ c|,

(c) |3a− 2b+ 4c| and

(d) a unit vector with the same direction as 3a− 2b+ 4c.

P1.7.5. A particle is displaced from point (1, 2, 3) over a distance of 6 metres in a

direction, the direction cosines of which are given as −0.81, 0.32 and −0.49. What

are the coordinates of the end point of the displacement?

P1.7.6. Let a = x̂− 2ŷ + 3ẑ, b = 3x̂+ 4ŷ − ẑ and c = −2x̂− 6ŷ + 4ẑ.

(a) Show that these vectors can form the sides of a triangle.

(b) Calculate the lengths of the medians of the triangle.

P1.7.7. Find the equations of the straight line between points (2, 3,−1) and

(4,−2, 0).
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1.8 Scalar product

1.8.1 Definition

The scalar product of two vectors a and b is indicated by a · b and defined as the

product of their magnitudes and the cosine of the smallest angle between their

forward directions. Therefore, for the two vectors respresented in Figure 1.30, we

have

a · b .
.= ab cos θ (1.32)

In the literature, this product is often referred to as the inner product, the dot

Figure 1.30

product or the point product. All three names may occur in the rest of these notes.

1.8.2 Special cases

(a) For the scalar product of a vector with itself, we have

a · a = (a)(a) cos 0◦ = a2.

This product is also often indicated in the literature as a2 (a2 in written

work) so that

a2 .
.= a · a = a2. (1.33)

(b) It follows from definition (1.32) that the scalar product a · b is equal to zero



36 CHAPTER 1. VECTOR ALGEBRA

if

a = 0 or b = 0 or a ⊥ b. (1.34)

(c) If ê and f̂ are two unit vectors, and θ is the angle between their forward

directions, it follows that

ê · f̂ = (1)(1) cos θ = cos θ. (1.35)

(d) It follows for the Cartesian unit vectors that for instance

x̂ · x̂ = (1)(1) cos 0◦ = 1

and

x̂ · ŷ = (1)(1) cos 90◦ = 0.

Now we can easily write down all the possible scalar products (up to inter-

changes within the scalar product) between the Cartesian unit vectors:

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1

x̂ · ŷ = x̂ · ẑ = ŷ · ẑ = 0
(1.36)

(e) For vectors a and ê in Figure 1.24, we have

a · ê = (a)(1) cos θ.

It then follows from definition (1.19) that

a · ê = ae. (1.37)

1.8.3 Algebraic Properties of the Scalar Product

(a) The scalar product is not closed—in definition (1.32) we see that two vectors

are mapped to a scalar by means of the scalar product.

(b) The scalar product is commutative—since scalars are commutative with re-
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spect to multiplication, it follows for the vectors in Figure 1.30 that

b · a = ba cos θ = ab cos θ,

so that

b · a = a · b. (1.38)

(c) The scalar product is associative with regard to the product of a scalar

and a vector—since scalars are associative and commutative with regard to

multiplication, it follows for the vectors in Figure 1.31 that

(αa) · (βb) = (αa)(βb) cos θ = (αβ)(ab cos θ).

We see therefore, that scalars that occur in a scalar product can be manip-

Figure 1.31

ulated as if they occur in a product of scalars:

(αa) · (βb) = (αβ)a · b (1.39)

(d) The scalar product is distributive—from (1.21), it follows in Figure 1.32 that

dc = ac + bc.

It then follows from (1.37) that
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Figure 1.32

d · ĉ = a · ĉ+ b · ĉ.

If we multiply this equation by c, we can use property (c) above to write the

equation in the following form:

d · (cĉ) = a · (cĉ) + b · (cĉ)

Since cĉ = c, the distributivity of the scalar product follows immediately:

(a+ b) · c = a · c+ b · c (1.40)

1.8.4 Scalar product in terms of the components of vectors

We now write a · b in terms of the components of a and b by substituting the

component form of both vectors into the scalar product, and by using properties
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(1.38) to (1.40) as well as scalar products (1.36):

a · b = (axx̂+ ay ŷ + az ẑ) · (bxx̂+ by ŷ + bz ẑ)

= (axx̂) · (bxx̂) + (axx̂) · (by ŷ) + (axx̂) · (bz ẑ)
+ (ay ŷ) · (bxx̂) + (ayŷ) · (by ŷ) + (ay ŷ) · (bz ẑ)
+ (az ẑ) · (bxx̂) + (az ẑ) · (by ŷ) + (az ẑ) · (bz ẑ)

= (axbx)x̂ · x̂+ (axby)x̂ · ŷ + (axbz)x̂ · ẑ
+ (aybx)ŷ · x̂+ (ayby)ŷ · ŷ + (aybz)ŷ · ẑ
+ (azbx)ẑ · x̂+ (azby)ẑ · ŷ + (azbz)ẑ · ẑ

= axbx(1) + axby(0) + axbz(0)

+ aybx(0) + ayby(1) + aybz(0)

+ azbx(0) + azby(0) + azbz(1)

Here we obtain a very important result :

a · b = axbx + ayby + azbz (1.41)

Together with definition (1.32), this result enables us to determine the angles

between the lines in the space and to solve a large number of geometric problems

in an algebraic way.

Examples

V1.8.1. If a = 3x̂− 5ŷ + 3ẑ and b = −2x̂+ ŷ + 2ẑ, find a · b.
Solution: From (1.41) we have

a · b = (3)(−2) + (−5)(1) + (3)(2)

= −6− 5 + 6

= −5

V1.8.2. Determine the component of a = 9x̂− 3ŷ + 6ẑ in the direction of vector

e = 4x̂+ 2ŷ − 4ẑ.
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Solution: We first determine a unit vector with the same direction as e:

e =
√

(4)2 + (2)2 + (−4)2 = 6

and hence

ê =
e

e
=

(

2

3

)

x̂+

(

1

3

)

ŷ −
(

2

3

)

ẑ.

From (1.37) it then follows that:

ae = a · ê = (9)

(

2

3

)

+ (−3)

(

1

3

)

+ (6)

(

−2

3

)

= 6− 1− 4

= 1.

V1.8.3. Find the angle which the line between the points (2, 1, 2) and (3, 4, 0)

spans at the origin.

Solution: Firstly, we write a and b in Figure 1.33 in component form:

a = 2x̂+ ŷ + 2ẑ, b = 3x̂+ 4ŷ.

By combining (1.32) and (1.41), we then have

Figure 1.33
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cos θ =
a · b
ab

=
(2)(3) + (1)(4) + (2)(0)

(3)(5)

=
2

3
,

and hence

θ = 48.19◦.

Problems

P1.8.1. Find the scalar product between the following vectors:

(a) 3x̂− 5ŷ − 2ẑ and −6x̂+ 7ŷ − ẑ,

(b) x̂− 2ŷ + 3ẑ and ŷ − ẑ,

(c) 2x̂+ ŷ and 2x̂− ŷ.

P1.8.2. Find the angles between:

(a) 2x̂− 3ŷ + ẑ and 2x̂− 6ŷ,

(b) the position vectors of the points with coordinates (3, 0, 5) and (3,−2,−2),

(c) lines AB and AC where A, B and C are points with coordinates (2,−1, 3),

(3,−2, 7) and (1,−1, 6) respectively, and

(d) two line segments with direction cosines
{

2
3
, 1
3
,−2

3

}

and
{

1
3
, 2
3
, 2
3

}

.

P1.8.3. Find the angle between two diagonals of a cube.

P1.8.4. Write 2a+ 3b+ 4c as the scalar product of two vectors.

P1.8.5. Show that

(

a

a2
− b

b2

)2

=
(a− b)2

a2b2
.

P1.8.6. Find the components of a vector with magnitude 3 which forms equal

angles with −x̂, −ŷ en ẑ.
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P1.8.7. Show that vectors a = 3x̂− 2ŷ + ẑ, b = x̂− 3ŷ + 5ẑ and c = 2x̂+ ŷ − 4ẑ

form the side of a right-angled triangle.

P1.8.8. Find, in component form, the projections of a = x̂− 2ŷ + ẑ respectively

parallel and perpendicular to b = 4x̂− 4ŷ + 7ẑ.

P1.8.9. The vertices of a triangle have a, b and c as position vectors. Show that

angle θ at the vertex with position vector c is given by

cos θ =
(a− c) · (b− c)

∣

∣

(

(a− c) · (a− c)
)(

(b− c) · (b− c)
)∣

∣

1

2

.

P1.8.10. It is given that ê, f̂ and ê− f̂ are all unit vectors. Use the scalar product

to obtain further information about ê and f̂ .

P1.8.11. Vector ê− 2f̂ has a magnitude of 2; ê and f̂ are unit vectors. Find the

angle between ê and f̂ .

P1.8.12. Under which conditions is a · c = b · c true?

P1.8.13. If a = (a · b)b what could be said about b?

P1.8.14. Find the projection of r = 5x̂+ 2ŷ − 3ẑ on the XY plane.

P1.8.15. The vector ax̂− 2ŷ + ẑ is perpendicular to vector x̂− 2ŷ − 3ẑ. Find a.

P1.8.16. Vectors a+ b and a− b are perpendicular to each other. Use the scalar

product to reach a conclusion about the magnitudes of a and b.

P1.8.17. Find the projection of 6x̂− 6ŷ − 7ẑ on

(a) the Y axis, and

(b) 3ŷ − 4ẑ.

P1.8.18. Unit vector ê forms angles of 45◦, 60◦ and 120◦ with the X, Y and Z

axes respectively. Find the e component of vector x̂− ŷ − ẑ.

P1.8.19. Use the scalar product to prove the cosine rule.
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P1.8.20. Prove that an angle inscribed in a semi-circle is a right angle.

P1.8.21. ABCD is a parallelogram. Show that AB
2
+ BC

2
+ CD

2
+ DA

2
=

AC
2
+BD

2
.

P1.8.22. Prove the identity cos(α − β) = cosα cos β + sinα sin β by using the

scalar product between two unit vectors in the XY plane.

P1.8.23. Find the shortest distance between point (4, 6,−4) and the line between

points (2, 2, 1) and (4, 3,−1).

1.9 Vector product

1.9.1 Definition

The vector product of a and b is indicated by a× b and it is a vector, which has

• its magnitude as the product of the magnitudes of a and b and the sine of

the smallest angle between their forward directions, and

• a direction that is established as follows: if the spiral part of a corkscrew

is placed perpendicular to both a and b and the handle of the corkscrew is

turned along the shortest route from a to b, the spiral part moves in the

direction of a× b.

In Figure 1.34, where a and b both lie on the plane of the page, and n̂ is directed

perpendiculary out of the page, we therefore have

a× b .
.= (ab sin θ)n̂ (1.42)

It is very important to note the role that the order of the vectors plays in the

vector product: when establishing the direction of the product, the handle of the

corkscrew is rotated from the vector that occurs first in the product to the vector

that occurs last.
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Figure 1.34

1.9.2 Special cases

(a) For two parallel or antiparallel vectors, as in Figure 1.35, the following applies

|a× b| = ab sin 0◦ = 0 or |a× b| = ab sin 180◦ = 0,

and hence

a× b = 0. (1.43)

A special case of this is

Figure 1.35

a× a = 0. (1.44)

(b) For the Cartesian unit vectors, shown in Figure 1.36, we know from (1.44)

that any vector product of two identical unit vectors is equal to the null
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vector. For two different vectors we for instance have

x̂× ŷ = (1)(1) sin 90◦ẑ.

Figure 1.36

We can easily establish all the possible mutual vector products (up to inter-

changes within the product) between the three unit vectors:

x̂× x̂ = 0 ŷ × ŷ = 0 ẑ × ẑ = 0

x̂× ŷ = ẑ ŷ × ẑ = x̂ ẑ × x̂ = ŷ
(1.45)

1.9.3 Algebraic Properties of the Vector Product

(a) The vector product is closed : The vector product of two vectors is by defi-

nition also a vector.

(b) The vector product is anticommutative: From definition (1.42) follows for

the vector in Figure 1.34 that

b× a = ba sin θ(−n̂).

Therefore, we have the extraordinary property of the vector product that

the interchange of the two vectors which occurs in it, changes the sign of the

product:

b× a = −a× b. (1.46)
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It is obvious that we shall have to take note of the order of the vectors that

occur in the vector product. If we had used the reverse order in the fourth

relation in (1.45), we would have had ŷ × x̂ = −ẑ. (Verify that this result is

also obtained directly from definition (1.42).)

(c) The vector product is associative with regard to multiplication with scalars:

In Figure 1.37, we have

(αa)× (βb) = (αa)(βb) sin θn̂ = (αβ)ab sin θn̂,

where we used the properties of the product of a scalar and a vector in the

Figure 1.37

last step. The associativity, as described above, follows immediately:

(αa)× (βb) = (αβ)a× b (1.47)

(d) The vector products with a (for instance) of vectors of which projections

perpendicular to a are identical, are equal. In Figure 1.38, a and b lie in the

plane of the page, n̂ points perpendicularly out of the page, and b⊥ is the

projection of b perpendicular to a. It then follows that

a× b = a(b sin θ)n̂ = a |b⊥| n̂ = a |b⊥| sin 90◦n̂,

and hence

a× b = a× b⊥. (1.48)
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For vector c, it then follows that

Figure 1.38

a× c = a× c⊥ = a× b⊥ = a× b.

(e) The vector product is distributive: We now want to show that

a× (b+ c) = a× b+ a× c. (1.49)

Although this properties of the the vector product looks just like that of the

product of scalars, in view of anticommutativity of the vector product, it is

very important to note the orders in 1.49: the pairs {a, b} and {a, c} occur

in the same order on both sides of the equation.

(i) First, we show that (1.49) applies in the special case where a is perpen-

dicular to both b and c. As shown in Figure 1.39, b and c both lie in

the S plane, which is perpendicular to a. As in Figure 1.12, b+ c can

be represented by the diagonal of a parallelogram, which lies in S, the

sides of which represent b and c respectively.

The magnitudes of the products that occur in (1.49) can now be written
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as follows:

|a× b| = ab sin 90◦ = a |b|
|a× c| = ac sin 90◦ = a |c|

|a× (b+ c)| = a |b+ c| sin 90◦ = a |b+ c|

Since all the products in (1.49) contain a and are therefore perpendic-

ular to a, all the vectors that are obtained from the products also lie

in S. Therefore, vectors b, c and b + c are in effect rotated through

90◦ in S and increased in magnitude by a factor a. This means that

a× (b+c) is the diagonal of a parallelogram with sides a×b and a×c.

The vector sum in (1.49) follows immediately.

(ii) Now we show that (1.49) also applies in general. As shown in Figure

1.40, we can regard b and c both as the sum of their respective projec-

tions perpendicular to a (indicated by the subscript ⊥) and parallel to

a (indicated by the subscript ‖), that is,

b = b⊥ + b‖, c = c⊥ + c‖.

Consider

d .
.= b+ c

= (b⊥ + c⊥) + (b‖ + c‖)

= d⊥ + d‖,

where d⊥ = b⊥ + c⊥ and d‖ = b‖ + c‖ are the respective projections of

d perpendicular and parallel to a. It follows from (1.48) that

a× d = a× d⊥

= a× (b⊥ + c⊥).

In the last expression we see the sum of two vectors that are both

perpendicular to a. In (i) we saw that the distributivity of the vector



1.9. VECTOR PRODUCT 49

Figure 1.40

product is valid in such a case, and with the help of (1.48) we show that

(1.49) applies in general:

a× (b+ c) = a× d

= a× b⊥ + a× c⊥

= a× b+ a× c.

1.9.4 Component form of the Vector Product

We now write a×b in terms of the components of a and b by introducing the com-

ponent form of both vectors into the vector product and then using characteristics
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(1.46) as well as the vector products (1.45):

a× b = (axx̂+ ayŷ + az ẑ)× (bxx̂+ by ŷ + bz ẑ)

= (axx̂)× (bxx̂) + (axx̂)× (by ŷ) + (axx̂)× (bz ẑ)

+ (ay ŷ)× (bxx̂) + (ay ŷ)× (by ŷ) + (ayŷ)× (bz ẑ)

+ (az ẑ)× (bxx̂) + (az ẑ)× (by ŷ) + (az ẑ)× (bz ẑ)

= axbx(x̂× x̂) + axby(x̂× ŷ) + axbz(x̂× ẑ)

+ aybx(ŷ × x̂) + ayby(ŷ × ŷ) + aybz(ŷ × ẑ)

+ azbx(ẑ × x̂) + azby(ẑ × ŷ) + azbz(ẑ × ẑ)

= axbx0+ axby ẑ + axbz(−ŷ)

+ aybx(−ẑ) + ayby0+ aybzx̂

+ azbxŷ + azby(−x̂) + azbz0

We then collect the terms in x̂, ŷ and ẑ respectively in order to write the vector

product in component form:

a× b = (aybz − azby)x̂+ (azbx − axbz)ŷ + (axby − aybx)ẑ. (1.50)

Remark. A convenient way of remembering this result is by writing it in the form

of a 3× 3 determinant :

a× b =

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

ax ay az

bx by bz

∣

∣

∣

∣

∣

∣

∣

. (1.51)

The determinant is a concept from linear algebra. A 3 × 3 matrix C is a mathe-

matical entity with nine elements ordered as follows:

C =







c11 c12 c13

c21 c22 c23

c31 c32 c33







Note that cij is the element in the i-th row and j-th column. The determinant of
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this matrix is then denoted and defined as follows:

detC =

∣

∣

∣

∣

∣

∣

∣

c11 c12 c13

c21 c22 c23

c31 c32 c33

∣

∣

∣

∣

∣

∣

∣

= c11c22c33 + c12c23c31 + c13c21c32

− c11c23c32 − c13c22c31 − c12c21c33

The 3× 3 matrix is of course only a special case of a n× n matrix.

As in the case of the scalar product, (1.46) and (1.51) can be used together to

solve geometric problems, especially in cases where the sine relations of angles are

used.

Examples

V1.9.1. Find, in component form, a unit vector perpendicular to both a = x̂ −
ŷ + 3ẑ and b = −x̂− ẑ.

Solution: We know that c .
.= a× b is perpendicular to both a and b, and that

ĉ = c/c is a unit vector with the same direction as c. We first calculate c by the

use of (1.51):

c = a× b

=

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

1 −1 3

−1 0 −1

∣

∣

∣

∣

∣

∣

∣

= [(−1)(−1)− (0)(3)]x̂+ [(3)(−1)− (1)(−1)]ŷ + [(1)(0)− (−1)(−1)]ẑ

= x̂− 2ŷ − ẑ

The magnitude of c is obtained from (1.23a)

c =
√

12 + (−2)2 + (−1)2 =
√
6,
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and hence

ĉ =
1√
6
(x̂− 2ŷ − ẑ).

V1.9.2. Calculate the areas of a triangle and a parallelogram with the help of the

vector product. Solution: In Figure 1.41, it follows for the area of the parallelogram

Figure 1.41

that

Sp = ah

= ab sin θ

= |a× b| ,

and for that of the triangle

St =
1

2
ck

=
1

2
cd sinφ

=
1

2
|c× d| .

V1.9.3. Find the shortest distance from (6,−4, 4) to the line between (2, 1, 2) and

(3,−1, 4).

Solution: In Figure 1.42, we have for the shortest distance between R and PQ,

h = b sin θ =
1

a
(ab sin θ) =

1

a
|a× b| .
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Figure 1.42

We calculate this quantity with the help of (1.1) and (1.51):

a = PQ = x̂− 2ŷ + 2ẑ, b = PR = 4x̂− 5ŷ + 2ẑ

so that

a =
√

12 + (−2)2 + 22 = 3 m

and

a× b =

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

1 −2 2

4 −5 2

∣

∣

∣

∣

∣

∣

∣

= 6x̂+ 6ŷ + 3ẑ.

The required distance then is

h =
1

3
|6x̂+ 6ŷ + 3ẑ|

=
1

3

√
62 + 62 + 32

= 3 m.
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Problems

P1.9.1. If a = 2x̂− 3ŷ − ẑ and b = x̂+ 4ŷ − 2ẑ, calculate

(i) a× b,

(ii) b× a, and

(iii) (a+ b)× (a− b).

P1.9.2. If a = 3x̂− ŷ + 2ẑ, b = 2x̂+ ŷ − ẑ and c = x̂− 2ŷ + 2ẑ, calculate

(i) (a× b)× c, and

(ii) a× (b× c).

P1.9.3. Use definitions to prove that (a×b) · (a×b) = (a ·a)(b ·b)− (a ·b)(a ·b).

P1.9.4. Find a vector parallel to the XY plane and perpendicular to vector 4x̂−
3ŷ + ẑ.

P1.9.5. Find the area of a triangle with vertexes (1, 3, 2), (2,−1, 1) and (−1, 2, 3).

P1.9.6. Prove the sine rule for triangles by using the vector product.

P1.9.7. Simplify the following two expressions:

(i) (a · b)2 + (a× b)2, and

(ii) (a · b)2 − (a× b)2.

P1.9.8. Vector r lies in the XY plane and satisfies the equation x̂ × r = ẑ.

Describe the locus of the points for which r is a position vector.

P1.9.9. Prove the identity sin(α−β) = sinα cos β−cosα sin β by using the vector

product of two unit vectors in the XY plane.

P1.9.10. Simplify (a+ b) · [(b+ c)× (c+ a)].
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1.10 Multiple products

Since b × c is a vector, it can occur in a scalar product or in a vector product,

so that multiple products are formed. We shall now discuss two types of multiple

product, viz. products of the form a · (b × c) from (a scalar triple product) and

a× (b× c) (a vector triple product).

1.10.1 The Scalar Triple Product

Because (a · b) × c has no significance, a · (b × c) can be written unambiguously

as a · b× c.

A geometric significance can be given to the scalar triple product. Figure 1.43

is a three-dimensional figure, the sides of which are represented as vectors a, b

and c. Each pair of opposite planes of the figure are in other words identical

parallelograms spanned by two of the vectors a, b and c. This figure is referred

to as a parallelepiped. We know from geometric considerations that the volume

Figure 1.43

of the parallelepiped is given by the product of the area S of the base with the

perpendicular height h. We also saw in V1.9.2 that we can write S as |b× c|.
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Therefore, the volume of the figure is

V = Sh

= |b× c| (a cos θ)
= |b× c| (a · n̂)
= (|b× c| n̂) · a.

Since b × c is parallel or opposed to n̂ (the latter n the case where b and c are

interchanged in Figure 1.43), we have

V = ±a · b× c,

or

V = |a · b× c| . (1.52)

But it follows from Figure 1.43 that a, b and c may occur in any order in (1.52).

Therefore, two scalar triple products in which three vectors occur will differ at the

most by a sign. We can establish the mutual relation between the six possible

scalar triple products in which a, b and c occur by first applying (1.51) in a ·b×c,

a · b× c = (axx̂+ ay ŷ + az ẑ) ·

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

bx by bz

cx cy cz

∣

∣

∣

∣

∣

∣

∣

,

and then (1.41):

a · b× c =

∣

∣

∣

∣

∣

∣

∣

ax ay az

bx by bz

cx cy cz

∣

∣

∣

∣

∣

∣

∣

. (1.53)

The mutual relations between the scalar triple products that contain a, b and c

follows from a well-known symmetry property of the determinant, one that is easily

obtained from the definition of the determinant: if the elements of any two rows

in the determinant are interchanged, the sign of the determinant changes. For the

triple product in (1.53), this implies that its sign changes if any two vectors in the
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product are interchanged. The following follows from this:

a · b× c = c · a× b = b · c× a

= −a · c× b = −b · a× c = −c · b× a
(1.54)

We see that another way of describing the above symmetry property of the scalar

triple product is that a · b× c is invariant with regard to the interchange of the

× and the · operations.

The geometric interpretation attached to the scalar triple product enables us

to reach a very important conclusion: the scalar triple product a · b × c is equal

to zero if:

(1) a, b, c are coplanar or

(2) any two of these three vectors are multiples of each other or

(3) any two of these three vectors are equal.

Remark. Naturally, cases (2) and (3) are only special cases of (1), but it is still

good to point them out.

The latter properties of the scalar triple product as well as prescription (1.53) for

the calculation thereof enable us to solve geometric problems involving planes in

an algebraic way.

Examples

V1.10.1. Calculate a × b · c where a = x̂ + ŷ + ẑ, b = −2x̂ − ŷ + 3ẑ and

c = 3x̂− ŷ − 3ẑ.

Solution: We use the symmetries in (1.54) and result (1.51):

a× b · c = a · b× c

=

∣

∣

∣

∣

∣

∣

∣

1 1 1

−2 −1 3

3 −1 −3

∣

∣

∣

∣

∣

∣

∣

= 14
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V1.10.2. Find the equation of the plane through Q(3,−1, 2), S(1,−1,−3) and

T (4,−3, 1).

Figure 1.44

Solution: In Figure 1.44 the flat plane is shown by which triangle △QST is

contained; P (x, y, z) is an arbitrary point in the plane. The equation of the plane

is the algebraic relation between x, y and z, and we can establish this relation by

noting that (for instance) vectors p, s and t are coplanar. Therefore, we first write

these three vectors in component form,

p = QP = (x− 3)x̂+ (y + 1)ŷ + (z − 2)ẑ,

s = QS = −2x̂− 5ẑ,

t = QT = x̂− 2ŷ − 1ẑ,

after which we demand that

0 = p · s× t

=

∣

∣

∣

∣

∣

∣

∣

x− 3 y + 1 z − 2

−2 0 −5

1 −2 −1

∣

∣

∣

∣

∣

∣

∣

= 0− 5(y + 1) + 4(z − 2)− 0− 10(x− 3)− 2(y + 1).
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Therefore, the equation of the plane is

10x+ 7y − 4z = 15.

Problems

P1.10.1. Calculate (2x̂− 3ŷ) · (x̂+ ŷ − ẑ)× (3x̂− ẑ).

P1.10.2. Calculate the volume of the parallelepiped with sides a = 2x̂− 3ŷ+ 4ẑ,

b = x̂+ 2ŷ − ẑ and c = 3x̂− ŷ + 2ẑ.

P1.10.3. Determine the constant p so that vectors 2x̂ − ŷ + ẑ, x̂ + 2ŷ − 3ẑ and

3x̂+ pŷ + 5ẑ are coplanar.

P1.10.4. Find the volume of a tetrahedron, the vertexes of the base of which

are (−2, 6, 0), (3, 2, 1) and (0, 0, 5) and the apex of which is at the origin. (Hint:

volume = 1
3
base area × height)

P1.10.5. If a = λ1l+µ1m+ν1n, b = λ2l+µ2m+ν2n and c = λ3l+µ3m+ν3n,

show that

a · b× c =

∣

∣

∣

∣

∣

∣

∣

λ1 µ1 ν1

λ2 µ2 ν2

λ3 µ3 ν3

∣

∣

∣

∣

∣

∣

∣

(l ·m× n).

P1.10.6. Calculate the shortest distance between the origin and the plane that

contains the points (3,−2,−1), (1, 3, 4) and (2, 1,−2).

P1.10.7. Given the points P (3, 2, 1), Q(1, 1, 2), R(−2,−1,−2) and S(0, 1,−4),

calculate the shortest distance between lines PQ and RS.

1.10.2 The Vector Triple Product

If we consider the vector triple product a× (b× c), we ask ourselves immediately

whether the order in which we calculate the two vector products is important or

not, that is, whether or not we could also write the product as (a × b) × c. To

be able to answer this question, we make a definite choice—as shown in Figure

1.45—of reference system: the Y axis is chosen in the same direction as b and the
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Figure 1.45

X axis is chosen so that c lies in the XY plane. Vector a’s orientation is then

arbitrary. Since b × c is perpendicular to b and c by definition, it is directed in

the positive Z direction. Vectors a and b× c therefore lie in a plane that stands

perpendicular to the XY plane, and any line perpendicular to this will be parallel

to the XY plane. But a × (b × c) is perpendicular to both a and b × c. The

vector a × (b × c) therefore is parallel to the XY plane, that is, the plane that

contains b and c. In the same way we can show that (a× b)× c is parallel to the

plane that contains a and b. Therefore, in general, a × (b × c) and (a × b) × c

have different directions. It follows from this that

a× (b× c) 6= (a× b)× c, (1.55)

that is, the vector product is not associative.

The geometric argument stated above enables us to describe vector product

d .
.= a× (b× c) in a very useful way. Since d lies in the same plane as b and c, it

is clear from Figure 1.46 that we can construct a parellelogram with d as diagonal

and with sides that are parallel to b and c.

Remark. There is one special case where we cannot do this, that is, the case in

which b and c are parallel or opposed. Then we have b× c = 0 and hence d = 0.

It follows from Figure 1.46 that d can be written as a vector sum:

d = a× (b× c) = βb+ γc. (1.56)
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Figure 1.46

On both sides of this equation we take the scalar product with a:

a · a× (b× c) = β(a · b) + γ(a · c)

On the left-hand side of the previous equation, we now have a scalar triple product

in which the same vector (a) occurs twice. We saw in §1.10.1 that such a triple

product is identically equal to zero, so that

β(a · b) + γ(a · c) = 0.

We now have one equation in the two unknows β and γ and we can only solve for

the ratio between them:
β

γ
= −a · c

a · b
Since we have now, in essence, reduced the number of unknowns in the problem

to one (the relation β

γ
), it is natural to include another unknown, say λ, in such

a way that the right-hand side of (1.56) has a symmetrical form. We do this by

letting

β = λ(a · c), γ = −λ(a · b).

Then (1.56) becomes

d = λ[(a · c)b− (a · b)c]. (1.57)

We now find λ by comparing the x components of the vectors on both sides of

(1.57). Let e .
.= b×c; it follows from (1.50) for the x components on the left-hand
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side of (1.57):

dx = ayez − azey

= ay(bxcy − bycx)− az(bzcx − bxcz)

= aybxcy − aybycx − azbzcx + azbxcz

Similarly, it follows from (1.41) for the x component on the right-hand side of

(1.57):

λ[(a · c)bx − (a · b)cx] = λ[(axcx + aycy + azcz)bx − (axbx + ayby + azbz)cx]

= λ[aybxcy + azbxcz − aybycx − azbzcx]

Since the x component on both sides of the equation must be equal, it follows that

λ ≡ 1, and (1.57) yields a very important identity:

a× (b× c) = (a · c)b− (a · b)c (1.58)

Problems

P1.10.8. Prove that (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).

P1.10.9. Prove that a× (b× c) + b× (c× a) + c× (a× b) = 0.

P1.10.10. Prove that (a× b) · (b× c)× (c× a) = (a · b× c)2.

P1.10.11. If ê× b = c and b× c = ê, prove that c× ê = b.

P1.10.12. Solve the following equation for r:

r · a = α

r × b = c

where a · b 6= 0.

P1.10.13. If a × b = c × d and a × c = b × d, prove that a − d is parallel to

b− c.
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P1.10.14. Prove that a satisfies the following identity:

a =
1

2
[x̂× (a× x̂) + ŷ × (a× ŷ) + ẑ × (a× ẑ)]

P1.10.15. Show that (a× b)× (b× c) = (a · b× c)b.

P1.10.16. Simplify (a+ b) · (b+ c)× (c+ a).


