Alternate notation

We adopt the following notation for Cartesian vectors:

$$\langle a, b \rangle = a\hat{x} + b\hat{y},$$

 $\langle a, b, c \rangle = a\hat{x} + b\hat{y} + c\hat{z}.$

With this notation, we find the following expressions for \hat{x} :

$$\hat{x} = 1\hat{x} + 0\hat{y} = \langle 1, 0 \rangle$$
, [two dimensions]
 $\hat{x} = 1\hat{x} + 0\hat{y} + 0\hat{y} = \langle 1, 0, 0 \rangle$. [three dimensions]

Similarly,

$$\hat{y} = 0\hat{x} + 1\hat{y} = \langle 0, 1 \rangle$$

and

$$\begin{split} \hat{y} &= 0\hat{x} + 1\hat{y} + 0\hat{z} = \langle 0, 1, 0 \rangle \,, \\ \hat{z} &= 0\hat{x} + 0\hat{y} + 1\hat{z} = \langle 0, 0, 1 \rangle \,. \end{split}$$

Let $\mathbf{a} = \langle a_x, a_y \rangle$ and $\mathbf{b} = \langle b_x, b_y \rangle$ be any two vectors. The scalar product, in component form, is

$$\begin{split} \langle a_x, a_y \rangle \cdot \langle b_x, b_y \rangle &= (a_x \hat{x} + a_y \hat{y}) \cdot (b_x \hat{x} + b_y \hat{y}) \\ &= a_x \hat{x} \cdot b_x \hat{x} + a_x \hat{x} \cdot b_y \hat{y} + a_y \hat{y} \cdot a_y \hat{y} + a_y \hat{y} \cdot b_y \hat{y} \\ &= (a_x b_x) \hat{x} \cdot \hat{x} + (a_x b_y) \hat{x} \cdot \hat{y} + (a_y b_x) \hat{y} \cdot \hat{x} + (a_y b_y) \hat{y} \cdot \hat{y} \\ &= a_x b_x + a_y b_y. \end{split}$$

Note that

$$\mathbf{a}^2 = \mathbf{a} \cdot \mathbf{a} = \langle a_x, a_y \rangle \cdot \langle a_x, a_y \rangle = a_x^2 + a_y^2 = |\mathbf{a}|^2$$
.

In three dimensions,

$$\langle a_x, a_y, a_z \rangle \cdot \langle b_x, b_y, b_z \rangle = a_x b_x + a_y b_y + a_z b_z$$
$$\langle a_x, a_y, a_z \rangle \cdot \langle a_x, a_y, a_z \rangle = a_x^2 + a_y^2 + a_z^2$$

Observe that

$$\hat{x} \cdot \hat{y} = \langle 1, 0 \rangle \cdot \langle 1, 0 \rangle = 1^2 + 0^2 = 1,$$

$$\hat{y} \cdot \hat{y} = \langle 0, 1 \rangle \cdot \langle 0, 1 \rangle = 0^2 + 1^2 = 1,$$

$$\hat{x} \cdot \hat{y} = \langle 1, 0 \rangle \cdot \langle 0, 1 \rangle = (1)(0) + (0)(1) = 0.$$

Similar results are obtained in three dimensions, for example

$$\hat{x} \cdot \hat{z} = \langle 1, 0, 0 \rangle \cdot \langle 0, 0, 1 \rangle = (1)(0) + (0)(0) + (0)(1) = 0.$$